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Abstract: Thrombocytes are numerous in the blood of aves (birds) and ichthyoids (fish). The origin
of this cell type is a common hematopoietic stem cell giving rise to a cell that is active in blood coagu-
lation, inflammatory functions, and the immune response in general. It has been well documented
that thrombocytes can phagocytize small particles and bacteria. While phagocytosis with an associ-
ated oxidative burst has been reported for chicken thrombocytes, some questions remain as to the
degradation capacity of phagosomes in ichthyoids. As innate cells, thrombocytes can be stimulated
by bacterial, viral, and fungal pathogens to express altered gene expression. Furthermore, there have
been observations that led researchers to state that platelets/thrombocytes are capable of serving as
“professional antigen presenting cells” expressing CD40, CD80/86, MHC I, and MHC II. This indeed
may be the case or, more likely at this time, provide supporting evidence that these cells aid and
assist in the role of professional antigen-presenting cells to initiate adaptive immune responses.
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1. Overview

The immune system of birds and fish consists of innate and adaptive immunity, which
includes cellular and non-cellular (or humoral) components. The cellular components of
the non-specific, innate immune response include cells such as macrophages, granulocytes
(polymorphonuclear cells such as heterophils), thrombocytes, basophils, eosinophils, and
natural killer cells. Since innate cells express various pattern recognition receptors (PRRs),
these cells play an important role in the earlier phases of pathogenic invasion. PRRs
serve to recognize microbial invasion by detecting pathogen-associated molecular patterns
(PAMPs) and harmful products produced by the host body through danger-associated
molecular patterns (DAMPs). Upon detection of danger, the cells of the innate immune
system respond by producing or releasing molecules such as defensins, cytokines, and
chemokines for effector function (i.e., coordinating the recruitment and action of a series
of specialized cell populations that fight invading pathogens via phagocytosis and lytic
functions). The PRRs on innate cells are also important for initiating the competency of
select cells to present antigens to lymphocytes. The lymphocytes (T and B cells) are adaptive
immune cells that provide a second layer of protection in a host. Cells such as macrophages
and dendritic cells are known to process the pathogenic peptides and present antigens in
the context of the major histocompatibility complex (MHC) to lymphocytes to initiate a
more specific adaptive immune response to clear infection.

This review focuses on the role of thrombocytes in immune response in birds and
fish. Thrombocytes in lower vertebrates such as birds, reptiles, amphibians, and fish are
homologous to enucleated platelets in mammals [1]. Nucleated hemocytes found in the
hemolymph of invertebrate species perform functions comparable to thrombocytes or
platelets [2,3]. In most vertebrate circulation, thrombocytes are the most abundant blood
cells after erythrocytes [4–6]. Thrombopoiesis occurs in different tissues in adult animals,
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depending on the vertebrate group and species. In mammals, platelets develop from
megakaryocytes [7]. Thrombocytes in birds originate from cells that resemble multipotent
hematopoietic progenitors and are produced in the region where the earliest intraem-
bryonic hematopoietic cells develop [8]. Thrombopoiesis occurs in the lymphomyeloid
and lymphoid tissues such as the spleen, kidney, and liver in fish [9,10]. Thrombocytes
are similar in size to lymphocytes and appear as round, oval, spindle, or spiked cells
with long cell processes [1,5,6,11–14]. The cytoplasm of thrombocytes appears to have
a surface-connected canalicular system [15]. Thrombocytes are also capable of produc-
ing and releasing a vast array of bioactive proteins that are inflammatory, antimicrobial,
and immune-modulating molecules [16–23]. In addition, large, acid phosphatase-positive
granules, similar to mammalian lysosomal granules, have been observed in avian throm-
bocytes [24]. When activated, thrombocytes can release into the circulation numerous
intracellular secretory granules (e.g., α granules, dense granules, and lysosomes) that these
cells possess.

