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Abstract: The enteric nervous system (ENS), known as the intrinsic nervous system of the gastroin-
testinal tract, is composed of a diverse array of neuronal and glial cell subtypes. Fascinating questions
surrounding the generation of cellular diversity in the ENS have captivated ENS biologists for a
considerable time, particularly with recent advancements in cell type-specific transcriptomics at both
population and single-cell levels. However, the current focus of research in this field is predominantly
restricted to the study of enteric neuron subtypes, while the investigation of enteric glia subtypes
significantly lags behind. Despite this, enteric glial cells (EGCs) are increasingly recognized as equally
important regulators of numerous bowel functions. Moreover, a subset of postnatal EGCs exhibits
remarkable plasticity and multipotency, distinguishing them as critical entities in the context of ad-
vancing regenerative medicine. In this review, we aim to provide an updated overview of the current
knowledge on this subject, while also identifying key questions that necessitate future exploration.

Keywords: neural crest cells; Schwann cells; enteric glial cells; diversity; plasticity; multipotency;
regenerative medicine; Hirschsprung disease; inflammatory bowel diseases

1. Introduction

The enteric nervous system (ENS) is the most complex division of the peripheral
nervous system [1,2], being composed of thousands of interconnected ganglia that contain
variable numbers of neurons and glia. In mammals, these ganglia are organized into
two interconnected networks known as the myenteric plexus and the submucosal plexus.
The myenteric plexus is located between the longitudinal and circular muscle layers of
the gastrointestinal tract, and is thereby responsible for regulating mixing and peristaltic
patterns of contraction and relaxation. From its position under the mucosa, the submucosal
plexus instead regulates various epithelial functions, including selective permeability [2,3].
It is also noteworthy that the ENS interacts bilaterally with both the immune system
and the microbiota [4–9]. Moreover, while the ENS largely operates independently of
the central nervous system, it plays a crucial role in facilitating bidirectional gut-brain
communication via extrinsic afferent and efferent nerves of the vagal, spinal/sympathetic
and pelvic pathways [10,11].

The diverse range of gastrointestinal functions controlled by the ENS can be partially
attributed to the similarly wide variety of enteric neuron subtypes, with more than 20 func-
tional classes identified in mammals [12–14]. For instance, smooth muscle contraction and
relaxation are mainly regulated by cholinergic (excitatory) and nitrergic (inhibitory) neuron
subtypes, respectively. However, it is also necessary to acknowledge the importance of
enteric glial cells (EGCs) in the regulation of several bowel functions [15–17]. A growing
body of evidence even suggests that some of the key functions attributed to the ENS are in
fact primarily performed by EGCs. In particular, recent studies convincingly demonstrate
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that EGCs can directly control gastrointestinal immunity [18] and epithelial integrity [19],
notably by sensing insults/damages and subsequently releasing relevant pro-resolution
diffusible factors [9,20–22].

Currently, up to nine subtypes of EGCs can be distinguished in the mature mammalian
ENS based on morphological/topological (Table 1 and Figure 1), functional (Table 2) or
transcriptional (Table 3) criteria. As for enteric neuron subtypes, such diversity strongly
suggests that EGCs regulate specific gastrointestinal functions in a subtype-dependent
manner, but this question is only beginning to be addressed. As cell-based therapies are
increasingly being considered for treating various gastrointestinal conditions, it has also
become mandatory to begin studying the mechanisms of EGC formation and diversification
in the mammalian ENS. This is especially important when considering the plasticity and
multipotency exhibited by some EGCs. In this review, we summarize the most relevant
findings along all these lines and identify what we think are the most urgent needs for
future research.

Table 1. Topo-morphological subtypes of EGCs in mice *.

EGC Subtype Anatomical Region Topological and Morphological Features

Type I Myenteric and submucosal plexuses

Within myenteric and submucosal ganglia; composed of
multiple irregular and highly branched processes,

terminating with end-feet like structures and contacting
multiple EGCs and neurons. Also named “protoplasmic”.

Type II Myenteric and submucosal plexuses

Located within or at the border of interganglionic fibers;
exhibiting long parallel processes extending along

interganglionic fibers without ensheathing them. Also
named “fibrous”.

Type III(MP/SMP) Myenteric and submucosal plexuses

Type III(Mucosa) Lamina propria

Outside ganglia and interganglionic fibers, but lying in the
same plane; displaying four major processes with secondary
branching, closely associated with thin neuronal fibers or

small blood vessels.

Type IV Circular and longitudinal smooth muscle
layers

Associated with thin nerve fibers in the muscularis;
characterized by two unbranched processes extending
parallelly along nerve fibers. Also named “bipolar”.

