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Abstract: Triplet harvesting processes are essential for enhancing efficiencies of fluorescent organic
light-emitting diodes. Besides more conventional thermally activated delayed fluorescence and
triplet-triplet annihilation, the hot exciton mechanism has been recently noticed because it helps
reduce the efficiency roll-off and improve device stability. Hot exciton materials enable the conversion
of triplet excitons to singlet ones via reverse inter-system crossing from high-lying triplet states and
thereby the depopulation of long-lived triplet excitons that are prone to chemical and/or efficiency
degradation. Although their anti-Kasha characteristics have not been clearly explained, numerous
molecules with behaviors assigned to the hot exciton mechanism have been reported. Indeed, the
related developments appear to have just passed the stage of infancy now, and there will likely be
more roles that computational elucidations can play. With this perspective in mind, we review some
selected experimental studies on the mechanism and the related designs and then on computational
studies. On the computational side, we examine what has been found and what is still missing with
regard to properly understanding this interesting mechanism. We further discuss potential future
points of computational interests toward aiming for eventually presenting in silico design guides.
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1. Introduction

Organic light-emitting diode (OLED) materials have been widely studied and utilized
in recent years, as they are important for manufacturing flat-panel full-color displays. When
powered on, OLEDs undergo four successive processes: charge injection, charge transport,
charge recombination, and photon emission. The holes and electrons are injected from
anodes and cathodes to hole- and electron-injection layers, respectively. They are carried to
the emissive layer through the hole/electron transport layers. In the emissive layer (and/or
at the interface between emissive and its neighboring layers), the two charge carriers
combine to form excitons (charge recombination), and the excitons, through radiative
decays, turn to photons toward the final emission. The exciton dynamics in various
optoelectronic devices have been extensively studied recently [1–5]. In OLED, during the
charge recombination, singlet and triplet excitons are formed in the ratio of 1:3 by the spin
statistics [1]. Assuming the equal injection efficiencies and mobilities for both charges, the
external quantum efficiency (EQE) is given by [6]

ηEQE = γφPLQYηEUEηOC = ηIQEηOC (1)

where γ is the carrier recombination efficiency, φPLQY is the photoluminescence quantum
yield (PLQY), ηEUE is the exciton utilization efficiency (EUE), and ηOC is the outcoupling
efficiency. To utilize both types of excitons toward emission, phosphorescent emitters are
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often adopted. In red and green, iridium- or platinum-based emitters have been successfully
used with an internal quantum efficiency (IQE) of near unity and EQEs of 20–25% [7]. On
the other hand, blue phosphorescent emitters still have stability issues with undesirably
short lifetimes [8,9]. With this persistent issue, developing fluorescent emitters that are
free from rather expensive metals can be a very attractive alternative. However, the device
performance with pure fluorescent emitters tends to be limited by the spin statistics, which
leads to only ~25% of EUE. Therefore, somehow converting exciton spins from triplet to
singlet will be highly desirable. Indeed, a series of such mechanisms have been employed.
Namely, thermally activated delayed fluorescence (TADF) via reverse inter-system crossing
(RISC), triplet-triplet annihilation (TTA), and hot exciton conversion, as schematically
depicted in Figure 1, have been suggested as amenable strategies of converting triplet
excitons into singlet ones.
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Developing stable blue OLED materials is indeed a large challenge. High energy
excitons can easily break chemical bonds, especially rather weak metal-containing bonds in
phosphorescent OLED molecules. Nevertheless, recently, stable platinum-based and metal-
free blue phosphorescent emitters have been reported [10–13]. At the same time, studies
on stable fluorescent emitters are also being actively pursued. TADF emitters can yield
nearly 100% IQE in the operating OLEDs [14], but their lifetimes tend not to be ideal to-
gether with somewhat large efficiency roll-offs caused by long-lived triplet excitons [15,16].
This is because high concentrations of triplet excitons induce exciton quenching processes
into reducing emission efficiency, in addition to the molecular destruction mentioned
above. Furthermore, traditional donor–acceptor (D–A) type emitters have a color purity
issue. Using a color filter as a remedy unavoidably reduces EQE significantly. To cir-
cumvent this problem, a TADF-sensitized system dubbed as hyperfluorescence has been
proposed [17–19]. TTA-based emitters have been reported to have good efficiency and
lifetimes in practical applications [20,21]. However, they also have the efficiency roll-off
problem, and their theoretical EUE is limited to 62.5%. In recent years, hot exciton materials
are considered potentially superior candidates for blue OLED. Because the hot exciton
materials can utilize fast hot reverse intersystem crossing (hRISC) processes from high-lying
triplet states, they may suffer less from the stability or efficiency roll-off issues.

Naturally, theoretical and computational tools are useful for obtaining information
that is not easily accessed with experimental means. For example, designing good TADF
molecules often has to follow the path of finding molecules that have small S1–T1 energy
gaps, large S1–T1 spin-orbit coupling (SOC), and large enough oscillator strengths in the S1
states. Knowing these factors can give useful guidelines, and computationally accessing
them is nowadays not an excessively demanding task and is indeed adopted for screening
purposes. Recently, vibronic effects on SOC or oscillator strengths have also been reported
to be important [22–27], expanding the molecular space that needs to be explored. As
noted in above, hot exciton materials are now considered as a good candidate for realizing
high efficiency and stable longevity. Because the energy levels of singlet and triplet states
and the SOC between them can also be used as guiding tools toward an efficient hRISC
process, computational tools may prove themselves essential along the development. With
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this purpose in mind, we will review the triplet harvesting processes mentioned above. In
particular, we will survey with eventual stresses the role of theoretical and computational
studies in explaining hot exciton mechanism and possibly designing new materials for it.
Computational studies can analyze the characteristics of states related to the hRISC process,
so they may provide insights into the nature of hot exciton materials. Finally, we will
discuss potential future works to better characterize high-lying states and their dynamics.

