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Abstract: The two oncogenic human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi’s
sarcoma-associated herpesvirus (KSHV) cause significant disease burden, particularly in immuno-
suppressed individuals. Both viruses display latent and lytic phases of their life cycle with different
outcomes for their associated pathologies. The high prevalence of infectious diseases in Sub-Saharan
Africa (SSA), particularly HIV/AIDS, tuberculosis, malaria, and more recently, COVID-19, as well
as their associated inflammatory responses, could potentially impact either virus’ infectious course.
However, acute or lytically active EBV and/or KSHV infections often present with symptoms
mimicking these predominant diseases leading to misdiagnosis or underdiagnosis of oncogenic
herpesvirus-associated pathologies. EBV and/or KSHV infections are generally acquired early in
life and remain latent until lytic reactivation is triggered by various stimuli. This review summa-
rizes known associations between infectious agents prevalent in SSA and underlying EBV and/or
KSHV infection. While presenting an overview of both viruses’ biphasic life cycles, this review
aims to highlight the importance of co-infections in the correct identification of risk factors for and
diagnoses of EBV- and/or KSHV-associated pathologies, particularly in SSA, where both oncogenic
herpesviruses as well as other infectious agents are highly pervasive and can lead to substantial
morbidity and mortality.

Keywords: Epstein-Barr virus (EBV or HHV-4); Kaposi’s sarcoma-associated herpesvirus (KSHV
or HHV-8); human immunodeficiency virus (HIV); Mycobacterium tuberculosis (Mtb); Plasmodium
falciparum; severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); malaria; COVID-19;
Sub-Saharan Africa (SSA)

1. Introduction

Human herpesviruses are large, enveloped, linear, double-stranded (ds) DNA viruses
with genomes that range between 125 and 240 kb in length. With few exceptions, they
occur at a high prevalence in the human population and are associated with a wide spec-
trum of clinical manifestations, ranging from asymptomatic infection to severe disease.
Herpesviruses are characterized by their ability to establish life-long latent infections, main-
taining their genome in a persistent circular form. While the initial lytic cycle of primary
infection leads to the generation of large numbers of virions, latency is characterized by the
absence of virus production, where only a limited set of viral genes is expressed. Latency
can be interrupted by periods of intermittent lytic reactivation where infectious progeny is
produced and shed [1,2].
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There are currently eight known human herpesviruses with distinct host cell specifici-
ties and clinical characteristics, which are classified into three subfamilies: alpha-, beta-,
and gammaherpesvirinae. The alphaherpesvirus group comprises herpes simplex virus
type 1 (HSV-1 or HHV-1), herpes simplex virus type 2 (HSV-2 or HHV-2), and Varicella-
Zoster virus (VZV or HHV-3), while human cytomegalovirus (HCMV or HHV-5), human
herpesvirus-6 (HHV-6), and human herpesvirus-7 (HHV-7) belong to the betaherpesvirus
group. The two oncogenic herpesviruses Epstein-Barr virus (EBV or HHV-4) and Kaposi’s
sarcoma-associated herpesvirus (KSHV or HHV-8) are members of the gammaherpesvirus
group. Importantly, the alpha- and betaherpesvirus subfamilies mainly attribute their
pathogenic potential to viral replication and lytic reactivation, while life-long latent in-
fection typically has minimal impact upon the host. However, both latent and lytic gene
products contribute to malignant transformation and associated pathologies caused by the
gammaherpesvirus subfamily [3].

Various environmental factors can upset the delicate balance between herpesvirus
latency and lytic reactivation, which can lead to disease onset. Most of these factors have
been identified by in vitro experiments and include chemical stressors that impact specific
intracellular signaling cascades and/or epigenetic regulation. Clinically, triggers of lytic
reactivation also include hypoxia, inflammation (including oxidative and nitrative stress),
DNA damage due to UV exposure, or high levels of autonomic nervous system (ANS)
activity [4–6]. Importantly, various co-infections have been reported to lead to herpesvirus
reactivation, which has been, for example, observed on herpesvirus-infected B cells when
the infected B cell responds to unrelated infections [7].

Pathologies associated with the two oncogenic gammaherpesviruses EBV and KSHV
are particularly prevalent in human immunodeficiency virus (HIV)-infected individuals,
with Kaposi’s sarcoma (KS) being the most common acquired immunodeficiency syndrome
(AIDS)-related malignancy worldwide. Due to the high prevalence of HIV/AIDS and
other infectious diseases in Sub-Saharan Africa (SSA), such as tuberculosis, malaria, and
more recently, COVID-19, special focus must be placed on co-infections implicated in
herpesvirus-associated pathologies, particularly those with oncogenic potential. Although
both EBV and KSHV are highly prevalent in SSA, the influence of co-infections on their
associated diseases is not well understood. This review will therefore focus on known and
emerging co-infections in SSA and their impact on the lytic reactivation of the two human
oncogenic herpesviruses EBV and KSHV.

2. Epidemiology of the Oncogenic Gammaherpesviruses EBV and KSHV
2.1. EBV

EBV infects almost 90% of the global population, but primary EBV infection rates
differ according to geographic region, age, and socioeconomic status, with higher rates of
infection in developing countries [8–10]. EBV consists of two different genotypes, type 1
and 2, or A and B, respectively, based on the differences in the EBV-associated genes, EBNA-
2 and EBNA-3 [11,12]. Type 1 EBV has been shown to have a worldwide distribution,
whereas type 2 EBV is particularly prevalent in SSA. These strains differ in their ability to
induce growth transformation, with type 1 transforming B cells into lymphoblastoid cell
lines more efficiently than type 2 [11,13,14].

EBV is mainly transmitted through infected saliva, primarily in childhood; however, it
can also spread via blood transfusions and organ transplants [15–18]. It has been suggested
that almost all children in underdeveloped countries are EBV-seropositive by the age
of 6 years old compared to developed countries where seropositivity peaks at 2–4 and
14–18 years of age and thereafter increases with age [19–21].

While primary EBV infection is asymptomatic in most cases, it can lead to infectious
mononucleosis (IM) (a self-limiting disease characterized by lymph node inflammation
in the neck region [15]). Studies have established that most primary EBV infections in
children under 2 years of age are asymptomatic; however, some children between 10
and 48 months old can display symptoms such as fever, tonsillar pharyngitis, prominent
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cervical lymphadenopathy, and respiratory symptoms during IM [22–24] with a large
difference in heterophile antibody responses between infants less than 2 years of age
(27.3%), children between 25 and 48 months old (76.2%), and young adults (96%) [23].