* Based on. [23,24].
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Figure 1. Tissue distribution of the 4 topo-morphological subtypes of EGCs in murine duodenum 
at P20. (A,B) Double immunofluorescence staining of S100β-positive EGCs and βIII-Tubulin-posi-
tive enteric neurons and nerve fibers at the level of myenteric ganglia (A) and circular muscle layer 

Figure 1. Tissue distribution of the 4 topo-morphological subtypes of EGCs in murine duodenum at
P20. (A,B) Double immunofluorescence staining of S100β-positive EGCs and βIII-Tubulin-positive
enteric neurons and nerve fibers at the level of myenteric ganglia (A) and circular muscle layer (B).
As indicated by arrows, EGCs Type 1 are located in myenteric ganglia, Type II in thick interganglionic
nerve fibers, while Type III and Type IV are both associated with thin extraganglionic neuronal fibers.
Scale bar, 50 µm.
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Table 2. Functional subtypes of EGCs in mice.

References Characterized Function Functional Specialization of EGC Subtypes

Boesmans et al., 2015 [23] Calcium responsiveness to ATP
stimulation

In the adult mouse colon, the topo-morphological types I, II
and III from myenteric plexus display subtype-specific

calcium responsiveness, with Type I EGCs being the most
responsive and Type III being the least responsive to

purinergic receptor stimulation.

Seguella et al., 2022 [25]
Calcium responsiveness

to ADP and CCK
stimulation

Type I EGCs exhibit four distinct profiles of calcium
responsiveness to ADP and CCK stimulation

(ADPHigh/CCKHigh, ADPHigh/CCKLow,
ADPLow/CCKHigh, ADPLow/CCKLow) in adult mice, this

local diversity being also differentially distributed between
duodenum and colon (regional diversity).

Baghdadi et al., 2022 [19] Intestinal epithelium
homeostasis and repair

GFAP+ Type III(Mucosa) EGCs are a key component of the
intestinal stem cell niche in the adult murine ileum, being a

source of WNT signals important for epithelium
homeostasis and repair.

Abbreviations: ADP, adenosine diphosphate; ATP, adenosine triphosphate; CCK, cholecystokinin.

Table 3. Transcriptional subtypes of EGCs in mice and humans.

References Experimental Condition Transcriptional Signatures

Zeisel et al., 2018 [26]
scRNA-seq of tdTomato+ cells from small
intestine muscles and myenteric plexus of

P21 Wnt1-Cre;R26R-tdTomato mice.

7 glial clusters (ENTG1-7), including 1
proliferating and 3 expressing Slc18a2.

Drokhlyansky et al., 2020 [13]

snRNA-seq of GFP+ nuclei and
ribosome-bound RNA from full-thickness

small intestine and colon of
Sox10-Cre;INTACT, Wnt1-Cre2;INTACT,

and Uchl1-H2BmCherry:GFPgpi mice, as a
function of age (11–14 weeks vs. 50–52

weeks), sex and circadian phase.

3 glial clusters (Glia1-3) enriched in Gfra2, Slc18a2,
or Ntsr1 transcripts, respectively. No difference as

a function of gut region, age, sex, or circadian
phase.

Wright et al., 2021 [27]

snRNA-seq of mCherry+ nuclei from
distal colon muscles and myenteric

plexus of P47-52
Wnt1-Cre;R26R-H2B-mCherry mice.

4 glial clusters (Glia1-4); no clearly distinctive
features reported.

Baghdadi et al., 2022 [19]

Re-analysis of scRNA-seq data generated
using colonic mesenchymal cells isolated
from the mucosa of adult WT mice [28].

3 glial clusters (EGC#0-EGC#2) based on % of Gfap-
and Plp1-expressing cells in each cluster:

GfapHigh/Plp1Mid, GfapLow/Plp1High, and
GfapMid/Plp1Low.

Re-analysis of scRNA-seq data generated
using colonic stromal cells isolated from
mucosal biopsies of healthy humans and
patients with ulcerative colitis (UC), aged

between 18 and 90 years [29].

4 glial clusters (hEGC#0-EGC#3) based on health
status, with hEGC#1 and 2 enriched in healthy

samples and hEGC#0 and 3 enriched in UC
samples. hEGC#1 corresponds to murine EGC#1
(GfapLow/Plp1High), while hEGC#0 corresponds

to murine EGC#0 (GfapHigh/Plp1Mid).

Guyer et al., 2023 [30]

scMulti-seq (scRNAseq combined with
ATAC-seq) of GFP+ cells from small

intestine muscles and myenteric plexus of
P14 Plp1-GFP mice.

9 transcriptional clusters (clusters #0–8) based on
gene expression, chromatin accessibility at

neuronal marker peaks, and motif enrichment
patterns, including: 2 classified as replicating, 4

with open chromatin, 1 with restricted chromatin
and 2 poised for neurogenesis. One of these

“neurogenic” clusters is specifically enriched in
Slc18a2, Ramp1, and Cpe transcripts.