2. Overcoming Spin Statistics Limit in OLED
2.1. Thermally Activated Delayed Fluorescence

Thermally activated delayed fluorescence (TADF) is one of the most attempted triplet
harvesting processes and involves intersystem crossing (ISC) from the lowest triplet excited
state (T1) to the lowest singlet one (S1), namely, reverse inter-system crossing (RISC). About
a decade ago, Adachi and co-workers introduced the concept of TADF to OLED with a
carbazole-phthalonitrile complex [28,29]. The maximum EQE of 1,2,3,5-tetrakis(carbazol-
9-yl)-4,6-dicyanobenzene (4CzIPN) was more than 19%, which is still significantly higher
than the EQEs of many other fluorescent emitters [29]. For effective RISC, the energy
difference of S1 and T1 states, ∆EST, should be comparable to the thermal energy kBT, and
the spin-orbit coupling (SOC) between the two states should be large, preferably as large as
at least several cm−1.

The determination of TADF molecules is quite simple. First, ∆EST is very small, usually
down to or smaller than 0.1 eV. Second, transient photoluminescence shows two decay
characteristics, which are ns-scale prompt fluorescence and µs-scale delayed fluorescence.
Third, the delayed fluorescence component is significantly reduced when temperature is
lowered because RISC from T1 to S1 is driven by thermal energy. Fourth, their delayed
fluorescence is abruptly quenched in the presence of oxygen molecules, demonstrating that
it originates from the triplet state.

The energy difference has been known to be proportional to the spatial overlap be-
tween the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecu-
lar orbital (LUMO) when the excitation characters of S1 and T1 states are simple HOMO to
LUMO transitions [30–32]. Thus, designing D–A type molecules has been a main strategy
for making TADF emitters (Figure 2a) [29,32,33]. Unfortunately, this D–A type strategy
does not always work for two reasons. As mentioned above, decreasing HOMO–LUMO
spatial overlap only works when both the S1 and the T1 excitation characters are donor-
to-acceptor charge transfers (CTs). However, the T1 state prefers to have a local-excitation
(LE) character in many molecules [34,35]. Therefore, ∆EST can become too large for a RISC
process. On the other hand, when the S1 and T1 states are CT states, the SOC between
the two states becomes negligible [36–38]. Therefore, designing TADF emitters that have
small ∆EST and large SOC simultaneously is still challenging. Recent studies reported that
spin-vibronic coupling can enhances the RISC process even in molecules with large ∆EST
and/or small SOC [22–26]. This further complicates the design strategy but allows more
molecules to become candidates.

Another issue in TADF emitters is the relatively weak and broad emission. The
radiative decay rate is proportional to the square of the transition dipole moment (TDM)
which is related to spatial overlap between hole and electron wavefunctions. Thus, D–A
type molecules tend to have a small radiative decay rate compared to the nonradiative
decay rate. Recent studies have shown that the vibronic coupling effect may enhance
TDM in CT states compared to what is expected purely electronically [27], but even the
enhanced value is still lower than the TDMs of many LE states. On the other hand, D–A
type molecules usually show broad emission peaks originating from substantial structural
relaxation. Namely, the donor and the acceptor units can be easily twisted, and the
energy difference between S1 and S0 can vary in a wide range. For this reason, the color
purity of a D–A type TADF emitter is low, and filtering is often needed, reducing the
device’s efficiencies. In 2016, Hatakeyama and co-workers reported 5,9-diphenyl-5H,9H-
[1,4]benzazaborino [2,3,4-kl]phenazaborine (DABNA), bearing the multiple resonance (MR)
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effect [39] that causes HOMO–LUMO spatial separation in the same rigid ring [40–42]
(Figure 2b) [39,41,43]. With the rigid structure, the MR emitters have small Stokes shifts
and thus narrow emission peaks. Modifications on D–A type molecules that add rigid
bridges have also been studied [44–47]. For example, U-shaped molecules as shown
in Figure 2c [44,48] can act as an intramolecular exciplex through space charge transfer
such that the intramolecular π–π interaction restricts molecular motions and decelerates
nonradiative decays [48]. In addition, CT characters are intensified in the T1 states of the
U-shaped molecules due to the proximity between the D and A units, reducing ∆EST for
better emission [45].
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To solve the color purity issue, a TADF sensitizing scheme with hyperfluorescence was
proposed by embedding a TADF sensitizer and a fluorescent emitter in the device [7]. Via
RISC in the TADF sensitizer, triplet excitons convert to singlet excitons, which move to the
fluorescent emitter via Förster resonance energy transfer (FRET). Dexter energy transfers
(DET) of triplet excitons from the TADF sensitizer to the fluorescent emitter should be
suppressed to prevent efficiency loss [17]. Recently, an MR TADF emitter was also used in
hyperfluorescence devices instead of a fluorescent emitter [7,49]. Because the MR TADF
emitter in this case can utilize triplet excitons, DET does not pose a challenge like in original
hyperfluorescence systems, and this combination of a TADF sensitizer and an MR TADF
emitter in a hyperfluorescence device can have low efficiency roll-off [49].