Long-term EBV infection is further associated with several malignancies such as
Burkitt’s lymphoma (BL), Hodgkin’s lymphoma (HL), T-cell lymphomas, nasopharyn-
geal carcinoma, gastric cancer, and post-transplant lymphoproliferative disease, partic-
ularly in immunosuppressed and immunocompromised individuals, especially patients
with HIV/AIDS, transplant recipients, or those undergoing chemotherapy [15,25–32]. In
these patients, EBV-infected cells are able to evade the host’s immune system, enable
metabolic reprogramming, modulate apoptosis, and encourage cancer metastasis and
tumor proliferation [25].

In SSA, EBV co-infections with HIV, Mycobacterium tuberculosis (Mtb), Plasmodium sp.,
and other viruses, such as KSHV, HCMV, and HSV, are particularly relevant to address.
Symptoms of EBV-associated pathologies are often disguised by these prevalent diseases
and left undiagnosed, potentially exacerbating EBV viral infection in the host [33–38].

EBV-associated cancers account for approximately 1.5% of all human cancers glob-
ally [39] and are responsible for 137,900–208,700 cancer-related deaths annually [40]. The
fact that EBV was initially discovered in African BL cell cultures is evidence of the disease’s
high impact in this region, especially with the lack of efficient healthcare infrastructure
and virus control strategies [40,41]. Endemic BL has been shown to have a particularly
high impact in SSA affecting 80% of all pediatric patients presenting with hematologic
malignancies and is further exacerbated by the high incidences of Plasmodium sp. and HIV
infection in SSA countries [42].

2.2. KSHV

Unlike EBV, KSHV infection is not ubiquitous, and its prevalence varies geographically
with seropositivity rates of less than 10% in the U.S. and Europe, moderate rates of 20–30%
in Mediterranean countries, and high rates of 30–50% in SSA [43–46]. Based on sequence
variations of the hypervariable Open Reading Frame (ORF)-K1 gene, KSHV can be subtyped
into the overarching groups A, B, C, D, E, and F [47], with subtype A commonly observed
in Northern Europe and America and subtype B being more predominant on the African
continent and being considered the oldest existing strain [48]. There are several routes
of KSHV transmission, such as through blood transfusions [49] or sexual contact [50];
however, similar to EBV, transmission via saliva during early childhood is considered the
main route of transmission in endemic areas such as SSA [43,51–53].

KSHV is the causative agent of KS, primary effusion lymphoma (PEL), multicentric
Castleman disease (MCD), and KSHV-associated cytokine syndrome (KICS), which pri-
marily develop in HIV-infected individuals [54–56]. PEL, MCD, and KICS are rare but
likely underreported KSHV-associated pathologies [57], whereas KS is considered the most
common AIDS-related malignancy worldwide. Although KS is a relatively rare cancer
on a global level, it is epidemic in SSA where both HIV and KSHV prevalence are excep-
tionally high. GLOBOCAN reported KS incidence rates of 8.5 (males) and 4.7 (females)
per 100,000 in Southern Africa compared to incidences below 0.5 per 100,000 for West-
ern European countries or Asia, in 2020 [58]. Although advances in KS management of
HIV-infected individuals were made by the introduction of antiretroviral therapy (ART),
over 34,000 new cases and over 15,000 deaths were still reported in 2020 with KS being the
leading cause of death in Mozambique and Uganda [58].

While HIV-related immune suppression, as defined by low CD4 counts, is consid-
ered the most critical mechanism promoting pathogenesis [59], other KSHV-associated
malignancies such as MCD display preserved counts [60], highlighting the heterogeneity of
KSHV-dependent pathologies. In addition to HIV, co-infection such as with Mtb, Plasmod-
ium sp., HCMV, and HSV is highly common in SSA. The high burden of tuberculosis (TB),
for instance, often leads to overdiagnoses of TB, and due to similar clinical presentation of
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lytic KSHV infection (such as fever, night sweats, inflammation and respiratory symptoms),
underdiagnosis of KSHV-associated diseases [46].

Important to note, and different from EBV-associated malignancies, is that both lytic
and latent gene products are involved in KSHV-associated tumorigenesis and are distinct
between different KSHV-associated malignancies. While KS and PEL are generally char-
acterized by latent gene products [61,62], lytic gene products leading to inflammatory
symptoms are predominant in MCD and KICS, with fatal outcomes when untreated [55,63].

3. The Life Cycle of Oncogenic Gammaherpesviruses
3.1. The EBV Life Cycle and the Contribution of Key Latent and Lytic Gene Products

Both phases of the EBV life cycle play important roles in viral pathogenesis and
the development of EBV-associated diseases [64]. However, latently infected B cells are
predominantly associated with EBV-associated malignancies due to the disruption of cell
growth, signal transduction mechanisms, and transcription control by a restricted set of
latent genes produced [65]. EBV causes primary infection by replicating in the mucosal
epithelium, thereby initially infecting oropharyngeal mucosa cells prior to infection of
resting B lymphocytes in the underlying secondary lymphoid tissues [66]. The EBV virions
generated and released from the epithelial cells favor B cells due to the presence of particular
envelope glycoproteins and vice versa, thereby also allowing the virions to particularly
infect naïve B lymphocytes [67,68].

The transformation of naïve B lymphocytes into EBV-infected memory B lymphocytes
to establish latency is categorized into different latency stages/programs (0–III) depending
on the expression of specific EBV-produced proteins [69]. EBV-infected B cells initially
proliferate into activated lymphoblast cells and migrate to the germinal center (GC) of the
lymph node follicle establishing the latency III program [69], resulting in the production
of EBV nuclear antigens (EBNA)-1, -2, -3A, -3B, -3C, and leader protein (-LP) and latency
membrane proteins (LMP)-1, -2A, and -2B, which regulate the growth of EBV [69–71].
EBNA-1, one of the most important latency proteins, shares structural homologies with the
KSHV key latency protein latency-associated nuclear antigen (LANA, see Section 3.2) and is
expressed during all latency program stages and during lytic replication [72]. In the GC, the
latency I program is established with the production of EBNA-1 only [73–75] and the latency
II program with EBNA-1, EBV-encoded small RNAs (EBERs), viral microRNAs (v-miRs),
BamHI fragment A rightward transcripts (BARTs, i.e., transcripts of the viral genome),
LMP-1, and LMP-2A [76,77]. These viral proteins and RNAs contribute to viral immune
evasion, immunomodulation, prevention of apoptosis, limitation of viral replication, and
survival by limiting interferon (IFN) signaling [78–81].