Schneider et al., 2023 [31]

scRNA-seq of GFP+ cells from
full-thickness colon of adult

Sox10-Cre;INTACT mice kept under
restraint stress or not.

4 glial clusters, including 1 exclusively present
under psychological stress condition, named

enteric glia, associated with psychological stress
(eGAPS) and highly expressing Nr4a1/2/3.

Abbreviations: ATAC-seq, Transposase-Accessible Chromatin with sequencing; GFP, green fluorescent protein;
scRNA-seq, single-cell RNA sequencing; snRNA-seq, single-nucleus RNA sequencing.
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2. The ENS Is Built from Multiple Progenitors

Based on several studies using various model organisms, there is a large consensus
that most of the ENS is derived from neural crest cells (NCCs)—a vertebrate-specific
population of multipotent embryonic cells named in reference to their initial accumulation
in the dorsal midline of the developing neural tube. According to their location along the
anterior–posterior axis, NCCs can be subdivided into four main subpopulations (from
anterior to posterior): cranial, vagal, trunk and sacral. Each of these four subpopulations
have distinctive differentiation potential and migratory pattern from the dorsal neural
tube [32,33]. Three of them (vagal, trunk and sacral) are a source of ENS progenitors,
with vagal NCCs being responsible for generating the majority of enteric neurons and
glia [33–38]. In mice, vagal NCCs first invade the foregut mesenchyme around embryonic
day (e) 9.5 and then migrate posteriorly toward the hindgut to reach the prospective rectum
around e14.5 [39]. Sacral NCCs contribute a small subset of enteric neurons and glia in the
opposite direction (i.e., posterior to anterior), entering the hindgut mesenchyme around
e13.5 and then intermingling with the vagal NCC-derived ENS progenitors at e14.5 [40].

Of note, a subset of vagal NCCs also migrate along the mesentery during the
e9.5–e14.5 period [41–44], hence entering the developing gut at multiple sites along the
anterior–posterior axis [44]. Multiple points of entry similarly characterize the contribution
of subsets of both vagal and trunk NCCs that have adopted a Schwann cell precursor (SCP)
intermediate state, and thus colonize the developing gut via extrinsic nerve tracts [45,46].
SCPs of trunk origin appear to be the latest to colonize the developing gut [46], contributing
to the ENS only after some of the other ENS progenitors from the myenteric plexus have
migrated radially inward to form the submucosal plexus (from e15.5 onwards) [47,48].

Information about potential non-NCC sources of ENS progenitors is scarce. There is
one study reporting a contribution from the ventral neural tube in chick embryos [49], while
a more recent study reports a contribution from gut/pancreas endodermal epithelium in
mouse embryos [50]. In both cases, the contribution to the developing ENS was mentioned
to occur slightly after the colonization by vagal NCCs [49,50]. This contribution appeared
minor and regionally restricted, either radially for the endoderm source (in the myenteric
plexus only) [50] or along the anterior–posterior axis for the ventral neural tube source (in
the foregut only) [49]. Moreover, the endoderm source seems further limited in terms of
differentiation potential, contributing some enteric neurons but no glia [50].

3. Formation and Diversification of EGCs

The differentiation of ENS progenitors into enteric neurons and glia mostly occurs
during gut colonization, before birth. For over 20 years, it has been known that this process
is strongly skewed toward a neurogenic fate, as notably evidenced by the significant delay
between the appearance of the earliest markers of committed enteric neurons and those
of EGCs, reaching ~2 days in the foregut of mouse embryos (e10.0–10.5 vs. e11.5–12.0,
respectively) [51,52]. This neurogenic bias suggests that early enteric gliogenesis must first
involve countermeasures against the pro-neuronal molecular machinery. Yet, we are still
virtually blind about how exactly the neurogenic-to-gliogenic fate transition is molecularly
orchestrated in the developing ENS, with very little advancement over the past years [53].

FABP7 (Fatty Acid Binding Protein 7) is generally considered as the earliest marker
of committed EGCs [51]. However, this metabolic protein is most likely not playing an
active role in the regulation of EGC differentiation, per se. Such a role must instead be
imparted to a gene regulatory network involving specific transcription factors and signaling
pathways. Efforts to assemble a gene regulatory network for vagal NCCs and their derived
ENS progenitors have begun [54], but we are very far from this level of precision in the
case of enteric gliogenesis. Indeed, as reviewed a few times over the past years [53,55,56],
only a handful of relevant positive regulators are currently known and/or suspected to
play a role in enteric gliogenesis (Table 4). Moreover, as again recently evidenced by
spatially restricted transcriptome studies [57], many of these pro-glial regulators are also
expressed in ENS progenitors (and/or in NCCs/SCPs before they colonize the developing
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gut), thereby complicating their functional analysis in committed EGCs. In the context
of constitutive loss-of-function experiments, this is notably reflected by early defects in
ENS progenitors that preclude and/or confound the analysis of enteric gliogenesis. This
problem of reiterated roles can in theory be addressed by Cre/LoxP-based conditional
loss-of-function approaches, but this possibility remains somehow limited for the same
reason; there is currently no Cre driver line with exclusive activity in EGCs and not in ENS
progenitors. Alternatively, gain-of-function experiments appear to be a relatively simple
way for acquiring information about enteric gliogenesis, as notably demonstrated for the
NR2F1 transcription factor [58] and the Hedgehog signaling pathway [59,60].