2.2. Triplet-Triplet Annihilation

Triplet-triplet annihilation (TTA) or triplet-triplet fusion (TTF) is a photon upcon-
version process where two triplet excitons (T1) merge into one exciton with twice the
energy. The process can generate an emissive exciton if the fused state is spin singlet.
However, the total number of excitons decreases with TTA, and thus in phosphorescent
or TADF devices, it should be inhibited. In fluorescent devices, on the contrary, the TTA
process is useful for increasing EUE. While it is still not easy to design blue phosphorescent
or TADF emitters free from the stability and efficiency issues already described in the
earlier section, TTA may in principle ameliorate the issues by providing a decay chan-
nel to triplet excitons. Nevertheless, because TTA is a bimolecular process, high triplet
concentration is needed for effective TTA, which in turn can also lead to triplet-polaron
quenching and/or triplet-singlet annihilation to reduce EUE. Therefore, TTA materials tend
to suffer more from efficiency roll-offs. The transient electroluminescence (EL) [20] and
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magneto-electroluminescence (MEL) spectra [50] can be used to determine whether TTA is
involved. In the case of transient EL, TTA devices typically exhibit delayed and long-lived
luminescence after the devices are turned off, as depicted in Figure 3a [20,51]. In addition,
TTA devices display unique MEL spectra; the MEL signal increases and then decreases as
the external magnetic field increases, as sketched in Figure 3b [50,52].
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The detailed mechanism of a TTA process is yet somewhat unclear, just like the details
of singlet fission (SF), its inverse process, are not perfectly clear yet. During the process,
two triplet excitons form an intermediate correlated triplet pair state (TT)*. To conserve
the total angular momentum, the pair must be in either singlet (1(TT)*), triplet (3(TT)*), or
quintet (5(TT)*) spin states. If the final state is determined by the spin statistics, they will
form with the ratio of 1:3:5. After the generation, 1(TT)* splits to S1 and S0, and 3(TT)* splits
to Tn and S0. Because the lowest quintet excited state (Q1) energy is often too high to reach,
5(TT)* tends to return to original two T1. In addition, Tn from 3(TT)* quickly relaxes to T1
according to Kasha’s rule. Therefore, if there are nine triplet pairs generated from eighteen
T1 excitons, there will be one S1 and thirteen T1 remaining excitons. The upconversion
efficiency (ηUC) can thus be calculated as [53,54]

ηUC =
∞

∑
k=0

1
18
×
(

13
18

)k

= 20% (2)

and the theoretical limit of EUE will be ηEUE = 0.25 + 0.75× 0.2 = 40%. If all upper triplet
states are too high in energy for the condition where ET2 > 2ET1 > ES1 , then 3(TT)* also
returns to the original two T1, and the theoretical limits of EUE and UC are, respectively,
ηUC = 50% and ηEUE = 0.25 + 0.75× 0.5 = 62.5%.

Most TTA materials feature polycyclic aromatic structures. Indeed, the majority of
TTA materials contain anthracene units [55]. Twice the T1 energy (1.84 eV) of anthracene
is slightly higher than its S1 energy (3.31 eV) and T2 energy (3.23 eV) [56], which renders
the molecule effective for TTA, at least energetically. Thus, anthracene derivatives may
act as good starting units toward designing new TTA materials, although non-anthracene
polycyclic TTA molecules have also been reported [57–59]. Some representative TTA
materials are shown in Figure 4 [54,58–64].
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It may be unclear how a correlated triplet pair is produced, but it is possible to calculate
the transition rate from the correlated triplet pair to its split singlet excited state (S1 + S0).
Rate equations based on the Fermi golden rule and the Marcus theory have been used for
this purpose [65,66]. The electronic coupling between the two states is often calculated by a
fragment-based method [67]. These calculation results demonstrated that CT states should
be included to reliably describe singlet fission or TTA processes [65–67] and that CT states
may act as an intermediate state between the triplet pair and the split singlet excited state.

2.3. Hot Exciton Process

Hot exciton process is another type of triplet harvesting mechanism via RISC. Unlike
TADF, RISC in this case initiates not from T1 but from higher-lying triplet states (thus
“hRISC”). Although the hot exciton process does not obey Kasha’s rule, numerous hot exci-
ton materials have been reported [20,68–76]. A comprehensive review on the reported cases
of hot exciton materials can be found elsewhere [20], and some representative molecules are
shown in Figure 5 [51,77–83] with their photophysical properties summarized in Table 1.
Ideally, hot exciton materials have several advantages. Because triplet excitons can be
rapidly depopulated via hRISC, there will be a much smaller chance of having long-lived
T1 excitons, significantly improving device stability and efficiency at high exciton concen-
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trations. In addition, the S1 states of hot exciton molecules do not need to have dominant
CT characters like in TADF molecules. Often, the S1 states are reported to have LE or
hybridized local and charge-transfer (HLCT) characters. When LE character is intensified
in the S1 state, hot exciton materials can exhibit high emission efficiency. These merits
have raised many research interests in recent years, and in the next section, we will focus
on topics related to the hot exciton process in more detail, including a brief history of
research on the hot exciton process. We will also discuss experimental evidence reported
in the literature, as well as computational aspects regarding the process itself and its
design applications.
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Table 1. Photophysical properties of representative hot exciton materials.

Compounds λ a (nm) PLQY (%) IQE (%) EUE (%) EQEmax (%) CIE (x, y) Ref.