EBV-infected memory B lymphocytes in latency program 0 establish latency by per-
sisting in a quiescent state with limited replication of only parts of the viral genome and
limited expression of viral proteins [82,83]. The viral genome exists in the nucleus as a
chromatinized, covalently closed, circular genome and is able to replicate once per cell
cycle driven by the host’s DNA polymerase [84], remaining undetected in the host for years
until reactivated. EBNA-1 is a sequence-specific multifunctional DNA-binding protein
responsible for EBV episomal stability, persistence, and maintenance during latency 0 due
to its anti-apoptotic properties and its ability to act as a transcriptional transactivator such
as for LMP-1 [85–87]. EBNA-1 tethers the viral episome to the host genome and leads to
subsequent B-cell immortalization [86].

The ability to maintain latency further relies on epigenetic mechanisms such as DNA
methylation, which facilitates transcriptional silencing of the immediate early genes, BZLF1
(ZEBRA/Zta) and BRLF1 (Rta) [88,89]. The suppressive histone modification H3K27me3,
as well as the presence of type II histone deacetylating complexes (HDACs) at the promoter
region, further contributes to silencing BZLF1 (Zta) transcription [90,91].

Interestingly, reactive oxygen species (ROS) production by EBV was found to be
required to immortalize B cells with a role in signal transduction and activation of transcrip-
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tion 3 (STAT3) phosphorylation; also, LMP-1 was shown to depend on ROS production,
aiding its crucial role in the survival of latently infected cells [92,93].

During any of the latency stages, the memory B lymphocytes can differentiate into
plasma cells and cause reactivation of the EBV infection with the production of new vi-
ral particles, which can be shed into the saliva [64]. Lytic reactivation of EBV can be
triggered by many different factors, including psychological stress, immunosuppression,
immunodeficiency, and the presence of foreign antigens due to new infections, which can
lead to uncontrolled replication of EBV, potentially resulting in lymphoproliferative dis-
eases [94,95]. During lytic reactivation of EBV, viral gene expression occurs in a sequential
and regulated manner and is governed by the production and upregulation of the immedi-
ate early genes BZLF1 (ZEBRA/Zta) and BRLF1 (Rta), which activate a cascade of gene
expression and signaling pathways [96]. The immediate early genes induce the expression
of early genes responsible for viral DNA replication, such as BALF5, BALF2, BMRF1, and
BSLF1, as well as late genes BCRF1 (vIL-10), BcLF1, and BNRF1, responsible for protecting
the virus from the host immune system and for viral particle formation, respectively [97].

Activation of transcription factors via phosphorylation, as well as activation of cel-
lular kinases such as JNK, MAPK/p38, ERK, PKC, PKD, and/or PI3K signaling/AKT,
is important for reactivation and oncogenesis [95,98]. LMP-1 plays a critical role in cell
proliferation, anti-apoptosis, transformation, metastasis, and invasion through NF-κB, PI3K,
JAK/STAT-mediated, and MAPK-associated signaling activity [99]. EBNA-1 and LMP-2A
are also associated with the inhibition of TGFβ1-induced apoptosis [99]. Conversely to its
role in latency, ROS generation in EBV-transformed cell lines, induced via the interaction of
the JNK and p38-MAPK signaling pathways, results in cellular apoptosis [100].

During lytic reactivation, cytokines such as interleukin (IL)-6, IL-8, IL-10, IL-13, and
VEGF are upregulated by BZLF1 (Zta), increasing inflammation and potentially cellular
proliferation [101]. The loss of control of any suppressive mechanism of the immediate early
genes, BZLF1 (Zta) and BRLF1 (Rta), are fundamental for reactivation and transcriptional
regulation of EBV [95,98].

3.2. The KSHV Life Cycle and the Contribution of Key Latent and Lytic Gene Products

Displaying broad cellular tropism, KSHV can infect various cell types in vivo, in-
cluding peripheral B cells, monocytes, keratinocytes, endothelial cells, epithelial cells,
and macrophages [102,103]. As infection mainly occurs upon oral exposure to infected
saliva, cells that are associated with the mucosa (e.g., mucosa-associated lymphocytes,
macrophages, and/or epithelial cells) are targeted first during primary infection. It is
assumed that KSHV migrates within dendritic cells to lymphoid organs, from where it
further infects B and T cells [104,105].

Latent and lytic infection phases have distinct viral gene expression patterns [106–108],
which unfold differently among various cell types and are characteristic for each KSHV-
associated disease; however, gene products of both phases are involved in tumorigene-
sis [61,62,109]. Importantly and unique among herpesviruses, the pool of latent cells is
maintained by lytically active cells, emphasizing how both viral cycles play their role in
pathogenesis [6]. B cells and monocytes are considered the major reservoir of latent KSHV,
and in KS as well as PEL, gene expression is predominantly latent. Whereas 99% of tumor
cells (primarily of endothelial origin) in KS lesions are latently KSHV-infected, high rates
of proliferation occur in spindle cells, accounting for only 1% of tumor cells, and have
been reported to contribute to higher motility, proliferation, and sustaining angiogene-
sis [103,110–112]. In MCD, both lytic and latent genes are expressed in B cells surrounding
the GCs of lymph nodes [55].

Latency is a controlled but reversible state where the KSHV genome persists as a
highly ordered chromatin structure within the host, and lytic gene expression is sup-
pressed [102,103]. The major latency locus of KSHV consists of ORF K12 (Kaposins A–C),
ORF71 (v-FLIP), ORF72 (v-CYC), and ORF73 (LANA), as well as 12 pre-miRNA se-
quences [113–116]. Structurally homologous to the EBV key latency protein EBNA-1 (see
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Section 3.1), LANA is the major regulator of latency and is considered a multifunctional
oncoprotein. Through its interaction with chromatin-associated proteins, LANA is essential
for cellular persistence of the KSHV episome within the host as it regulates chromatin
dynamics and the replication of the KSHV genome with a stable copy number ensuring
proper segregation of the episome to daughter cells [102,104,105].

Similar to EBV, the latent KSHV genome is characterized by a specific landscape
of epigenetic modifications where viral gene expression is silenced through viral DNA
methylation and histone modifications [117]. DNA-hypermethylation was shown to corre-
late with the suppression of gene expression in PEL cells [118], while inhibition of DNA
methyltransferases induces lytic reactivation, highlighting the role of DNA methylation
during latency [119]. High levels of repressive histone modifications such as H3K9me3
and H3K27me3 are especially found in late gene regions during latency, as reviewed in
Toth et al. [120]. Interestingly, several loci of the KSHV latent genome, such as the immedi-
ate early gene replication and transcriptional activator (Rta), still show activating histone
modifications such as H3K9/K14ac and H3K4me3, whereas constitutive heterochromatin
markers such as H3K9me3 were largely absent. Specific epigenetic patterns identified in
the study by Günther and Grundhoff are thought to enable rapid chromatin remodeling
for the lytic switch [117].