Table 4. List of previously reported regulators of enteric gliogenesis in mice.

EGC Regulator Relevant
Expression Pattern Experimental Evidence

ASCL1 (MASH1)
Transcription factor

NCCs [61], ENS progenitors [62,63], enteric
neurons and EGCs [62].

In addition to defective neurogenesis, Ascl1−/− embryos have less
S100B+ Sox10+ EGCs in ileum and colon. Rescue of enteric

neurogenesis but not gliogenesis in Ascl1KINgn2 embryos suggests
that ASCL1, which is typically pro-neuronal, also plays an active

role in promoting gliogenesis [62].

FOXD3
Transcription factor

NCCs [64,65], SCPs [65], ENS progenitors
[66] and EGCs [67].

Targeted deletion of Foxd3 in vagal NCC-derived ENS progenitors
specifically impairs the formation of S100β+ EGCs in

Foxd3flox/−;Ednrb-iCre;R26RYFP+ embryos, leaving neurogenesis
virtually unaffected [67].

NR2F1
Transcription factor NCCs [68] and SCPs [69].

Insertional mutagenesis-induced upregulation of Nr2f1 in NCCs
leads to premature formation of S100β+ SOX10+ EGCs at the

expense of SOX10+ ENS progenitors in Nr2f1Spt/Spt embryos [58].

SOX10
Transcription factor

NCCs [70,71], SCPs [71], ENS progenitors
[70,72] and EGCs [51].

ENS progenitors from Sox10LacZ/+ embryos precociously express the
pan-neuronal marker PGP9.5 [72]. Decreased SOX10 levels

attenuate the Hedgehog-induced expression of the EGC marker
Fabp7 in Wnt1-Cre;Sufuf/f;Sox10N/+ embryos [59].

TBX3
Transcription factor

NCCs [73], ENS progenitors and enteric
neurons [27,74,75].

Targeted deletion of Tbx3 in NCCs leads to a marked reduction of
S100β+ EGC density in Wnt1-Cre;Tbx3fl/fl embryos. Detection of

TBX3 protein in enteric neurons but not in EGCs suggest a non-cell
autonomous role [74].

Hedgehog
Signaling pathway

NCCs [76] and ENS progenitors [77] for
PTCH1/SMO binding/signaling receptors

and GLI nuclear effectors.
Gut epithelium for SHH and IHH ligands

[78,79].

Ptch1 deletion-induced activation of Hedgehog signaling in vagal
NCCs upregulates the EGC marker Fabp7 in the developing gut of
b3-IIIa-Cre;Ptch1f/f embryos, while transduction of CRE in cultured
Ptch1f/f ENS progenitors increases the formation of S100β+ EGCs at
the expense of TH+ enteric neurons [60]. Tilting the GLIA-vs-GLIR

balance toward GLI activation in Wnt1-Cre;Sufuf/f embryos or GLI
repression in Gli3∆699/∆699 embryos increases or decreases the

production of FABP7+ EGCs, respectively [59].

LGI4/ADAM22
Signaling pathway ENS progenitors and EGCs [80].

Mice deficient in either Lgi4 or Adam22 exhibit a similar defect in
enteric gliogenesis, characterized by a decreased number of FABP7+
EGCs in vivo and lower GFAP expression in enteric neurosphere

assays [80].

Notch
Signaling pathway

NCCs [81,82], SCPs [83] and ENS
progenitors [63] for multiple DLL/JAG

ligands and Notch receptors.

Targeted inhibition of Notch signaling results in a marked decrease
of FABP7+ EGCs in Wnt1-Cre;Rbpsuhfl/fl embryos, which is

accompanied by a more modest decrease in the number of TuJ1+
enteric neurons [84]. DLL1 treatment of cultured ENS progenitors is

sufficient for promoting the formation of GFAP+ EGCs, while
DAPT-mediated inhibition of Notch signaling impairs

Hedgehog-induced gliogenesis in the same system [60].

NRG/ERBB
Signaling pathway

NCCs [85], SCPs [86], ENS progenitors and
EGCs for ERBB3 receptor [87].

Gut mesenchyme for NRG1 (GGF2) ligand
[87,88].