2. Immune Receptors

Although platelets and thrombocytes have been known primarily to be involved
in thrombosis and hemostasis, these cells have been studied in the last two decades to
demonstrate a role in infection, inflammatory functions, and the immune response in
general. The detection of PRRs such as toll-like receptors (TLRs) on thrombocytes has led
to the discovery of the role of these cells in various innate immune responses. For birds,
TLR1, 2, 3, 4, 5, 7, and 21 [25,26] have been identified, and TRL1, 2, 4, 5, 7, 8, 9, 20, and
21 [23,27] are functional for ichthyoid thrombocytes (Figure 1). TLRs 1, 2, 4, and 5 are
generally associated with the recognition of patterns associated with bacteria, while TLRs 3
and 7–9 recognize double-stranded and single-stranded RNA often associated with viruses
in fish and chicken [28,29]. Subtypes of TLR 1 and 2 are also associated with the recognition
of mycoplasma and fungal particles [30]. TLR 20 is detected in fish only and is associated
with the recognition of protozoan parasites [31]. TLR 21 is associated with recognizing the
CpG dinucleotide sequences in DNA [28,32]. These cells exhibit other PRRs and associated
genes such as nucleotide-binding oligomerization domain (NOD)-like receptors (NLR)
Family Member X1 (NLRX1), NLR Family CARD Domain Containing 3 and 5 (NLRC3,
NLRC5) [33], and C-type lectin receptor (CLR) [34]. The discovery of these molecules
associated with pathogen recognition on thrombocytes reinforces the notion that these cells
may be playing direct roles in protecting the host from infection like other leukocytes.

In addition to the PRRs, both avian and ichthyoid thrombocytes express markers such
as CD41/61 (glycoprotein IIb/IIIa) [35]. This molecule is known to be associated with the
activation and aggregation of mammalian platelets [36,37]. The thrombopoietin receptor
(c-Mpl) has been identified in birds and fish as a unique marker of thrombocytes related
to the proliferation of immature stages of the cell. Thrombocytes additionally express
CD62 (P-selectin), which is important cell adhesion molecule for the rolling of platelets and
leukocytes on activated endothelial cells [38,39]. The presence of CD11/18 (Complement
receptor 3) provides these cells with the ability to attract complement complexes engaged
in immune capture by thrombocytes. The chicken thrombocyte exhibits immunoregulatory
Ig-like receptors CLEC-2 (C-type lectin) [34], SLAMF4 (CD244, 2B4) [40], and TREM-A1
and -B1 [41,42], whereas CD42a (GPIX) [35] has been observed on the fish thrombocyte.
Also, fish thrombocytes have been found to display chemokine receptors (CCR7, CXCR
1 and 2, and CXCR4) [35], while none have yet been identified on the avian cell. The
interaction of platelets with neutrophils and other leukocytes is mainly mediated through
CD62P and integrins (e.g., CD11b/CD18, CD41/CD61) [43,44]. Since a combination of
these adhesion molecules is also observed on thrombocytes (Figure 1), these most likely
are important for the interaction between thrombocytes and other immune cells. These
interactions emphasize the possible role of thrombocytes as a link between innate and
adaptive immunity.
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Figure 1. Comparison of immune molecules reported to be present in/on avian (left) and ichthyoid
(right) thrombocytes, which lend support to the unique role of this cell type in innate and adaptive
immunity. The figure is divided into left (avian) and right (ichthyoid) sides with several receptors
and molecules associated with antigen presentation on the cell surface and in the cytoplasm of
thrombocytes. The markers in both bird and fish thrombocytes have been compiled from several
refereed publications examining the immune characteristics of this cell type. TLR: toll-like receptor;
CD: cluster of differentiation; MHC: major histocompatibility complex; TREM: Triggering Receptors
Expressed on Myeloid cells; CLEC: C-type lectin-like receptors; SLAM: signaling lymphocytic activat-
ing molecule; CCR: C-C chemokine receptor; CXCR: C-X-C receptor; c-Mpl: thrombopoietin receptor.
Created with BioRender.com (accessed on 26 July 2023).