TPA-PPI 438 90 25 28 5.02 0.15, 0.11 [77]
TPA-NZP 632 15 14 93 2.8 0.67, 0.32 [51]
mTPA-PPI 404 35 17 48 3.33 0.161, 0.049 [78]

TPA-PA 418 70 10 14 2.0 0.15, 0.07 [79]
TPA-AN 460 50 15 30 3.0 0.15, 0.23 [79]
TPA-AC 504 35 16 46 3.2 0.20, 0.51 [79]

2NpNMZ b 502 61.0 17 29 5.39 0.19, 0.51 [80]
2AnNMZ b 526 37.8 13 35 4.50 0.32, 0.62 [80]

PPBA b 440 80 - - 11 - [81]
PAC 458 48 - - 10.5 0.15, 0.13 [82]

TPB-PAPC 450 65 30 46 6.0 0.14, 0.07 [83]
a Emission wavelength. b Properties of doped devices.

3. Accounts on Hot Exciton Processes
3.1. Hybridized Local and Charge-Transfer States

Quite naturally, emission properties of luminescent materials are governed by their
excited state characters. An LE state can have a large oscillator strength leading to high
PLQY, while a CT state with reduced ∆EST may accelerate RISC. We can also perceive that
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the advantages from these two different ends can be combined in one molecule toward
simultaneously achieving high EUE and high PLQY. Indeed, about a decade ago, Ma, Yang,
and co-workers reported such a molecule with the D–A type construct, N,N-diphenyl-4′-
(1-phenyl-1H-phenanthro[9,10-d]imidazol-2-yl)biphenyl-4-amine (TPA-PPI), consisting of
a triphenylamine (TPA) donor and a 1,2-diphenyl-1H-phenanthro[9,10-d]imidazole (PPI)
acceptor [77]. This molecule exhibited a large red-shift of 57 nm in emission spectra in
going from a non-polar hexane solution to a highly polar acetonitrile one, indicating its CT
character in the S1 state. However, it also displayed a very small solvatochromic shift in
the low polarity regime, suggesting strong LE character in this case. These results add up
to a conclusion that the S1-state character of this molecule switches from LE in low polar
solvents to CT in highly polar ones, as shown in Figure 6. Density functional theory (DFT)
analyses also suggested an “intercrossed CT and LE excited” state of the molecule, as the
authors named it. The EUE of TPA-PPI was 28%, which is higher than the conventional
statistical limit of 25%, showing that the intercrossed CT and LE state can indeed improve
the efficiency of OLED devices.
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A few years later, the same group reported another D–A type molecule, N,N-diphenyl-
4-(9-phenylnaphtho-[2,3-c][1,2,5]thiadiazol-4-yl)aniline (TPA-NZP), consisting of a TPA
donor and naphtho[2,3-c][1,2,5]thiadiazole (NZ) acceptor [51]. The device with TPA-NZP
was reported to show an IQE of 14%. Considering that the PLQY of this molecule was 15%,
a very high EUE of 93% was deduced. The excited state character also corresponded to an
LE and CT combined state. Namely, TPA-NZP displayed similar solvatochromic shifts to
those of TPA-PPI shown in Figure 6. In this work, they termed this type of excited state as
a “hybridized local and charge-transfer” (HLCT) state. Besides the aforementioned state
switching character depending on the solvent polarity, the HLCT state showed several ad-
ditional characteristics. First, the fluorescence from this state displayed a single exponential
decay without any delayed component. This single exponential lifetime evidenced that the
LE and the CT characters are hybridized into one state, and that the excited species does not
exist in two separated states. Second, the state character of T1 was LE, thus the energy level
of T1 was significantly lower compared to the S1 level. Therefore, the traditional TADF
mechanism, namely, the conventional RISC, could not work. In addition, in transient EL
experiments, no TTA process was observed in devices with TPA-NZP (Figure 3a). Thus,
they ascribed the improved efficiency to the RISC process between high-lying CT states
(Tn → Sm), which they termed as hRISC to distinguish it from conventional RISC from T1.

The group made further progress by comparing 4CzIPN, a typical TADF emitter,
against TPA-NZP with the HLCT character [84]. For 4CzIPN, the lowest singlet and triplet
excited states are CT states, and their energy gap was calculated to be as small as 0.24 eV,
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which is somewhat larger than the experimental value, 83 meV. Triplet excitons can convert
to singlet by thermal energy with this small S1–T1 energy gap. In contrast, for TPA-NZP,
both the S1 and the T1 states were of LE character, and their computed energy gap was as
large as 1.20 eV. Thus, the S1–T1 RISC channel will hardly work. Instead, they reported
that the S2 and the T2 states were CT states with quite a small energy gap of 0.29 eV. In
addition, they explained that the large T2–T1 gap would suppress the internal conversion
(IC) from T2 to T1, and that hRISC from T2 to S2 should in the end improve the efficiency
of the OLED devices. The energy diagrams of the excited states for these two molecules
are shown in Figure 7. Accordingly, they classified the two different spin conversions into
“hot” and “cold” exciton processes.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 9 of 23 
 

 

A few years later, the same group reported another D–A type molecule, N,N-diphe-
nyl-4-(9-phenylnaphtho-[2,3-c][1,2,5]thiadiazol-4-yl)aniline (TPA-NZP), consisting of a 
TPA donor and naphtho[2,3-c][1,2,5]thiadiazole (NZ) acceptor [51]. The device with TPA-
NZP was reported to show an IQE of 14%. Considering that the PLQY of this molecule 
was 15%, a very high EUE of 93% was deduced. The excited state character also corre-
sponded to an LE and CT combined state. Namely, TPA-NZP displayed similar solvato-
chromic shifts to those of TPA-PPI shown in Figure 6. In this work, they termed this type 
of excited state as a “hybridized local and charge-transfer” (HLCT) state. Besides the 
aforementioned state switching character depending on the solvent polarity, the HLCT 
state showed several additional characteristics. First, the fluorescence from this state dis-
played a single exponential decay without any delayed component. This single exponen-
tial lifetime evidenced that the LE and the CT characters are hybridized into one state, and 
that the excited species does not exist in two separated states. Second, the state character 
of T1 was LE, thus the energy level of T1 was significantly lower compared to the S1 level. 
Therefore, the traditional TADF mechanism, namely, the conventional RISC, could not 
work. In addition, in transient EL experiments, no TTA process was observed in devices 
with TPA-NZP (Figure 3a). Thus, they ascribed the improved efficiency to the RISC pro-
cess between high-lying CT states (Tn → Sm), which they termed as hRISC to distinguish it 
from conventional RISC from T1. 