S100β staining suggest that both SCPs and EGCs are absent in
erbB3−/− embryos [89]. NRG1 (GGF2) treatment of cultured ENS

progenitors promote their differentiation in GFAP+ EGCs, this
effect being increased by pre-treatment with BMP4 [87].

Hopefully, single-cell transcriptomics-based analyses of the developing mammalian
ENS [90–93] will help to identify new candidate regulators of the neurogenic-to-gliogenic
fate transition. These findings should pave the way for future functional investigations,
particularly as more comprehensive and glia-focused studies across multiple stages are
starting to emerge [94,95]. This will most likely take longer to identify candidate regulators
of EGC diversification, notably because we do not yet really know when the different
subtypes of EGCs begin to appear. Another difficulty is that EGC diversification can take



Int. J. Mol. Sci. 2023, 24, 12475 6 of 17

different forms in mammals (i.e., morphological/topological, functional or transcriptional;
see Tables 1–3), which are currently hard to reconcile. Perhaps a meta-analysis of all
transcriptional subtypes that are listed in Table 3 might be helpful, but the high hetero-
geneity of experimental conditions that were used to generate these data makes this quite
unlikely. Moreover, there is a need to systematically validate these transcriptomic data
by immunofluorescence analyses aimed at visualizing the spatiotemporal distribution of
the associated proteins. Notably, this would allow to address the question of whether the
different topo-morphological EGC subtypes could also be identified with specific markers.
A pilot experiment shows that this is not the case for SLC18A2, which has previously al-
lowed to define a transcriptional subtype of EGCs [13] with likely neurogenic potential [30]
but that we have found not to be confined to a particular topo-morphological subtype
(Figure 2).
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Now that we are more aware of the diverse sources of ENS progenitors, we should
also consider the possibility that these different origins might contribute to EGC diversifi-
cation as well. Although clonal analysis of ENS formation in the small intestine suggests
that all four topo-morphological subtypes of EGCs can be engendered by a single ENS
progenitor [92], this does not mean that all types of ENS progenitors contribute equally
in all segments of the gastrointestinal tract. Moreover, it is important not to forget the
additional potential contribution of structural and/or environmental changes that occur
within the gut wall and/or the lumen during gut morphogenesis (at both prenatal and
postnatal stages). A good example is the impact of the microbiota, which was shown to be
key for attracting EGCs in the mucosa (topo-morphological EGC Type III(Mucosa)) of mice
around weaning age [96]—although this specific mode of regulation is not universal, being
notably absent in humans [97].
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4. Plasticity and Multipotency of EGCs
4.1. EGCs’ Plasticity

Once generated and integrated in the mature ENS, EGCs are not static. On the contrary,
EGCs exhibit a high level of phenotypic plasticity, which we here define by changes in
molecular composition, structure and/or function. Under physiological conditions, EGCs’
plasticity is not obvious at first glance, with a single study reporting dynamic GFAP expres-
sion in murine topo-morphological Type 1 EGCs [23]. As recently reviewed in more detail
elsewhere [20,22], the plasticity of EGCs is instead primarily evidenced under pathological
circumstances, such as intestinal inflammation or infection, which trigger reactive gliosis.
In addition to transient changes in the expression of glial markers (e.g., GFAP, S100β) [98],
reactive EGCs can be characterized by changes in morphology (e.g., increased length and
thickness of glial processes) [99], secretion of pro-inflammatory mediators (e.g., IL-1B, IL-6,
NO) [100–102], immune competence (e.g., T lymphocyte activation via surface expression
of MHC-II) [103], proliferative activity [104] or pro-apoptotic potential [105].

Depending on context, these changes are believed to have either detrimental effects
by exacerbating pathological inflammatory processes or beneficial effects by neutralizing
inflammation and promoting repair [22]. Accordingly, as indicated in Section 5, some of
these aspects of reactive enteric gliosis are currently considered potential therapeutic targets
for several gastrointestinal diseases. However, optimizing such approaches will require a
better understanding of how the different EGC subtypes respond to gliosis triggers. As
such responses are likely variable as a function of EGC subtypes, this knowledge might
pave the way to more precise interventions restricted to single EGC subtypes.

4.2. EGCs’ Multipotency

In addition to their extensive phenotypic plasticity, a subset of EGCs have the re-
markable capacity to self-renew and differentiate into enteric neurons. Current knowledge
suggests that this subset of EGCs with stem cell-like properties corresponds to what was
initially reported to be a population of postnatal/adult ENS stem cells in mice [106–108]
and humans [109–111]. As outlined in Table 5, the stem cell-like properties of EGCs vary as
a function of experimental conditions in mice, being virtually undetectable under steady-
state conditions in vivo. Yet, proliferation and neuronal differentiation of adult EGCs do
exist during homeostasis in zebrafish [112], suggesting that these properties were somehow
attenuated during vertebrate evolution. The stem cell-like properties of mammalian EGCs
are nonetheless especially obvious in vitro, where EGCs sorted from adult bowels can not
only be differentiated into neurons and glia but also into myofibroblasts [113]—as also
noted in the early reports of postnatal/adult ENS stem cells [106–109]. Whether postnatal
EGCs have this capacity to generate myofibroblasts in vivo is currently unknown. If it
exists, this differentiation potential will probably require special circumstances to be re-
vealed. Smooth muscle injury would most likely be a prerequisite in this case, just like ENS
injury appears required to awake the self-renewing and neurogenic potential of EGCs in
mice [114–116].