3. Immunoregulatory Molecules

Thrombocytes have been shown to express, produce, or release a variety of mediators
of inflammation, antimicrobial activity, and other immune-modulating activities. PRRs
on thrombocytes play an important role in inflammation following microbial infections.
Several transcripts associated with signaling downstream of TLRs in chicken thrombocytes
were detected in a transcriptome study by our group [33]. In Figure 2, the transcripts
detected in chicken thrombocytes were used to compose standard TLR signaling path-
ways. In response to stimulation of these PRRs, avian thrombocytes are able to produce
a variety of bioactive compounds, chemotactic factors (e.g., Macrophage Inflammatory
Protein-1 and nitric oxide), and other mediators of inflammation such as inducible nitric
oxide synthase (iNOS), cyclooxygenase-2 (COX-2), prostaglandin D2 (PGD2), PGE2, and
thromboxane A2 synthases [16,19,45,46]. Chicken thrombocytes express transcripts of
anti-inflammatory cytokine transforming growth factor (TGF) and IL-10 [25], and pro-
inflammatory cytokines/chemokines (IL-1, IL-6, IL-8, and IL-12) [16,18,19,45]. Chicken
thrombocytes have been shown to respond to PAMPs associated with bacterial infection
(lipopolysaccharide (LPS) and lipoteichoic acid (LTA)) and viral infection (thymidine ho-
mopolymer phosphorothioate oligonucleotide [Poly(dT)] and polyinosinic-polycytidylic
acid [Poly(I:C)]) [16,18,47]. Additionally, these cells can induce a pro-inflammatory re-
sponse to unmethylated CpG oligodeoxynucleotides (ODN) associated with nucleic acids
of certain bacteria and viruses [25]. LPS-stimulated chicken thrombocytes have been shown
to upregulate transcripts associated with the production of inflammatory cytokines and
chemokines, apoptosis, activation of T and B lymphocytes, MAPK activation, IFN ac-
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tivation, and JAK/STAT signaling [33]. Winkler et al. [20] were able to map pathways
associated with the response of chicken thrombocytes to LPS stimulation by using inhibitors
for kinases such as extracellular-signal-regulated kinase (ERK), p38, mitogen-activated pro-
tein kinase kinase (MEK)1/2, and inhibitor of nuclear factor kappa-B kinase (IKK). Chicken
thrombocytes have also been shown to have transcripts for platelet-derived growth factors
that may have important roles in the vascular system and healing damaged tissue [48–50].
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Figure 2. Genes of the TLR signaling pathway observed in chicken thrombocytes. TLR: toll-like
receptor; MD2: myeloid differentiation protein 2; CD14: cluster of differentiation 14; LPS: lipopolysac-
charide; MyD88: myeloid differentiation primary-response protein 88; TIRAP: Toll/Il-1 receptor
domain-containing adaptor protein; TRIF: Toll/Il-1 receptor domain-containing adaptor inducing
IFN-β; IRAK: IL-1 receptor-associated protein kinase; TRAF: tumor necrosis factor receptor-associated
factor; NF-κB-nuclear factor κB; TANK-TRAF-family-member-associated NF-κB activator; MAPKs:
mitogen-activated protein kinases; AP-1: activator protein; IRF: interferon regulatory factor; IKK-IκB
kinase; and ERK: extracellular signal-regulated kinase. Created with BioRender.com (Accessed on 26
July 2023).

Fish thrombocytes also express many genes associated with inflammation includ-
ing CD62P, IL-1, IL-6, tumor necrosis factor (TNF)α, IFNγ, IL-11, iNOS, TGF, the in-
terleukin receptor common chain, as well as CXC and CC chemokines [21–23,51]. The
pro-inflammatory cytokines released by leukocytes in response to injury and tissue dam-
age stimulate hepatocytes to produce acute-phase proteins (e.g., C-reactive protein (CRP),
serum amyloid A (SAA), metal-binding protein, lysozyme, lectin, etc.) [52]. These pro-
teins are responsible for a variety of defense-related activities such as the inactivation of
proteolytic enzymes, preventing the distribution of infectious agents (i.e., either by the
destruction of microorganisms or making microbial cells suitable for cell response by modi-
fying surface targets), and the restoration of damaged tissue to a healthy condition. In a
study performed by He et al. [22], it was demonstrated that grass carp thrombocytes signifi-
cantly upregulated the mRNA expressions of some innate immune genes when challenged
with bacteria (Aeromonas hydrophila) and reovirus (grass carp reovirus). In addition, they
determined that the number of thrombocytes in peripheral blood increased after viral and
bacterial stimulation, indicating that the increase in the number of thrombocytes in the
body may be involved in immune regulation during pathogen invasion.