LANA’s key role in the repression of lytic gene expression is emphasized by its inter-
actions with chromatin-associated and epigenetic regulatory factors, as well as the DNA
methylation machinery [121,122]. Moreover, LANA can directly repress lytic reactiva-
tion by interacting with DNA-binding proteins such as RBP-jK. This interaction inhibits
Rta activation [121,123]. LANA also plays a key role in the oncogenic transformation of
KSHV-infected cells; for example, it impairs TGFβ signaling, leading to the inhibition
of TGFβ-mediated antiproliferative effects [124]. It was also shown to be involved in
JAK3/STAT3 signaling to promote angiogenic factors [125]. Importantly, LANA can di-
rectly inhibit tumor suppressor protein p53 and p73 functions, thereby maintaining the
viral episome within the infected cell and contributing to oncogenesis [126,127].

In contrast to latency, the repertoire of viral lytic genes is much bigger and can be
activated by host and viral factors as well as environmental stimuli in a strictly regulated
manner from immediate early genes required for gene transcription such as ORF50 (Rta),
ORF45, K8α, K4.2, K4.1, K4, ORF48, ORF29b, K3, and ORF70, to early genes involved in
DNA replication (K8, K5, K2, K12, ORF6, ORF57, ORF74, K9, ORF59, K3, ORF37, K1, K8.1,
ORF21, vIL-6, PAN RNA, vIRF1, K1, and ORF65), to late genes like glycoproteins gB and
K8.1 involved in viral assembly [125,128–130]. Of these, Rta, encoding for an E3 ubiquitin
ligase involved in dynamic chromatin remodeling, is a critical lytic gene. Once active,
it leads to the degradation of viral lytic replication repressors and the activation of lytic
promoters, resulting in lytic gene expression and the production of new infectious virions.
Rta can initiate DNA binding of RBP-jK, thereby activating the Notch signaling pathway,
which was shown to be sufficient to activate lytic replication [131–133]. Epigenetic modifi-
cations caused by overexpression of histone demethylases or inhibition of transcriptional
repressors such as PcG proteins were also found to be critical for the switch between latency
and lytic replication [134]. Since KSHV proteins interact with the host cell chromatin, it is
plausible that epigenetic reprogramming plays an important role in the pathogenesis of
KSHV-associated malignancies [135].

The KSHV lytic phase can be reactivated by inflammatory cytokines such as hepatocyte
growth factor (HGF), oncostatin M (OSM), or IFNγ that are also stimulated by other
infectious agents [108]. Various co-infections besides HIV, such as HSV-1 and -2, HHV-6,
and HCMV are potent cofactors that activate KSHV lytic reactivation and thereby affect
KSHV pathogenesis, highlighting the complexity of mechanisms and the influence of
co-infections for disease development and outcome [136–138], see Section 4.

Once activated, several lytic genes such as viral protein kinase (vPK/ORF36), viral G-
protein-coupled receptor (vGPCR/ORF74), viral interferon regulatory factor 1 (vIRF1/K9),
and viral IL-6 (vIL-6/K2), as well as membrane proteins K1 and K15, were found to have
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oncogenic functions, stimulating cellular proliferation, transformation, angiogenesis, and
cytokine production [139–143].

4. Co-Infection and/or Inflammation Triggers Lytic Reactivation of
Oncogenic Gammaherpesviruses

While latency represents a long-term underlying infection with EBV or KSHV of its
respective host cells and leads to viral persistence with minimal viral gene transcription,
lytic reactivation, potentially triggered by various environmental stimuli, can lead to acute
disease onset. The following sections will focus on co-infections relevant in SSA, implicated
in EBV- and/or KSHV-associated pathologies.

4.1. Lytic Reactivation of EBV

In the context of co-infections, associated inflammation typically leads to the produc-
tion of cytokines and chemokines and the disruption of signaling pathways, which can
promote lytic reactivation. EBV-produced viral cytokine homologs, such as BCRF1 (vIL-
10), act as antagonists, which negatively regulate IL-12 resulting in IFNγ production and
leading to cellular apoptosis [144]. Upregulation of cytokines such as TNFα, TNFβ, and
G-CSF are also suggested to contribute to reactivation [145]. Induction of inflammation by
exosomes carrying viral proteins has also been suggested [146]. Different pathways, such as
NF-κB, JAK/STAT, MAPK/ERK, and PI3K/AKT pathways, are activated by inflammatory
signals and associated with lytic reactivation and subsequent oncogenesis [99].

Co-infections such as with HIV, Mtb, and Plasmodium sp. have previously been shown
to exacerbate EBV infection, especially in immunocompromised or immunosuppressed
individuals, allowing latent EBV infection to opportunistically reactivate [95]. More recently,
co-infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been
suggested to be associated with lytic EBV reactivation [147].

Serological assays that are able to differentiate between acute or past infections are
based on the detection of viral capsid antigen (VCA) IgM and early antigen-diffuse (EA-D)
IgG (acute infection) and EBNA-1 IgG (past infection), respectively. However, during lytic
reactivation, all EBV antigens are present, i.e., VCA IgM, EA-D IgG, and EBNA-1 IgG [147].

4.1.1. HIV

HIV is an RNA virus from the retrovirus family of lentiviruses [148], being responsible
for approximately 84.2 million infections and 40.1 million mortalities worldwide [149].
South Africa has one of the largest HIV-seropositive populations globally [150,151], with
approximately 7.5 million people living with HIV, leading to approximately 51,000 HIV-
related deaths in 2021 [152]. Although global HIV infection is still rising, the introduction
of ART has led to a substantial decrease in AIDS, the most advanced stage of HIV in-
fection, and a higher survival rate for HIV-positive individuals [153,154]. This, on the
other hand, has led to a higher prevalence of HIV-related malignancies as the HIV-positive
population ages [155–157].

HIV-associated lymphoproliferative disorders such as diffuse large B-cell lymphoma
(DLBCL), BL, HL, and EBV-associated smooth muscle tumors can be a result of uncontrolled
EBV infection due to the immunocompromised state of the host [151,158,159]. A very early
study by Rahman et al. (1991) showed EBV lytic reactivation in 49 male HIV seroconverters
within 6 months of HIV infection. It was further demonstrated that IgG antibody titers
against EBV EA (associated with primary/acute EBV infection) were increased, and EBV
infection remained activated even up until 18 months after HIV seroconversion, suggesting
a role for this herpesvirus in HIV pathogenesis [160]. Whitehurst et al. (2022) demonstrated
a direct effect of HIV co-infection on the pathogenesis and progression of EBV-related
diseases. Co-infection with HIV increased systemic EBV replication and immune activation
as well as EBV-induced tumorigenesis in a humanized mouse model of EBV infection [161].
EBV/HIV-infected mice produced a greater number of tumors at a distinct anatomical site,
with the expression of LMP1 and EBNA-2 indicating latency program III gene expression in



Int. J. Mol. Sci. 2023, 24, 13066 8 of 25

all EBV-infected tumors with or without HIV infection [161]. Conversely, a study conducted
using HIV-positive samples from a cohort of children demonstrated that EBV co-infection
affected HIV viral load: the highest mean HIV viral load was observed in EBV co-infected
samples compared to other viral co-infected samples, with an increase in the production
of IFNγ, IL-2, and TGFß in the HIV/EBV co-infected group [162–165]. Importantly, the
increased EBV shedding in patients with HIV-1 infection was found to be decreased by the
use of ART [166–168].