The group made further progress by comparing 4CzIPN, a typical TADF emitter, 
against TPA-NZP with the HLCT character [84]. For 4CzIPN, the lowest singlet and triplet 
excited states are CT states, and their energy gap was calculated to be as small as 0.24 eV, 
which is somewhat larger than the experimental value, 83 meV. Triplet excitons can con-
vert to singlet by thermal energy with this small S1–T1 energy gap. In contrast, for TPA-
NZP, both the S1 and the T1 states were of LE character, and their computed energy gap 
was as large as 1.20 eV. Thus, the S1–T1 RISC channel will hardly work. Instead, they re-
ported that the S2 and the T2 states were CT states with quite a small energy gap of 0.29 
eV. In addition, they explained that the large T2–T1 gap would suppress the internal con-
version (IC) from T2 to T1, and that hRISC from T2 to S2 should in the end improve the 
efficiency of the OLED devices. The energy diagrams of the excited states for these two 
molecules are shown in Figure 7. Accordingly, they classified the two different spin con-
versions into “hot” and “cold” exciton processes. 

 
Figure 7. The 4CzIPN and TPA-NZP energy diagram of the first ten singlet and triplet excited states 
from TD-M06–2X calculations. Reprinted with permission from Ref. [84]. Copyright 2014, Wiley-
VCH. 

As noted earlier, hot exciton materials can have several beneficial properties com-
pared to other fully organic fluorescent materials. Because their S1 states have LE or HLCT 

Figure 7. The 4CzIPN and TPA-NZP energy diagram of the first ten singlet and triplet excited
states from TD-M06–2X calculations. Reprinted with permission from Ref. [84]. Copyright 2014,
Wiley-VCH.

As noted earlier, hot exciton materials can have several beneficial properties compared
to other fully organic fluorescent materials. Because their S1 states have LE or HLCT char-
acters, hot exciton emitters can have high luminescence efficiency with fast fluorescence,
while TADF emitters can only have slow fluorescence caused by small transition dipoles
with limited HOMO–LUMO overlaps, often leading to low PLQY. In addition, long-lived
triplet excitons are significantly reduced due to fast hRISC. As the long-lived triplet excitons
can break chemical bonds and/or decrease EUE by diverse exciton annihilation mecha-
nisms, hot exciton materials can have both stability and efficiency. However, a large energy
gap between triplet states to restrict IC becomes a rather limiting prerequisite. Based on the
Fermi golden rule, transition rate is related to the state-to-state coupling and the energy
gap [85], as given by

ki→ f =
1
}2

∣∣∣Vf i

∣∣∣2∫ ∞

−∞
dtei(E f−Ei)t/} (3)

where V is the spin-orbit coupling in hRISC or the derivative coupling in IC processes. If
hRISC takes place from Tn to Sm, the energy gap between Tn and Tn−1 must be large, and
the derivative coupling should be small. Of course, the Sm–Tn gap needs to be small, and
the corresponding SOC has to be large. Unlike the SOC, to which the so-called El-Sayed rule
can apply [86], however, much less is known about how to control the derivative coupling.
This imposes further difficulty in studying the hot exciton mechanism and designing
new materials.

3.2. Evidence of Hot Exciton Mechanism

With the premise stated above, a series of hot exciton materials have been further
reported [68–76]. Because directly observing the hRISC process is a formidable task,
simple quantum chemical calculations have often been adopted to provide support for the
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mechanism. Given that, phenomenologically, the EUE of the device with a TTA emitter
is limited to 62.5%, the EUE that exceeds this limit indicates the potential existence of
hRISC, especially when there is no delayed component in the time-resolved emission.
Moreover, a large S1–T1 energy gap of an emitter becomes strong evidence for excluding
the possibility of TADF. On top of this, if there is a pair of singlet and triplet states with
a small energy gap and large SOC, and if a large energy gap exists below the pinpointed
triplet state, fast hRISC and slow triplet IC can be suggested. However, satisfying these
conditions for eliminating alternative channels cannot constitute a definitive answer related
to hRISC. Namely, even for cold exciton RISC that does not compete with IC, having a small
S1–T1 gap and large SOC of an emitter does not necessarily establish success in finding an
efficient TADF device; there is always competition between the radiative and nonradiative
decay processes.

