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Abstract: In this short review, including 113 references, issues related to dibenzo[b,f]oxepine deriva-
tives are presented. Dibenzo[b,f]oxepine scaffold is an important framework in medicinal chem-
istry, and its derivatives occur in several medicinally relevant plants. At the same time, the struc-
ture, production, and therapeutic effects of dibenzo[bf]oxepines have not been extensively dis-
cussed thus far and are presented in this review. This manuscript addresses the following is-
sues: extracting dibenzo[b,fJoxepines from plants and its significance in medicine, the biosynthe-
sis of dibenzo[b,f]oxepines, the active synthetic dibenzo[b,f]oxepine derivatives, the potential of
dibenzolb,f]oxepines as microtubule inhibitors, and perspective for applications of dibenzo[b,f]Joxepine
derivatives. In conclusion, this review describes studies on various structural features and pharmaco-
logical actions of dibenzo[b,f]oxepine derivatives.
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1. Introduction

Seven-membered heterocycles are an important class of molecules which have found
applications in medicine and biology [1-5]. This class includes compounds containing nitro-
gen, sulfur, phosphorus, selene, or oxygen atoms (etc.) and that are systematically named
azepines, thiepines, phosphepines, selenepines, and oxepines, respectively, Figure 1(aA).
Seven-membered oxygen heterocycles occupy a prominent place in the chemistry of nat-
ural products [1-5]. For example, oxepines are found among alkaloids, the best known
of which are strychnine and clarine, and in the field of terpenes, several plant-derived
polycyclic elactones have been described, of which bitter limonine is a well-known example.
Dibenzo[b,f]Joxepine belongs to this group, Figure 1(bB). Dibenzo[b,f]oxepines are com-
pounds consisting of a heterocyclic seven-membered oxepine ring with one double bond
and an oxygen heteroatom and benzene rings (with different substituents) attached at the b
and f positions of the oxepine. Structurally dibenzo[b,f]oxepines are analogs of Z-stilbene
(Figure 1(bC)). Dibenzo[b,f]oxepines are classified in the LOTUS (Natural Products Online)
database as monomeric stilbenes [4].
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Figure 1. Structure of (a) azepine, thiepine, phosphepine, selenepine, and oxepine (A);
(b) dibenzo[b,f]oxepine (B) (with the designation of the bonds) and stilbene with the Z configu-
ration (C).
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Dibenzo[b,f]oxepine scaffold is an important framework in medicinal chemistry, and
its derivatives occur in several medicinally relevant plants. These compounds are character-
ized by various valuable properties, such as anticancer, antihypertensive, anti-inflammatory,
antidepressant, antiestrogen, antipsychotic, neuroprotective, anxiolytic, and insecticidal
properties [1-5]. The structure, production, and therapeutic effects of dibenzo[b,f Joxepines
have not been extensively discussed thus far and are presented in this review. In addition,
the possibilities for the use of dibenzo[b,f]Joxepine derivatives in the future are presented.

2. Extracting Dibenzo[b,floxepines from Plants and Its Significance in Medicine

An interesting branch of science is the search for active compounds extracted
from plants [6]. In this way, it was possible to discover the biological effects of many
molecules, including dibenzo[b,f]oxepine derivatives. This chapter presents the most
known dibenzol[b f]oxepine derivatives obtained from various plants.

2.1. Pacharin

The most commonly used, pacharin (Figure 2) has been obtained as an extract from
the genus Bauhinia (family Fabaceae) of trees and shrubs, inhabiting numerous geographic
locations in warm climates. The examples of its sources are as follows:

the stem bark, stem wood, and roots of Bauhinia ungulate L. [7];
leaves, stems, pods, and roots of Bauhinia purpurea [8,9];

the heartwood of Bauhinia racemosa Lamk. [10];

the stem bark of Bauhinia aculeata L. [11];

the Bauhinia acuruana Moric shrub [12,13];

vine stems from Millettia dorwardi Collet Hemsl [14];

the bark of Rhamnus caroliniana [15];

the flowers of Cercis chinensis Bunge [16].
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Figure 2. Structure of pacharin, Bauhiniastatins 1-4 and Bauhinoxepins A and B, Combretastatin
A-4, Yagonine, Aristoyagonine, Secocularidine, Secocularine, Norsecocularidine, Secosarcocapnine,
Norsecosarcocapnine, and 4-hydroxysecosarcocapnine.
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In addition to the fact that it has been used in folk medicine for centuries to treat
diabetes, infections, pain, and inflammation, its effect on various cancer cells has been stud-
ied [8,12,14]. Pacharin demonstrated an antiproliferative effect on the following cell lines:
the human tumor cell lines MCE-7 (breast adenocarcinoma) ICsp 20 mM, lung carcinoma
NCI-H292 IC5¢ 11.11 mM or NCI-H460 IC5q 4.2 mg/mL, HL-60 (pro-myelocytic leukemia)
ICs5¢ 8.15 mM, colon carcinoma HTC-116 ICsp 19.26 mM or KM20L2 ICsy > 10 mg/mL, SF-
295 (glioblastoma) ICsp 14.44 mM, OVCAR-8 (ovarian carcinoma) ICsp 23.33 mM, HepG2
(hepatic cell line) ICsy 52.08 mM, Raji (the first continuous human cell line of hematopoietic
origin) ICsp 40.17 mM and KG-1 (acute myeloid leukemia cell lines) ICsy 61.22 mM, BXPC-3
(pancreas cell line) Gl5 4.3 mg/mL, SF268 (CNS cell line) Gl5p 3.1 mg/mL, and and DU-145
(prostate cancer cell lines) Gl5g 3.3 mg/mL Pacharin was also not cytotoxic to normal
human peripheral blood mononuclear cells (IC5y > 100 uM) [13-15]. Pacharin also shows
larvicidal activity against Aedes aegypti [17,18].