It is suggested that the CD4+ T-cell depletion and associated CD8+ T-cell deterioration
and NK cell differentiation to the less protective CD56−CD16+ phenotype due to HIV
infection increases EBV-associated malignancies [169]. However, it has also been shown
that B cells are more susceptible to HIV infection during EBV B-cell transformation in a
CXCR4- and CD4-dependent manner in vitro [170], suggesting a bidirectional effect of
HIV/EBV co-infection.

4.1.2. Mycobacterium Tuberculosis

The acid-fast bacterium Mtb is the causative agent of TB, affecting approximately
10.6 million individuals worldwide, with South Africa contributing approximately 87% of
all globally estimated incident TB cases in 2018 [171]. Approximately 53% of HIV-positive
individuals in South Africa were reported to be co-infected with Mtb in 2021, representing
the most common cause of death among HIV-infected people, accounting for one-third of
AIDS-related deaths [152,172].

The direct effect and mechanistic relationship between EBV infection and TB patho-
genesis still needs to be evaluated; however, a link due to the high Mtb/HIV co-infection
rate in South Africa and the ubiquitous nature of EBV has been suggested, which may be
dependent on the stage of EBV infection and timing of Mtb infection [173].

In a very early case report from 1986, EBV was detected in an active TB-positive
patient, confirmed by the detection of anti-VCA IgM and IgG antibodies [174]. In a recent
case study, it was shown that EBV infection is sometimes overlooked during differential
diagnosis, despite the presence of evidence indicating past EBV infection of the patient.
This oversight is attributed to the prominence given to the patient’s history of HIV/Mtb
infection, which is considered more clinically significant [175].

EBV has been detected in lung TB, which is associated with multidrug resistance
(MDR-TB). In a study including 233 patients, EBV was observed in 27% of HIV-negative
lung TB patients and in 21.9% of HIV-positive lung TB patients. Although there was no
correlation between EBV and the presence or absence of HIV, EBV and the detection of
other HHVs were associated with MDR-TB in HIV patients [176].

Interestingly, a murine model of mice latently infected with the murine gamma-
herpesvirus 68 (MHV68), which is genetically related to EBV and KSHV, demonstrated
moderate protection from virulent Mtb infection by limiting Mtb growth and dissemination
due to the increased response of IFNγ and the possible elicitation of a polyclonal T-cell
response. This suggests that human gammaherpesvirus infection could have a significant
influence on TB pathogenesis, although it may often be unrecognized, particularly in
countries with a high burden of TB, such as South Africa [177].

4.1.3. Plasmodium sp.

Malaria is an infectious disease caused by apicomplexan parasites of the Plasmodium
genus, which are transmitted by the Anopheles mosquito [178]. Malaria accounts for ap-
proximately 241 million estimated cases globally, resulting in over half a million deaths
in 2020 [178,179]. In SSA, malaria is endemic and accounts for approximately 100 million
cases and an estimated 275,000 deaths [178].

Endemic BL, a common pediatric cancer in Africa, is classified by the presence of EBV
and Plasmodium sp. infection; however, the exact extent of their respective contributions
is not yet fully elucidated. It has been reported that the cysteine-rich inter-domain region
1α (CIDR1α) of the Plasmodium falciparum membrane protein 1 can directly induce EBV
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reactivation, thus increasing the risk of BL. CIDR1α activates the memory component of B
cells in which EBV is known to persist in a latent form. It was observed that CIDR1α binds
to EBV-positive B cells and increases the number of cells that switch to the viral lytic cycle,
thereby increasing the immediate early gene BZLF1 (Zta) expression [180].

Co-infection with EBV has been proposed to contribute to a greater risk of malaria-
associated morbidity and mortality in children from SSA [181]. The timing of EBV/Plasmodium
sp. co-infection plays a crucial role in the development of severe malaria, as acute EBV
infection during Plasmodium infection is essential for the heightened lethality of the co-
infection. Since children in SSA often acquire both EBV and Plasmodium sp. within their
first year of life, it is likely that EBV infection is in the acute phase during their initial
malaria episode. This implies that complications leading to childhood malaria deaths may
be partially attributed to EBV infection. In experiments conducted on mice, those infected
with MHV68 and subsequently infected with Plasmodium sp. within 7–15 days experienced
severe anemia and succumbed to the infection. However, mice infected with Plasmodium at
a much later stage did not exhibit the same complications and survived [181].

Evidence of previous P. falciparum infection on EBV kinetics was reported by a study
on children presenting with acute uncomplicated P. falciparum malaria (referred to as acute
Kisumu; A-KSM) who showed higher EBV viral loads and stronger anti-VCA IgG antibody
responses. This study also looked at KSHV and Plasmodium sp. infection suggesting that
malaria drives both EBV and KSHV lytic reactivation [182] (see Section 4.2.3).

Other studies have suggested expansion of EBV-infected B cells during malaria, espe-
cially in children [37,183]. It has also been shown that binding of P. falciparum erythrocyte
membrane protein 1 (Pf EMP1) to latently EBV-infected B cells caused lytic reactivation
with the aid of CIDRα1 indicated by a higher EBV DNA level in the plasma of children
and pregnant women with malaria than those without malaria. However, the interplay
between host factors in recurrent malaria episodes and co-infection with EBV, leading to
the development of endemic BL, still needs to be elucidated [184].

4.1.4. SARS-CoV-2

SARS-CoV-2 is the causative agent of coronavirus disease 2019 (COVID-19), which
was declared a global health pandemic in 2020. SARS-CoV-2, a single-stranded RNA
virus, is part of the Coronaviridae family and is responsible for approximately 765 million
global infections to date [185–189]. The virus infects the upper respiratory tract, with
disease progression leading to inflammation of the alveoli in the lungs resulting in limited
gaseous exchange, uncontrolled immune responses (also termed the “cytokine storm”),
and potentially fatal respiratory distress [190,191].