Indeed, more rigorous or at least plausible explanations have been provided by uti-
lizing energy-resolved triplet sensitizers. For example, Ma and co-workers reported 2-(4-(10-
(3-(9H-carbazol-9-yl)phenyl)anthracen-9-yl)phenyl)-1-phenyl-1H-phenanthro[9,10-d]im-
idazole (PAC) [82] as a strong hot exciton emitter. They adopted platinum octaethyl-
porphyrin (PtOEP) as a sensitizer to selectively initiate excitation to the T1 level of PAC as
described and carried out transient absorption experiments to analyze the energy levels
in the triplet manifold of PAC. Then, based on the T2 energy of PAC that they measured
(3.21 eV), they employed two ketone sensitizers with different T1 energies: indanone (IDO,
T1 = 3.29 eV) and benzophenone (BP, T1 = 3.01 eV) (Figure 8). Because the T1 energy
of IDO is slightly higher than the T2 energy of PAC, in a solution with PAC and IDO, a
delayed fluorescence component was detected, with the delay presumably coming from the
sensitizing triplet–triplet energy transfer from IDO to PAC and the hRISC process between
T2 and S1 of PAC. For a solution including both PAC and BP, on the other hand, such a
sensitizing triplet energy transfer was not expected because the T1 energy of BP is lower
than the T2 level of PAC. Therefore, no delayed fluorescence was observed. The chance of
TTA involvement in PAC emission was additionally eliminated by adopting transient EL
and MEL experiments. At present, utilizing a triplet sensitizer appears to provide the most
direct evidence for supporting hot exciton processes, and thus several additional papers
have adopted the same tactic to identify hot exciton mechanisms [87–89].

As an additional tactic, magnetic field effects have further been examined to identify a
hot exciton process. As described in Figure 3b, an ISC-dominant process involves a positive
MEL curve, while an RISC-dominant process is accompanied by a negative MEL curve.
Singlet fission and TTA processes display different but unique fingerprints. Xiong and
co-workers reported different patterns in the devices with rubrene [52]. On the one hand,
a non-doped rubrene device interestingly exhibited a MEL curve matching only singlet
fission, presumably initiating from the emissive S1 state. On the other hand, a 4,4′-N,N′-
dicarbazolebiphenyl (CBP)-rubrene device exhibited a negative MEL curve, indicating a
RISC-dominant process in the device. With these, they suggested three components in
the emission of rubrene: prompt fluorescence via FRET from CBP to rubrene, delayed
fluorescence associated with hRISC from T2, which is directly sensitized via DET from the
CBP triplet state, and TTA-mediated fluorescence after IC from T2 to T1. Later, Ma, Qiao,
and co-workers made another doped rubrene device where an exciplex was formed by
2,6-bis(3-(9H-carbazol-9-yl)phenyl)pyridine and 2,4,6-tris[3-(triphenylphosphine)phenyl]-
1,3,5-triazine [90]. They found that the MEL curves were positive in the exciplex emission
region and negative in the rubrene emission region. These different MEL curves indicated
that exciplex was ISC dominant (forming more triplets) and rubrene was RISC dominant
(forming more singlets), implying that the increased emission by triplet harvesting must
have involved the action of rubrene. They additionally designed a device that consisted
of an exciplex interface and a thin rubrene layer with varying interface-to-layer distances
as depicted in Figure 9. When the exciplex interface and the rubrene layer were close in
distance, the MEL curve was negative, suggesting that RISC or hRISC was happening.
Given that the rubrene was already confirmed to be acting for triplet harvesting, this
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indicated that DET from the exciplex interface to the rubrene layer was dominant. In
contrast, when the distance was large, such that this DET was suppressed, the MEL curve
changed into a positive pattern. These experimental data suggested that reaching rubrene
emission involved a hot exciton channel with the triplet sensitizing host.
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3.3. Computational Investigations on Hot Exciton Mechanism

Quantum chemical calculations and molecular dynamics simulations have been con-
tinually employed for analyzing hot exciton mechanisms. As mentioned earlier, such
approaches can present insights into hot exciton mechanisms and help design new hot
exciton emitters. Indeed, the capability of screening potential candidates will surely benefit
from future studies. As mentioned in Section 3.1, hot exciton material should have a large
energy gap and a small derivative coupling between Tn and Tn−1 and a small energy gap
and a large SOC between Tn and Sm, assuming that the hRISC process occurs from Tn to
Sm states. The energy gaps are more important [20] and easily controlled compared to the
coupling, so adjusting the energy gap has been the main subject in computational studies.
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Yang and co-workers investigated the state characters of hot exciton materials by
calculating three D–A type molecules based on a triphenylamine (TPA) donor and three
different acceptors: phenanthrene (PA), anthracene (AN), and acridine (AC), depicted in
Figure 5 [91]. It is well accepted that the HLCT character is important for a hot exciton
process. Out of the three molecules, TPA-AC, with the best singlet exciton generation,
exhibited that its HLCT S1 state converted to a CT state with an increase in the twisting
angle between the donor and the acceptor units, although the relationship between the
good emission and such a state switching induced by the increased twisting angle [92–95]
was not clearly unveiled. In addition, and quite expectedly, a triplet CT state was found to
be very close in energy to the singlet HLCT state only in the best emitting molecule.

In another study, Yang, Ma, and coworkers investigated para- and meta-linked forms
of TPA-PPI (in Figure 5) and their derivatives [96]. This study was based on the previ-
ous work in which mTPA-PPI had improved color purity while maintaining efficiency
comparable to that of TPA-PPI [78]. Because the PPI unit is widely used for hot exciton
materials [97–101], analyzing the character of PPI-based molecules will be fruitful for
understanding hRISC characters. The meta-linked forms generally displayed reduced
structural differences between the S1 and the S0 optimized conformations, decreasing
vibronic coupling induced by conformational relaxation, which expectedly resulted in a
narrow emission. However, the meta-linked forms showed decreased CT characters in
the S1 state leading to a larger energy gap for the hRISC channel. Accidentally, however,
there were high-lying singlet and triplet states that actually had better energy alignment
and more preferable SOC values for efficient hRISC. They stated that this aspect opened a
possibility that multiple hRISC channels could act in the meta-linked forms as described in
Figure 10. This would in turn preserve emission efficiencies for these molecules in compari-
son with their para-counterparts. In addition, small structural changes in meta-derivatives
could increase the LE character in the HLCT state and improve color purity without
sacrificing efficiency.