BioRender.com
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4. Response to Pathogens

Various pathogens that impact the poultry and aquaculture industry have been shown
to infect or interact with thrombocytes. According to a study carried out by Schat et al. [53],
highly pathogenic (HP) H5N1 avian influenza viruses (AIVs) can infect chicken thrombo-
cytes, which plays a major role in the pathogenesis of this disease. In another study, it has
been demonstrated that the AIV strain A (fowl plague virus) is able to replicate in chicken
thrombocytes [54]. Another economically important virus, the Newcastle Disease Virus, has
also been shown to not only infect chicken thrombocytes but also impair the ability of these
cells to perform phagocytosis and migration [55]. On the mammalian side, platelets have
been shown to interact with different viruses in different capacities through the various
surface receptors for integrins, surface lectins, and TLRs [56–58]. Several studies have
indicated that during infection with human immunodeficiency virus (HIV), there is a direct
interaction of HIV with megakaryocytes and platelets [59]. Viral infections can lead to
thrombocytopenia via decreased platelet production or increased platelet destruction [58].
Platelets can also provide protective and pathophysiologic responses during certain viral
infections using mediators originating from platelets and the interaction of these cells with
other vascular and immune cells [59–62].

In addition to viruses, parasites have been shown to interact with thrombocytes. Ga-
metocytes of leucocytozoon parasites infect and develop within chicken thrombocytes [63].
In common carp, an infection with the protozoan parasite Trypanoplasma borreli leads
to severe thrombocytopenia due to nitric-oxide-mediated apoptosis [23]. Nitric-oxide-
mediated apoptosis may be the reason for thrombocytopenia in chickens infected with
Plasmodium gallinaceum [64]. Thrombocytopenia is also observed with infection with most
Plasmodium species in humans [65]. However, the mechanisms leading to thrombocy-
topenia during malaria are not fully understood [65]. Platelets are able to directly interact
with and kill circulating plasmodium parasites and infected erythrocytes in patients with
malaria. In a study where trout were infected with Candida albicans, thrombocytes were
observed to interact with erythrocytes, macrophages, other polymorphonuclear cells, and
lymphocytes [66]. The thrombocytes appear to form cellular aggregates as rosettes that
interact with erythrocytes and macrophages [65]. This phenomenon can also be observed
with platelets interacting with erythrocytes, neutrophils, or other cells. Kho et al. [65]
have demonstrated that the major parasites associated with human malaria can be killed
by platelets.

5. Phagocytosis

Phagocytic cells are essential components of the immune system. These cells are
responsible for the ingestion and destruction of pathogens, cellular debris, and other foreign
elements. PRRs such as TLRs play an essential role in the recognition of pathogens. They
trigger both the degradation of pathogens mediated by the release of bioactive, cytotoxic
contents from large granules and the subsequent presentation of pathogen-derived peptide
antigens. Mammalian platelets are able to bind circulating bacteria and microbial products
and present those to neutrophils and other phagocytic cells [67]. In addition to binding
and internalizing microorganisms, contact with certain bacteria causes an aggregation
and degranulation of platelets. The α-granules of platelets contain and release cationic
antibacterial/microbicidal proteins referred to as thrombocidins [68,69] and reactive oxygen
species [70]. Thrombocidins support the killing of adherent bacteria [71] and also have
been shown to have fungicidal properties in vitro [71].

The phagocytic ability of circulating thrombocytes in chickens was shown first by
Glick et al. [72]. Avian thrombocytes are capable of phagocytosing dye particles [24] and
several bacterial species including various strains of Salmonella, Escherichia coli, Pseudomonas
aeruginosa, and Burkholderia cepaciao [24,72,73]. Chicken thrombocytes have been shown to
phagocytize about three times as rapidly as heterophils and monocytes, and circulating
thrombocytes engulfed nearly twice as many bacteria as the heterophil and monocyte
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together [4]. The acid-phosphatase-positive granules in avian thrombocytes are considered
lysosomal structures associated with phagocytic activity [24].

The phagocytic ability of thrombocytes from other lower vertebrates has also been
demonstrated using teleost (Paralichthys olivaceus) and amphibian (Xenopuslaevis) mod-
els [51]. Among peripheral leukocytes in common carp, thrombocytes represent nearly half
of the phagocyte population [51]. The process of triggering phagocytosis in carp thrombo-
cytes is closely linked to the presence and activity of factors that are released by LPS from
Escherichia coli O55- and phorbol 12-myristate 13-acetate (PMA)-activated leukocytes [74].
Phagocytic particles have been detected in the cytoplasm of thrombocytes of various fish
species [35]. In addition, carp thrombocytes exhibit genes for several lysozymes [74] and
possess bactericidal activity [75].