In South Africa, the SARS-CoV-2 pandemic occurred against the backdrop of high
HIV, Mtb, herpesvirus, and respiratory infections, as well as non-communicable disease
burdens. The pandemic contributed to approximately 4 million confirmed infections and
approximately 100,000 confirmed deaths ranking South Africa as one of the most severely
affected countries on the African continent [188,189,192].

Recent studies have shown increasing evidence to suggest a link between SARS-CoV-2
infection and EBV reactivation resulting in heightened fever and inflammatory responses
in COVID-19 patients [193]. However, the question of whether SARS-CoV-2 triggers EBV
reactivation or if EBV directly exacerbates SARS-CoV-2 infection remains uncertain and
requires further investigation.

In a clinical study conducted by Chen et al. (2021) in Wuhan, China, 55.2% of hos-
pitalized COVID-19 patients with confirmed past EBV infection displayed positive EBV
VCA IgM, indicative of EBV reactivation within two weeks of testing positive for SARS-
CoV-2. This suggested a correlation between EBV reactivation and the acute phase of
COVID-19 [193]. Moreover, a study conducted by Paolucci et al. (2020) demonstrated
that the overall median EBV DNA level was significantly increased in intensive care unit
(ICU) patients compared to sub-intensive care unit (SICU) in Italy, with EBV reactivation
observed in 95.2% of ICU patients and 83.6% of SICU patients [194]. The presence of
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EBV DNA correlated with a significant loss of NK and CD8+ T cells in these COVID-19
patients [194]. These data correlate with a study conducted in France demonstrating that
EBV reactivation led to longer median ICU stays, with 82% of COVID-19 ICU patients
displaying EBV reactivation [194,195]. A retrospective study from Wuhan, China, found
that 13.3% of patients in the ICU developed EBV reactivation with higher 28-day and
14-day mortality rates than the remainder of patients without EBV reactivation and who
also received more immune-supportive treatment than non-EBV patients [196].

A study by Verma et al. (2021) indicated that the SARS-CoV-2 receptor angiotensin-
converting enzyme 2 (ACE2) was upregulated during lytic EBV infection due to the EBV
lytic activator, BZLF1 (Zta), targeting methylated promoters, thus increasing SARS-CoV-2
susceptibility in the human oral epithelium [197].

A more recent study suggested that SARS-CoV-2 infection does indeed increase EBV
reactivation as demonstrated by the detection of EBV DNA in plasma samples. EBNA-1
IgG indicates previous EBV infection; therefore, primary EBV infections were defined in
the study by the absence of EBNA-1 IgG in samples and were excluded from analysis, thus
revealing 27.1% of EBV reactivation in the COVID-19-positive sample group, compared to
only 12.5% of reactivations in the COVID-19-negative group [147].

To investigate the effect of “long COVID” on EBV reactivation, Gold et al. (2021)
reported increased EBV EA IgG or EBV VCA IgM in 66.7% of “long COVID” subjects and
in 10% of control subjects with a similar trend observed in patients 21–90 days following
acute SARS-CoV-2 infection [198]. This suggests that EBV reactivation may occur soon after
or concurrently with acute COVID-19 and as a result of COVID-19-associated inflammation
(i.e., the “cytokine storm”) rather than SARS-CoV-2 infection [198]. It has been suggested
that EBV reactivation could be the cause of “long COVID” symptoms due to impaired
mitochondrial functions during the host immune response to COVID-19 and long-term
symptoms [199]. Moreover, the proinflammatory cytokine IL-6 has been associated with
increased EBV reactivation in COVID-19 patients, as significant levels of EBV viremia were
found in 78% of critically ill COVID-19 patients compared to only 44.4% in non-COVID-19
patients [195]. However, the specific mechanisms underlying this relationship were not
clearly defined.

4.1.5. Other Co-Infections

HCMV and EBV co-infection are commonly detected in immune-competent chil-
dren [200] and is suggested to facilitate multi-pathogen infection such as with respi-
ratory syncytial virus (RSV), Chlamydia pneumonia (CP), HHV-6, -7, and/or measles
virus, among others [200]. It is speculated that EBV/HCMV co-infection can influence
B-cell responses and NK cell cytokine production and the frequency of NKG2C+ and
CD57+NKG2C+ NK cell differentiation; however, the mechanisms governing this are un-
known [200–202]. Recently, a role for EBV/HCMV-associated reactivation in hematopoietic
stem cell transplantation (HSCT) patients has been reported, increasing the incidence of
hemorrhagic cystitis and thereby reducing the overall survival rate of HSCT patients [203].

Co-infection of EBV with HSV has been observed in a rare clinical case of Erythema
multiforme in a young child. Elevated levels of antibodies to both IgM HSV and EBV were
detected with no other viral infections [204]. Another study demonstrated an association of
EBV-seropositivity with the presence of HCMV and HSV-1 viral antibodies [205].

It has also been observed that EBV and HPV co-infection leads to a dysregulation of
miRNA expression. Both viruses can synergistically dysregulate miR-21 and miR-200c, the
expression of which has been shown to have a role in cervical carcinogenesis [206]. EBV
was suggested to impair T-cell immunity in advanced stages of cervical cancer, contributing
to the immune evasion of HPV-infected epithelial cells. The interaction between EBV LMP1
and HPV viral proteins altered NF-κB and MAPK signaling, among others, in a murine
model [207], while another study highlighted the necessity of HPV viral oncoproteins E6
and E7 in EBV lytic replication in oral keratinocytes [208]. A helper role of EBV in cervical
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cancer development has been suggested by several studies due to the presence of both
HPV and EBV DNA sequences in malignant tissues [209–216].

Recently, EBV has been detected in a newly emerging hemorrhagic fever known as
thrombocytopenia syndrome (SFTS) caused by a bunyavirus transmitted through tick bites
with a fatality rate of up to 30%. EBV reactivation was seen in 4 out of 22 (18.2%) SFTS
patients from Qingdao City, China. Previous EBV infection was observed in more than 90%
of the SFTS patients in this study as defined by EBV IgG levels suggesting that EBV was
reactivated rather than being a primary infection [217].

4.2. Lytic Reactivation of KSHV

Factors that are known to induce lytic KSHV reactivation are oxidative stress, hypoxia,
inflammation, and immune suppression [108,218], as well as various co-infections such
as with HIV, Mtb, Plasmodium sp., HSV-1, HSV-2, HHV-6, and HCMV, and more recently
SARS-CoV-2 [136–138,219,220].