Further research is clearly necessary to fully understand both the nature and the
regulatory mechanisms of EGCs’ stem cell-like properties in mammals. One especially
important question to address is whether the self-renewal and multipotency of EGCs seen
at the population level are combined in a specific EGC subtype or are instead divided
in different EGC subtypes. Comparison of thymidine analog incorporation assays and
cell lineage tracing studies suggest that neuronal differentiation from EGCs mostly occurs
independently of cell proliferation [113,114,116], but both types of analyses will need
to be combined to clearly establish the extent of such trans-differentiation capacity. In
connection with this, are EGC-derived neurons exclusively made from the neurogenic
EGC subtypes recently identified by scRNA-seq [30]? Do each of the two neurogenic EGC
subtypes identified in this study generate mutually exclusive neuron subtypes? Similar
questions specifically arise for the self-renewal of EGCs. Is it an intrinsic property of all
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topo-morphological subtypes of EGCs? Responses to all these questions will be required to
take full advantage of EGCs’ multipotency for therapeutic purposes.

Table 5. Multipotency analyses of mature EGCs in mice.

References Experimental Condition Relevant Results

CD49b+ EGCs sorted from the small
intestine (muscles and myenteric plexus) of

adult WT mice.

Sorted CD49b+ cells express glial markers (GFAP, SOX10, S100β, p75,
and Nestin) and can be cultured as self-renewing neurospheres that

differentiate in peripherin+ neurons, GFAP+ EGCs and α-SMA+
myofibroblasts.

BrdU incorporation assays in the small
intestine of adult WT mice (and rats) housed
in normal conditions or exposed to various

potential triggers of neurogenesis (e.g.,
DSS-induced inflammation, BAC-induced

focal aganglionosis).

Basal enteric gliogenesis is detectable under steady-state condition,
becoming markedly increased after certain types of injury (up to 90%
of S100β+ were also BrdU+ in BAC-ablated regions). No evidence of
neurogenesis, with exception of a single rat (out of 85 rodents in total)
in which 6.1% of HuC/D+ myenteric neurons did incorporate BrdU

in BAC-ablated region.

Joseph et al., 2011 [113]

Cell lineage tracing in the small intestine of
adult GFAP-Cre;R26R-YFP or

GFAP-CreERT2;R26R-YFP mice, exposed to
BAC treatment or not.

With the constitutive Cre driver line, 6–7% of HuC/D+ myenteric
neurons were also YFP+ in both control and BAC-treated mice. This
most likely reflects an early fetal/neonatal contribution from a GFAP+

progenitor, which was no longer detectable when the
tamoxifen-inducible Cre driver was activated in adults (<0.1% of

HuC/D+ also YFP+ in this case).
Cultures of enzymatically dissociated small

intestine (muscles and myenteric plexus)
from tamoxifen-treated adult
Sox10-iCreERT2;R26R-YFP or

hGFAP-CreERT2;R26R-YFP mice.

YFP+ cells generate bipotential SOX10+ PHOX2B+ ASCL1+ ENS
progenitors that can be cultured as self-renewing neurospheres, and
can be differentiated in GFAP+ EGCs and multiple neuronal subtypes

(nNOS+, VIP+, or NPY+).Laranjeira et al., 2011
[116]

Cell lineage tracing studies in the small
intestine of adult Sox10-iCreERT2;R26R-YFP

mice, exposed to BAC treatment or not.

YFP+ HuC/D+ myenteric neurons are not detected following
tamoxifen treatment under steady-state conditions but are readily

detected upon BAC-mediated ENS ablation.

Belkind-Gerson et al.,
2013 [117]

Neurospheres prepared from enzymatically
dissociated colon (mucosa and submucosal
plexus vs. muscles and myenteric plexus) of

Nestin-GFP mice.

GFP+ cells co-express glial markers (S100β, GFAP) in vivo, and
generate neurospheres containing TuJ1+ neurons and S100β+ EGCs

that both co-express GFP in culture.

Pseudo cell lineage tracing studies in colon
of Sox2-GFP and Nestin-GFP mice, exposed

to DSS treatment or not.

In absence of DSS, GFP expression is virtually undetectable in
HuC/D+ myenteric neurons but becomes detectable 48 h after DSS
treatment (8% of neurons in Sox2-GFP vs. 1.8% in Nestin-GFP mice).