Osteichthyoid thrombocytes are considered phagocytes that are fully capable of rec-
ognizing opsonized antigens, kill pathogens, and are able to influence the development
of both innate and adaptive immune responses [35,51,74]. The detection of phagocytic
and antigen-burdened thrombocytes in the spleen and kidneys of common carp indicates
a possible role of thrombocytes in the transport of antigens to lymphoid tissues and a
contribution to the initiation of adaptive immune response [51]. According to a study
carried out by Nagasawa et al. [74], carp thrombocytes efficiently recognized antigens in
the presence of inflammatory signals originating from stimulated leukocytes.

The capacity for thrombocytes to express genes encoding various immune factors
has been well documented in birds and fish. Several cytokines, chemokines, and immune
regulators are produced and secreted to influence other cell types in the immediate vicinity
of thrombocyte activation [16,17,20]. These effects range from pro-inflammatory responses
and cell migration to an activation/differentiation of effector cells [15,35,76]. The spectrum
of gene activation events observed for thrombocytes includes inducible expression as a
result of Gram-negative and -positive bacterial ligands to RNA and DNA viral nucleotide
sequences [46,47]. The differentiated responses have been reported and result from the
engagement of TLRs found on thrombocyte cell surfaces and vesicles [20,25,47]. The soluble
factor production of these activation treatments has been shown through bioassays, ELISAs,
and Western blotting [16,17,20].

6. Participation in Adaptive Immunity

Reports of platelets participating in adaptive immunity number more than a few in
the literature [77–82]. Ali et al. [78] provided a comprehensive review of the mammalian
platelet and its roles in immunity. Discussions of their involvement in adaptive immunity
describe platelets as merely assisting APCs through the expression of CD40L (CD154) to
engage in the full scope of antigen processing and presentation with the formation of
co-stimulatory binding via B7 [83]. Platelets aid DC maturation via CD40L and have the
capability to deliver antigens to APCs. More importantly, platelets are able to process
and present antigens through MHC I and have been observed to present antigens with
MHC II during certain diseases. Class I processing is accomplished in platelets with the
cellular mechanism associated with APCs, and the set of co-stimulatory molecules for T-cell
activation are present on platelets. Furthermore, platelets appear to enhance T-dependent
B-cell responses via CD40:CD40L linkages of these lymphocytes [78,83].

Professional APCs have been well characterized with regard to the properties that
define the roles played by dendritic cells (DC), macrophages, and B cells. When implicating
a platelet or thrombocyte in APC activity, the comparison will be based upon cellular
activity as well as the cell expression of essential surface receptors. Fundamentally, APCs
are capable of antigen uptake, express MHC II, provide co-stimulatory activity via B7
(CD80/86), and participate in T-cell activation. All three cell types engulf antigens via
endocytosis and/or phagocytosis. With regard to MHC II expression, DCs and B cells
constitutively express this molecule, while it is necessary to induce class II on macrophages.
B7 molecules are constitutively expressed on DCs but must be induced for expression on
both B cells and macrophages. Only DCs and activated B cells stimulate naïve T cells, and
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effector and memory T cells are activated when the three APC types are expressing MHC II
and B7.

Work conducted by our group [33,76] led us to postulate that chicken thrombocytes
may indeed support the APC process, if not participate in the induction of adaptive
immunity. Our current evidence for this lies in gene expression studies and some initial
attempts to observe thrombocyte aggregation at sites of adaptive immune genesis in the
spleen [19]. The gene expression profile for the antigen processing and presentation of a
chicken thrombocyte is presented in Figure 3. Although not a mammalian platelet, the
chicken thrombocyte exhibits immune characteristics, particularly MHC processes, nearly
identical to the mammalian platelet [78].
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transporter 1/2. Created with BioRender.com (Accessed on 27 July 2023).