ROS and cytokine production in the context of inflammation and co-infection can
induce cellular pathways that involve NF-κB inhibition as well as p38, JNK, and ERK1/2
signaling, ultimately leading to KSHV reactivation [221,222]. Under hypoxic conditions,
which usually promote cell cycle arrest and hinder DNA replication in order to decrease
the energy consumption of the cell, KSHV LANA has been shown to maintain genome
replication of both the host and the virus [223]. Moreover, in vitro studies showed that lytic
reactivation occurs upon acute and chronic exposure of PEL B-cell lines to hypoxia, leading
to an increase in KSHV lytic proteins as well as secreted vIL-6 [224].

Compared to EBV diagnostics (see Section 4.1), there are no clinically utilized, standard-
ized high-sensitivity serological tests for KSHV infection, and serological differentiation of
KSHV acute and past infection, as well as reactivation, is not well established [225]. How-
ever, in-house ELISA platforms to quantify lytic K8.1 and latent LANA are well recognized
to assess general KSHV seropositivity [226].

4.2.1. HIV

Although the introduction of ART has had a major effect of reducing KS incidence and
improving prognosis when included as therapy for HIV-infected individuals, HIV-related
immune suppression, e.g., defined by low CD4 counts (<200 cells/µL), still remains the most
important mechanism promoting KSHV-driven pathogenesis [59]. While there has been a
decline in the incidence of KS in HIV-infected individuals due to ART, a rising number of
KS patients with CD4 counts over 300 cells/µL have been reported [227]. This could be
explained by HIV-unrelated KS because the life expectancy of HIV-infected patients on ART
has increased or to HIV-related effects that do not depend on T-cell immunosuppression.
In other KSHV-related diseases, such as MCD, patients show preserved CD4 counts [60],
highlighting that KSHV-dependent malignancies are highly heterogeneous, and research in
these populations remains a priority in AIDS research.

Lytic reactivation of KSHV in the context of underlying HIV infection was shown
to be directly influenced by HIV proteins such as transactivator of transcription (Tat),
which can activate the immediate early gene Rta as shown in an in vitro study using a
PEL cell line [228]. Moreover, HIV Tat mimics growth factors and signaling molecules
and can function as an angiogenic factor, thereby activating the tyrosine kinase receptor
VEGF-A through direct binding, resulting in growth of KS lesions [229]. HIV has also been
shown to potently induce lytic replication of KSHV via activation of the KSHV Rta in a
Tat-independent manner [228].

Late stages of HIV infections and/or AIDS are characterized by chronic inflammation.
HIV-1 Tat can induce cytokines, which, in turn, were shown to induce KSHV lytic reac-
tivation [59]. The induction of inflammatory cytokine secretion is due to Tat modulation
of signaling pathways controlling the inflammatory response in the cell, such as activa-
tion of JAK/STAT [230], contributing to lytic KSHV replication [230]. Lytic replication
of KSHV was also found to be induced by soluble factors produced by or in response to
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HIV-1-infected T cells co-cultured with a KSHV-infected cell line (BCBL-1), as an increase
in KSHV mRNA transcripts, proteins, and infectious virions has been shown [231].

Due to HIV-related immune suppression, lytically activated cells are not eliminated
by the host immune system, further fueling HIV/KS pathogenesis [232].

4.2.2. Mycobacterium Tuberculosis

The context of the high prevalence of Mtb in SSA has led to overdiagnosis and
overtreatment of TB, leaving KSHV-related pathologies that may symptomatically mimic
TB misdiagnosed and, therefore, untreated [46]. KSHV-MCD, for instance, is rare but
likely underdiagnosed and is characterized by nonspecific inflammation symptomatically
similar to HIV/TB, complicating accurate diagnosis. Indeed, when investigating a large
patient cohort (n = 682) from South Africa presenting with typical TB symptoms, a subset
of patients fitted the KICS working case definition [56], with one patient retrospectively
being diagnosed with MCD [46].

The impact of Mtb/KSHV co-infection was also addressed in a study comparing
KSHV viral loads and KSHV antibodies in patients with underlying Mtb infection, which
revealed significantly higher titers in Mtb/KSHV patients than in controls [233]. Virulence
factors secreted by Mtb were shown to influence KSHV-infected cells and induce KSHV
lytic reactivation in vitro, such as the early secreted antigenic target 6kDa (ESAT-6), which
was confirmed by lytic gene expression of Rta, vGPCR, and K8.1 in HUVEC endothelial
cells and PEL cells [234]. As ESAT-6 can be secreted into the extracellular space, co-
infection between Mtb and KSHV does not have to occur in the same cell, although this is
very likely due to similar tropism including macrophages, dendritic cells, epithelial, and
endothelial cells [234].

4.2.3. Plasmodium sp.

As KSHV seroprevalence is particularly high in SSA, where malaria is endemic, an
association between these two diseases has been suggested in the literature [235–237].
A study investigating KSHV seroconversion in Kenyan children further showed that
infection with P. falciparum increases the risk of KSHV seropositivity at an early age [238].
Several factors, such as impaired immune functions, favor the development of KS and
other KSHV-associated pathologies. Furthermore, malaria triggers a T helper type 2 (Th2)
immune response, which is also very common in helminth infections, and characterized
by the production of the cytokines IL-4, IL-5, and IL-13. IL-4 was shown to reactivate
gammaherpesviruses in a mouse model and specifically reactivate KSHV in vitro with
increased expression of immediate early and late lytic transcripts [239]. A recent study by
Olouch et al. (2023) examined KSHV serological patterns of children with acute malaria
and demonstrated that KSHV latency was disrupted by acute malaria episodes. Not only
was acute P. falciparum infection characterized by distinct serological profiles, but KSHV
lytic antigens were also increased in patients with acute malaria [182].

Ruocco et al. (2011) proposed an “oncodrug” hypothesis, claiming that cancer devel-
opment is favored by immunosuppressive properties of anti-malaria drugs such as quinine.
Indeed, iatrogenic immunosuppression can last for years, which makes KSHV-infected
individuals more susceptible to lytic reactivation [240]. Several species of Plasmodium can
cause severe anemia [241], which, in turn, triggers hypoxia, a known risk factor for lytic
reactivation of KSHV, as stated above [224].