Condensed phase QM/MM simulations may help explain restricted IC in hot ex-
citon materials [102,103]. In the condensed phase, low-frequency twisting motions are
suppressed and conformational relaxation between the ground state and the excited state
is reduced, likely due to the crowding effect by the surrounding molecules. This will
reduce the Huang-Rhys factor and the reorganization energy. Subsequently, IC from S1 to
S0 will be slowed down and the fluorescence efficiency can be improved. Therefore, the
aggregation-induced emission mechanism [104–106] can surely be utilized for designing
hot exciton materials.

As mentioned above, screening hot exciton candidates will be a fruitful task in design-
ing new materials. Fumanal, Meng, and co-workers calculated 234 donor–acceptor–donor
type molecules based on 13 donor groups and 18 acceptor groups [107]. They determined
whether a molecule could function as a hot exciton emitter based on three criteria: the
injection energy, the energy gap between any triplet states to restrict IC, and the energy gap
between singlet and triplet states for efficient hRISC. With these three criteria, only 36 out
of the 234 molecules were determined to be candidates for hot exciton emitters. To further
confirm the potential of hRISC, they calculated SOCs between singlet and triplet states that
were close in energy. Among the 36 D–A–D systems, 31 molecules exhibited large enough
SOC toward potential hRISC with the remaining five possessing small SOC values below
0.1 cm−1. Several other papers also calculated energy levels and SOC values in diverse
systems, with the purpose of helping design new hot exciton materials [108–110].
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3.4. Hot Exciton Material Design

In fact, numerous attempts to newly design and synthesize hot exciton materials have
been reported. While it is yet somewhat ambiguous or even difficult to define definitive
design rules, a number of strategies have been adopted, especially by combining fragments,
such as D–π–A [111], D–A–D [68], A–π–A [112], and D–π–A–π–D [113] with additional
potential decorations on the linkers with triple bonds [114]. In this part, we will review
some cases with insights that one can apply to designing hot exciton materials in general.

The main issue related to hot exciton molecules is whether we can restrict unavoidable
IC in the triplet manifold. As most hRISC processes initiate from T2 states, increasing the
T2–T1 energy gap will be a good strategy. When there is a core fragment with a given T1
energy, if we introduce a substituent with a much higher T1 energy of its own, the T2 energy
of the whole molecule will be close to the T1 energy of the added substituent [80,115] as
long as the T2 energy of the original core part is even higher. This hypothesis was proven
by comparing two D–A–D molecules that combined a naphtho[2,3-d][1,2,3]triazole (NMZ)
core and either naphthalene (Np) or anthracene (An) substituents. The T1 energy of Np
was higher than the T1 energy of An, and, subsequently, Np–NMZ–Np had a larger T2–T1
energy gap than An–NMZ–An [80]. In addition, for a D–A type molecule, the electronic
coupling between LE T1 and CT T2 states correlates with the electron exchange between the
donor and the acceptor fragments. Therefore, a twisted conformation will restrict the IC
between the two states. If hRISC takes place by involving these states, inducing a twisted
conformation may be a good strategy [116].

In addition to structural modifications on emitters, the doping effect in a device may
also be important. For example, rubrene and 10,10′-diphenyl-9,9′-bianthracene did not
exhibit any hot exciton processes in neat films of non-doped devices. However, the device
efficiency was significantly increased when they were used as dopants in a CBP host
matrix [52,81]. For example, when rubrene was doped in a CBP host, the maximum EQE
was 5.22%, while it was 0.55% in neat film. Furthermore, when hot exciton molecules
were used as the host, the device performance was also notably enhanced [83]. The
maximum EQE values of the non-doped devices with PAC or 4′′′′-(diphenylamino)-2′′,5′′-
diphenyl-[1,1′′:4′,1′′:4′′,1′′′:4′′′,1′′′′-quinquephenyl]-4-carbonitrile (TPB-PAPC) in Figure 5
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were 10.2% and 6.0%, respectively. However, upon adopting a traditional fluorescent
emitter, N,N′-bis(3-methylphenyl)-N,N′-bis[3-(9-phenyl-9H-fluoren-9-yl)phenyl]-pyrene-
1,6-diamine (BD), the maximum EQE increased to 17.4% and 9.0%, respectively. [83]. It
was explained that the singlet exciton of PAC and TPB-PAPC transferred to BD by FRET,
and that this depletion of the singlet population accelerated the hRISC process in the host.
In addition, the TTA process in the device with the PAC host was somehow inhibited
compared to that in a non-doped device, likely because the accelerated hRISC process in
the PAC host also suppressed IC to T1, subsequently diminishing the TTA source. These
results indicate that not only designing new emitter molecules but also matching them
with appropriate host or dopant molecules will be important.

3.5. Future Computational Prospects on Hot Exciton Materials

Unlike RISC in TADF molecules, the hRISC process takes place in high-lying excited
states. Calculating the properties of such states tends to be computationally expensive
compared to calculating the ground state or even the lowest excited state properties. For this
reason, existing studies have usually adopted approximations for reducing computational
costs. Here, we will discuss what approximations people have used and how we can
improve fidelity in future considerations.