Thrombocytes, like other cells of the body, express MHC I on the cell surface. This
imparts individual histocompatibility to the host’s cells, and in the case of thrombocytes,
there appears to be cellular connectivity with the MHC I antigen processing mechanisms
associated with the endoplasmic reticulum as seen in Figure 3 from our transcriptomic
data [33,76]. Table S2 of our publication [33] lists MHC I α-chain (BF2), β2-microglobulin
(B2M), and tapasin (TAPBP) as examples of antigen processing and presentation gene ex-
pression found in chicken thrombocytes. Transcriptomic results from our other study [66]
revealed both MHC I and II expression in chicken thrombocytes that included the MHC I
processing/presenting molecules calnexin (CANX), calrecticulin (CALR), and transporter 1
and 2 (TAP1 and 2), and the MHC II processing/presenting molecules MHC II beta chain
(BLB2), MHC II DM alpha chain (DMA), and invariant chain of CLIP (CD74). Therefore,
foreign proteins can be digested through the proteasome and the resulting antigenic pep-
tides can be bound to the MHC I molecule prior to transport to the cell surface via the Golgi
apparatus. Likewise, MHC II produced in the endoplasmic reticulum relocates to the Golgi
apparatus and then moves to an endosome to digest the invariant chain of CLIP. This is
then followed by CLIP removal and antigen placement in the peptide binding groove with
the assistance of DM. This then expands the role of thrombocytes beyond a unique cell to
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an accessory cell. It not only responds to foreign antigens via a release of soluble factors
but also interacts with other immune cells to assist in the orchestration of crucial aspects of
immunity [23,25,33,35,51,76].

Equally interesting is the gene expression of MHC II in carp thrombocytes [23,35],
lending these cells a potential role in the induction of humoral immune responses like a
professional APC. Carp thrombocytes act as phagocytic cells [51,75] and express IL-1β and
MHC II [51]. It is apparent from gene expression in chicken thrombocytes that MHC II
proteins could be produced and participate in antigen processing per the mechanisms of
foreign peptide sequence trafficking in our model (Figure 3). As stated above, Table S2 [33]
also provides a list of MHC II gene expressions associated with antigen processing and
presentation (e.g., DM). Various roles for chicken thrombocytes in adaptive immunity have
been covered by Astill et al. [84], who characterized the avian thrombocyte as a central cell
in the immune system. Considering the full range of functions identified for avian and
fish thrombocytes, it is apropos to consider this cell as a major component of innate and
adaptive immunities in a context greater than blood coagulation and phagocytosis. Indeed,
the array of thrombocyte cytokines, chemokines, APC molecules, and co-stimulatory
ligands/receptors places it firmly among important immune cells.

The reactivity and subsequent responses to foreign organisms have been mentioned
previously in this article. The responses have a typical innate-type component leading
to phagocytosis with antigen degradation and the production/release of immune fac-
tors (e.g., cytokines and chemokines). The role of these cells in assisting/enhancing DC,
macrophages, B cells, and T cells is unquestioned, and their capacity to engage in APC
function cannot be denied when several reported studies have revealed strong evidence for
antigen processing and presentation. Clearly, the argument for this status is convincing for
avian thrombocytes (left side of Figure 1, and Figure 3). Though less documented for the
ichthyoid thrombocyte, there is more than sufficient evidence for APC functionality in these
non-mammalian species since MHC I and II molecules are present as well as molecules for
the associated processing mechanisms. Non-mammalian thrombocytes have MHC I and II
molecules on the cell membranes along with co-stimulatory markers CD40, CD40L, CD80,
and CD86 on avian thrombocytes. Intracellularly, ichthyoid thrombocytes express LMP and
TAP1/2 of MHC I antigen processing [35]. Taking this together with functional evidence
for the degradation of foreign proteins strengthens the case for including thrombocytes
among other antigen-processing and -presenting cell types.

7. Final Thoughts

To fully understand the role of thrombocytes in antigen presentation and interaction
with other lymphocytes and APCs, further investigations by many other immunologists are
needed. Defining the role of these cells in immune responses will be useful for designing
effective vaccines and prophylactics for economically important agriculture species such as
poultry and fish. In this new era of mRNA vaccines and our growing knowledge of the
cellular activity of the thrombocyte, an improved approach to designing effective vaccines
can be undertaken. We are gaining a deeper understanding of the mechanisms employed
by thrombocytes as vital participants in both innate and adaptive immunity. In addition to
the importance of these cells in blood coagulation, we now have evidence of thrombocyte
participation in the activation of sustained immunity for long-term protection.
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