Belkind-Gerson et al.,
2015 [115]

Culture of CD49+ EGCs sorted from small
intestine and colon (muscles and myenteric
plexus) of adult mice, in absence or presence

of a serotonin receptor antagonist

Sorted CD49b+ EGCs generate TuJ1+ neurons, GFAP+ EGCs and
TuJ1+ GFAP+ neuroglial cells in culture. The serotonin receptor

antagonist increases the proportion of these neuroglial cells at the
expense of neurons.

Transplantation of neurospheres derived
from CD49b+ EGCs in explants of aneural

embryonic chick hindgut

Transplanted neurospheres generate TuJ1+ neurons and GFAP+ EGCs
in both myenteric and submucosal plexus.

Cell lineage tracing studies in colon of adult
Sox2-CreERT2:R26R-YFP and

Plp1-CreERT2:R26R-tdTomato mice, exposed
to DSS treatment or not.

DSS treatment increases the proportion of HuC/D+ myenteric and
submucosal neurons co-expressing either of the fluorescent reporters

in tamoxifen-induced mice.
Belkind-Gerson et al.,

2017 [114] Neurospheres prepared from enzymatically
dissociated colon (full thickness) of adult

tamoxifen-treated
Plp1-CreERT2;R26R-tdTomato mice.

tdTomato is expressed in neurons (either TuJ1+, HuC/D+, or
PGP9.5+), EGCs (either SOX2+ or S100β+), and neuroglial cells

co-expressing neuronal and glial markers.

Neurospheres prepared from enzymatically
dissociated small intestine (muscles and

myenteric plexus) of adult
Plp1-GFP;Actl6b-Cre;R26R-tdTomato dual

reporter mice.

GFP+ EGCs sorted from neurospheres generate new tdTomato+
neurons in culture.

Guyer et al., 2023 [30]

Sorted tdTomato-negative cells from small
intestine (muscles and myenteric plexus) of

adult Actl6b-Cre;R26R-tdTomato mice.

Neurospheres derived from sorted tdTomato-negative cells generate
new tdTomato+ neurons in culture.

Abbreviations: BAC, benzalkonium chloride; BrdU, bromodeoxyuridine; DSS, dextran sodium sulfate.

5. Taking Advantage of EGCs’ Plasticity and Multipotency for Therapeutic Purposes
5.1. Control of Inflammation and Infection in the Gastrointestinal Tract

As mentioned in the previous section, reactive EGCs are involved in the pathogenesis
of various gastrointestinal disorders [22]. In the case of IBD (inflammatory bowel dis-
eases, which include ulcerative colitis and Crohn’s disease), reactive EGCs primarily adopt
a pro-inflammatory phenotype that exacerbates both innate and adaptative immune re-
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sponses [21]. Similar observations have also been made in the context of IBS (irritable bowel
syndrome) [118,119] and POI (postoperative ileus) [120]. Although there are no specific
drugs/products that specifically target EGCs, several studies have nonetheless successfully
modulated the detrimental effects of enteric gliosis for therapeutic purposes [22,121]. For
example, Pentamidine, a broad-spectrum anti-infective small molecule that targets and in-
hibits S100β, can prevent 5-Fluorouracil-induced intestinal mucositis and associated enteric
neurotoxicity by decreasing S100β secretion from reactive EGCs, thereby attenuating down-
stream RAGE/NF-κB signaling [122]. Interestingly, not only conventional drugs but also
nutraceutical products have shown promising effects in modulating the pathological effects
of reactive EGCs [121]. For instance, the cannabinoid-related PEA (palmitoylethanolamide,
found in soybeans and peanuts) was reported to exert an anti-inflammatory effect in the
context of ulcerative colitis by targeting and activating PPARα which then inhibits S100β
production/secretion from reactive EGCs [123]. Of note, PEA also proved useful in the
case of HIV-1 Tat-induced diarrhea via the same PPARα-dependent mechanism in reactive
EGCs [124].

While most therapeutic strategies in this area focus on mitigating the deleterious
effects of reactive EGCs, it should not be forgotten that these cells may also have beneficial
effects that might be taken advantage of. One especially appealing possibility would be to
control the secretion of GDNF, which was found to be turned on in reactive EGCs in the
context of Crohn’s disease [125], and whose beneficial effects on restoring epithelial barrier
integrity in this same pathological context are well known [126,127].