Currently, computational studies are struggling to explain the anti-Kasha character-
istics, namely, the restricted IC in the triplet manifold. Although the condensed phase
effect suppresses molecular motions and reduces the IC rate [102,103], to the best of our
knowledge, computational evidence that explicitly shows that the hRISC rate is actually
faster than or at least comparable to the IC rate have not been reported. Several papers
reported predictions on the hRISC rates with the help of the thermal vibration correlation
function (TVCF) formalism [117]. However, the IC rates were either not really compared
to [102,118,119] or actually shown to be much faster than the hRISC rate [120]. Nevertheless,
solid experimental evidence exists to show that the hot exciton materials bear preferable
properties that cannot be explained through TADF and/or TTA mechanisms. This may be
related to the fact that the TVCF formalism is based on harmonic oscillator models, which
becomes unreliable when the conformational relaxation between the two involved states
is large [117]. If the limitation is due to the anharmonicity, given that its remedy has been
recently reported [121], it will be interesting to see how the improved formalism behaves
in the predictions on hRISC systems. In addition, geometric displacements expressed in
Cartesian are not appropriate for describing twisting motions, which will likely be im-
portant in many donor–acceptor and related molecular constructs. For this shortcoming,
adopting internal displacements [122,123] may become a good alternative. Nevertheless,
twisting motions often induce severely nonharmonic potential energy changes. Therefore,
more appropriate formalisms for handling large structure differences, albeit challenging to
develop, will be needed. On the flip side, there remains a possibility that a new mechanism
could be suggested to explain the overall dynamics: for example, an event led by multiple
hRISC channels [96,109]. In addition, the charge recombination processes experienced by
polaron pairs in the early stage of recombination is another overlooked process. Indeed,
if the charge recombination rate depends on spin multiplicities, the conventional rule on
the singlet-triplet ratio can be violated (Figure 11) [50,124]. Testing on these hypothetical
scenarios will surely require us to adopt various quantum chemical calculations and diverse
simulation studies.

When computationally deducing hot exciton processes, one should conduct geom-
etry optimizations in high-lying states before calculating state energies and SOC values.
However, such geometry optimizations require greater resources and even become more
cumbersome as we walk up higher in state indexes, mainly due to the notorious state-
switching issue [125,126]. Likely for this reason, some studies have only used vertical
excitation energies to evaluate the energy gap [96,107], which will inevitably impair the
reliability. We should also note that ∆EST is not the best indicator for judging the plausi-
bility of ISC/RISC processes. Indeed, with the TVCF formalism, it was reported that the
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Marcus-type barrier provided better agreement than simple ∆EST in TADF systems [127].
The Marcus-type barrier contains the reorganization energy associated with the state switch,
and this aspect also suggests the importance of employing fully optimized geometries.
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4. Concluding Remarks

TADF, TTA, and hot exciton mechanisms are representative triplet harvesting processes
that enable us to overcome the limitation of the spin statistics in OLED. TADF emitters can
yield ~100% IQE, but long-lived high energy triplet excitons reduce the stability of emitters.
Because the T1 energies of TTA emitters are only halves of the S1 energies, they are free
from such high energy exciton issues, but the IQE is limited to 62.5% at best. In addition,
high densities of triplet excitons make them vulnerable to undesirable exciton quenching
processes. The hot exciton process can be free from such pitfalls of long-lived triplet excitons.
It feeds singlet states directly from high-lying triplet excited state(s), and in principle, the
hot exciton emitters may reach ~100% of IQE. Adapting the hot exciton concept can expand
the candidates in designing fluorescent emitters for OLED applications. For example,
recently, even MR-TADF emitters with hRISC processes have been reported [128–131]. This
means that we need to expand our focal points beyond the conventional S1-T1 energy gap.
Due to the relatively short history and added physical complexity, fundamental research on
hot exciton processes from high-lying excited states is still lacking. Probably, complicating
high-lying excited states with the unconventional anti-Kasha characteristics may be the
main targets for the study of hot exciton mechanisms.

In this regard, the main difficulty in studying hot exciton processes lies in finding the
relevant excited state. RISC in a TADF molecule takes place between S1 and T1, and we
definitely know where to focus in revealing the state properties. In contrast, hRISC in hot
exciton materials can involve any state within the triplet manifold created after the charge
recombination and any singlet states with similar energies. Even when an emitter by itself
does not exhibit the characteristics, the hot exciton characters may still show in a device
with a proper host that can act as a triplet sensitizer [52,81]. Despite the difficulty, there are
continuing studies that are analyzing the excited state characters of hot exciton materials.

The study of the hot exciton mechanism is challenging in both theory and experi-
ment. Generally, the nonradiative decay lifetimes of fluorescent emitters are at best in the
nanosecond regime. The energy gaps between energetically neighboring triplet states in
hot exciton molecules tend to be much smaller than the visible gap, and, therefore, the
connecting nonradiative decay (IC) lifetimes will likely be shorter than nanoseconds. On
the other hand, calculated hRISC lifetimes are often slower than sub-nanoseconds or even
microseconds. It is not clearly known yet how this relatively fast IC can be avoided to
promote hRISC, but high-efficiency emitters which cannot be explained by TADF or TTA
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are being continually reported. Thus, clear elucidation on the details of the hot exciton
processes will be able to greatly promote the construction of design strategies of highly
efficient emitters in the future. As discussed in Section 3.5, multiple hRISC and/or com-
peting charge recombination processes can hypothetically explain how hRISC takes place
despite fast IC. For designing OLED materials with computational means, the ability of
calculating various transition rate coefficients can play an important role for both radiative
and nonradiative decays, as the calculation can directly lead to property prediction such
as the luminescence efficiency. Indeed, numerous studies have been reported for such
calculations [119,132–135], and similar studies may prove their utility, especially toward
testing the hypotheses. Provided that there is still some room for practical improvements
for the related formalisms as mentioned in Section 3.5, we expect that future methodology
developments and computational studies based on them will provide valuable insights for
designing hot exciton materials.
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