4.2.4. SARS-CoV-2

While several co-morbidities are known to increase the risk of a fatal COVID-19 out-
come, co-infection with oncogenic viruses is of particular significance for long-term cancer
risk and KSHV-associated pathogenesis [242]. Observational studies conducted in South
Africa identified an association between KSHV viral load and COVID-19 outcomes [243].
Although the study design could not determine whether disease synergy was at play,
several SARS-CoV-2 proteins have indeed been shown to induce lytic reactivation of KSHV
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in vitro, such as SARS-CoV-2 Spike (S) and nucleocapsid (N) proteins when ectopically
expressed [220]. Not only the virus itself, but drugs that are used in the treatment of
COVID-19, such as azithromycin and nafamostat mesylate, but not remdesivir, induced
KSHV lytic reactivation in iSKL.219 cells [220]. Further, a potential interplay between
SARS-CoV-2 and KSHV was suggested by data showing upregulated ACE2 expression in
AIDS-KS tissue, although the underlying mechanisms of KSHV-mediated regulation of
ACE2 expression remain unknown [220]. An association between KSHV and SARS-CoV-2
was also indicated in a clinical case of a woman with confirmed KS without visual skin
lesions who was hospitalized for COVID-19 and showed subsequent recurrence of KS. Both
KSHV and SARS-CoV-2 were detected by transmission electron microscopy (TEM) of the
patient’s biopsies, and the recurrence of KS was speculated to be promoted by inflammation
caused by SARS-CoV-2 infection [244]. Clinical manifestation of lytic reactivation of other
herpesviruses (EBV, HCMV, HSV) was substantially higher in patients co-infected with
SARS-CoV-2, especially those with severe symptoms as well as those who were vaccinated
against SARS-CoV-2 [245]. Lytic reactivation of KSHV in the post-pandemic era should
therefore remain a research focus, especially in populations with a high prevalence of HIV
and other infectious diseases.

4.2.5. Other Co-Infections

HCMV, a betaherpesvirus, occurs ubiquitously, can be vertically transmitted, and
represents an important opportunistic infection in HIV-infected individuals [59,246,247].
Immunosuppression is critical for the reactivation of both KSHV and HCMV, and inter-
actions between the two viruses are very likely, not least due to similar cellular tropisms.
Lytic replication of KSHV was reported to be induced by the direct activation of Rta by
gene products of the HCMV UL112-114 locus, encoding four phosphoproteins synthesized
via alternative splicing [248]. Latently KSHV-infected human fibroblasts were induced
to lytic replication by infection with HCMV, giving rise to new virion progeny. It was
further shown that HCMV infection led to higher KSHV replication in endothelial cells and
activated lytic replication in keratinocytes [136]. KSHV reactivation by HCMV might be
cell type dependent and have different underlying mechanisms, which was suggested by
studies in which a laboratory HCMV strain was unable to induce KSHV lytic reactivation
in a BCBL-1 cell line [249].

Other herpesviruses, such as HSV-1 and HSV-2, have been described as cofactors with
the potential to reactivate KSHV [137,219]. HSV-1 infection was shown to activate Rta
through cellular miRNAs. Upon infection with HSV-1, miR-498, and miR-320d (both of
which directly target Rta at its 3′ UTR and inhibit its expression) were downregulated. This
was corroborated in experiments overexpressing miR-498 and miR-320d, which resulted in
the inhibition of lytic reactivation, whereas miR-498 and miR-320d repression enhanced
lytic replication of KSHV [219]. In addition, the PI3K/AKT and ERK/MAPK pathways
were found to be stimulated by HSV-1 infection-promoting lytic reactivation [250]. Like-
wise, HSV-2 infection was shown to lead to Rta activation, resulting in lytic KSHV gene
transcription, expression of viral proteins, and production of infectious viral particles in
BCBL-1 [137]. Furthermore, HHV-6 was found to be a potent factor inducing lytic replica-
tion of KSHV. Co-culture experiments of BCBL-1 cells with HHV-6-infected cells showed
an increase in KSHV lytic transcripts after 8 h, which further induced other proteins of the
lytic cycle [138]. HHV-6 could also influence the KSHV lytic cycle by regulating cytokines
such as TNFα, IL-β, and IFNs [251].

4.3. The Interplay between EBV and KSHV

Co-infection with the two gammaherpesviruses, EBV and KSHV, has been described
in immunocompromised hosts with AIDS-associated PEL. Both viruses negatively affect
the others’ gene expression level following physical interaction on a molecular level. EBV
lytic replication is inhibited by KSHV Rta, while KSHV lytic gene expression is inhibited by
EBV BZLF1 (Zta) [252].
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KSHV lytic replication can also be suppressed by EBV LMP-1. However, LMP-1 can be
induced by KSHV Rta in latently EBV-infected cells, which can result in the suppression of
lytic replication of both EBV and KSHV. Although EBV and KSHV can suppress each other’s
lytic replicative cycles during co-infection, they can be mutually beneficial during long-term
latency, whereby they enable each other to escape the host’s immune response [59].

Interestingly, KSHV Rta has also been suggested to increase EBV infectivity by upreg-
ulating the expression of the EBV entry receptor CD21 [59]. Another study demonstrated
that during dual infection of EBV and KSHV, EBV’s ability to transform B cells in vivo
was adequate to facilitate KSHV infection [36], which suggests that EBV may also enhance
KSHV genome maintenance [33].

In vitro studies further demonstrated that both viruses could be maintained in a
BC-1 cell line, derived from a body cavity-based B-cell lymphoma, and could be differ-
entially induced from their latent state into their lytic state using sodium butyrate and
12-O-tetradecanoylphorbol-13-acetate (TPA), respectively. However, only EBV displayed
the release of infectious virions from BC-1 cells, whereas there was little evidence that
KSHV intranuclear nucleocapsids were released [253]. This shows that the mechanistic
pathways for lytic reactivation of these two viruses could slightly differ, allowing for
differential induction.

5. Conclusions

The high prevalence of infectious diseases in SSA, primarily HIV/AIDS, TB, and
malaria represent an unknown risk for pathologies associated with the oncogenic gamma-
herpesviruses, EBV and KSHV. Lytic reactivation of these viruses is often associated with
nonspecific inflammatory symptoms and is, therefore, likely to be misdiagnosed as a pathol-
ogy caused by one of the more predominant infectious agents in the SSA context. More
recently, SARS-CoV-2 infection might impact EBV/KSHV-associated diseases, which could,
in turn, exacerbate COVID-19 progression and outcome and/or lead to “long COVID”
and/or malignant transformation.

There are neither prophylactic nor therapeutic vaccines against EBV and/or KSHV
infection available; therefore, clinical awareness of EBV- and KSHV-associated pathologies
and early diagnosis of diseases linked to these two human oncogenic herpesviruses will
facilitate successful intervention strategies, particularly in vulnerable populations with
high HIV prevalence and high exposure to other circulating infectious diseases. Identi-
fication of these populations and implementation of diagnostic platforms for EBV and
KSHV in relevant clinical settings is highly recommended. Moreover, anti-oxidant and
anti-inflammatory drugs for the symptomatic treatment of co-infections could be promis-
ing preventative and therapeutic means for effectively targeting oncogenic herpesvirus
reactivation (Figure 1).
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