5.2. Repair and Regeneration of the ENS

The discovery of postnatal/adult ENS stem cells [106–111] has sparked great interest
for the development of cell transplantation-based therapies aimed at regenerating the
damaged/missing ENS. We now assume that this stem/progenitor cell population is
mostly composed of intrinsic EGCs (Table 5), but at least a minor contribution from extrinsic
Schwann cells is also likely. Indeed, extrinsic Schwann cells are closely associated with
intestinal tissues and are often labeled with the same transgenic markers (driven by Plp1,
Nestin or Sox10 regulatory sequences) used to label EGCs, and thus are hard to be excluded
from gastrointestinal cell preparations. Moreover, reminiscent of the normal capacity of
SCPs to form enteric neurons during late ENS development [46], Schwann cells from adult
peripheral nerves can be grown as neurospheres and differentiated into neurons both in
culture and when transplanted in the mouse gastrointestinal tract in vivo [128].

Mouse models of Hirschsprung disease have been the preferred tools for testing and
developing cell transplantation-based therapies [128–134], although diseases with less
severe phenotypes (e.g., oesophageal achalasia, gastroparesis) are now increasingly recog-
nized as likely being more amenable to therapy in a real-world setting [135]. Hirschsprung
disease is characterized by the complete lack of ENS ganglia over varying lengths of the
rectum and distal colon, due to incomplete colonization by vagal NCC-derived ENS progen-
itors [33,136]. Yet, the so-called aganglionic segment is naturally enriched in Schwann cells
owing to the overabundance of extrinsic nerves in this context [137]. This has important
practical implications for highly desirable autologous cell-based therapies, explaining why
not only the ENS-containing region [132], but also the ENS-devoid region [138,139], can be
a source of ENS stem/progenitor cells likely enriched in EGCs and Schwann cells, respec-
tively. However, it is currently unclear if both sources can generate the same complement of
enteric neuron subtypes after ex vivo expansion and in vivo transplantation. SCP-derived
enteric neurons are normally strongly biased towards an excitatory CALR+ phenotype,
with only minimal contribution to the inhibitory NOS1+ pool [46]. Although cell culture
can reprogram the cell differentiation potential, the extent of derivatives made from EGC-
and Schwann cell-derived ENS stem/progenitor cells might nonetheless remain skewed
somehow. The same question also applies to the diversity of EGC subtypes that can be
engendered from each source of ENS stem/progenitor cells.
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One possibility for maximizing neuronal and glial diversification—and, hence, func-
tional recovery of the reconstituted ENS—would be to co-transplant ENS stem/progenitor
cells of different origins, as recently experimented for vagal and sacral NCC-derived ENS
progenitors differentiated from human pluripotent stem cells [134]. That being said, in
situ stimulation of tissue-resident ENS stem/progenitor cells appears as a much simpler
approach to address this issue, and GDNF proved to be a potent trigger in this con-
text [140,141]. Indeed, rectal administration of GDNF over a relatively short period of time
after birth (five days) induced a new functional ENS in the otherwise aganglionic colon
of three genetically distinct mouse models of Hirschsprung disease (Piebald-Lethal [142],
Holstein [143] and TashT [144]). This treatment stimulated neurogenesis and gliogenesis
in both aganglionic and hypoganglionic segments [140,141], generating several neuronal
subtypes in the aganglionic zone while also correcting the cholinergic vs. nitrergic neuronal
imbalance normally found in the upstream hypoganglionic zone [141,145]. Intriguingly,
genetic cell lineage tracing studies using the Schwann cell-specific Cre driver Dhh-Cre
revealed that only about a third of GDNF-induced neurons are derived from this lineage
in the aganglionic segment. Moreover, combined EdU incorporation assays showed that
the majority of GDNF-induced neurons were not derived from a dividing precursor. Other
data suggest that sacral NCC-derived EGCs might also be present in the aganglionic seg-
ment [141], but their contribution to the regenerative process, if any, is currently unknown.
Like for cell transplantation-based therapies, it also remains to be known if Schwann cell-
and EGC-derived ENS stem/progenitor cells generate their own set of neuronal and glial
subtypes. Addressing these questions in the context of Hirschsprung disease will also be
important for improving our general knowledge of ENS stem/progenitor cells.

6. Conclusions and Perspectives

EGCs are now recognized to be almost as important as enteric neurons in orchestrating
several gastrointestinal functions, but we still know very little about how these functions
are taken in charge by the different EGC subtypes that were noted recently. As more and
more tools and datasets are being generated, the field seems to have entered a new era
which should soon yield significant breakthroughs. Increasing our knowledge of EGC
formation and function will be important not only for managing numerous gastrointestinal
diseases but also potentially for many neurological disorders involving protein aggregates,
like Parkinson disease [146–148] or amyotrophic lateral sclerosis [149–151], which are
suspected to start in the ENS before spreading in the brain via extrinsic nerves—either
directly (via retrograde transport of protein aggregates) or indirectly (via gut microbiota-
derived metabolites) [152]. For example, since reactive EGCs are likely involved during the
earliest stages of both Parkinson disease [153,154] and amyotrophic lateral sclerosis [151]
like they are in IBD, the development of therapeutic strategies targeting these cells might
hence be useful in all of these contexts.
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