2.2. Bauhiniastatins 14

The next known family are Bauhiniastatins 1-4 and also Bauhinoxepins A and B, which
are bioactive natural products (Figure 2). Bauhiniastatins 1-4 were evaluated for cancer
cell growth inhibition against the pancreas BXPC-3 cell line, breast MCF-7 cell line, CNS
SF268 cell line, lung NCI-H460 and NCI-H292 cell line, colon KM20L2 cell line, prostate DU-
145 cell line, colon carcinoma HTC-116 cell line, pro-myelocytic leukemia HL-60 cell line,
glioblastoma SF-295 cell line, ovarian carcinoma, and OVCAR-8 cell line [8,12,19]. Each was
found to exhibit significant inhibition against the cancer cell lines (G5 (ug/mL) from 2.4 to
25.7). The authors noticed that the general structure of Bauhiniastatins is reminiscent of the
Z-stilbene geometry required for strong antiangiogenesis activity. A similar construction
occurs in the combretastatin series of anticancer drugs from the Combretum caffrum tree. For
example, combretastatin A4 is a microtubule-targeting agent that binds (3-tubulin with Kd
of 0.4 uM (Figure 2) [20,21].

The antioxidant activity of Bauhiniastatin 4 at various concentrations (from 500 to
7.81 ppm) has been evaluated against DPPH radical scavenging [11]. It was discovered
that Bauhiniastatin 4 reduces free radicals at a low concentration of about 9 ppm against
DPPH radical scavenging. Bauhiniastatin 4 showed free radical scavenging activity with
an ICsj value of 32.7 uM, which is lower than that of the used standard (positive control)
ascorbic acid (ICsp 62.8 uM). The authors noted that the presence of hydroxyl groups at C-3
in Bauhiniastatin 4 increased antioxidant activity, while the presence of a methoxy group
at C-3 (as is in pacharin) lowered antioxidant activity. Pacharin in similar studies showed
no activity.

2.3. Bauhinoxepins A and B

In turn, Bauhinoxepins A and B (Figure 2) were isolated from the root extract of
Bauhinia saccocalyx by Kittakoop and coworkers in 2004 [22]. This compound shows signifi-
cant antimycobacterial activities, with an MIC value of 6.25 and 12.5 g/mL, respectively.

2.4. Yagonine, Aristoyagonine

Yagonine is a new oxidized isocularine alkaloid from the Sarcocapnos Enneaphylla
plant which is native to southwestern Europe and northern Africa (Figure 2) [23]. This
last compound turned out to be a bromodomain inhibitor [24]. Bromodomain-containing
protein 4 (Brd4) is known to play a key role in tumorigenesis. Aristoyagonine exerted
cytotoxicity in I-BET-762-sensitive cancer cells, but also I-BET-762-resistant cancer cells.
This is the first report to describe the natural compound as a Brd4 bromodomain inhibitor.

2.5. Secocularidine, Secocularine, Norsecocularidine

Secocularidine and Secocularine, were isolated as two members of a new group of
isoquinoline-related alkaloids, the secocularines (Figure 2) [25]. Norsecocularidine was
next isolated (Figure 2) [26]. It is a subfamily of the family Papaveraceae (the poppy family)
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native to the Northern Hemisphere and South Africa. They were also later extracted from
the aerial parts of Sarcocapnos crassifolia subsp. speciosa [27]. The tested molecules showed
in vitro inhibitory activity on 3H-dopamine uptake by rat striatal synaptosomes, with ICsg
values 13.4 uM and 28.2 uM for Secocularidine and Secocularine, respectively [28].

2.6. Secosarcocapnine, Norsecosarcocapnine, 4-Hydroxysecosarcocapnine

Chemical extractions of Sarcocapnos enneaphylla and other Sarcocapnos species [29]
resulted, inter alia, in the isolation of Secosarcocapnine, Norsecosarcocapnine, and 4-
hydroxysecosarcocapnine [30]. They are alkaloids of the cularine group (Figure 2) [31,32].
The relaxant effects of the alkaloids of the cularine group have been studied on the guinea-
pig isolated trachea and human bronchus against contractions induced by acetylcholine,
histamine, neurokinin A, and KCl. Among the alkaloids tested, the most potent was
the cularine group, the relaxant activity of which was between those of papaverine and
theophylline. The data show that alkaloids of the cularine group display non-specific
antispasmogenic activity on guinea-pig and human airways.

2.7. Artocarpol A, Artocarpols D-G (Figure 3)

Novel phenolic compounds Artocarpol A, Artocapol D, Artocarpol E, Artocarpol
F-chiral, Artocarpol G, and Artocarpol I were isolated from the root bark of Artocarpus
rigida by the group of S.-Z. Yang [33-37]. Artocarpol A inhibited superoxide formation
in phorbol 12-myristate 13-acetate (PMA)-stimulated rat neutrophils in a concentration-
dependent manner with an ICsg value of 13.7 £ 0.7 um and also showed an inhibitory effect
on tumor necrosis factor-a (TNF-a) in RAW264.7 cells (established from the preparation
of macrophages of a BAB/14 mouse) [33-37]. In addition, this compound stimulates
superoxide anion generation in rat neutrophils [38]. In turn, the anti-inflammatory activities
of Artocarpol I were studied in vitro by measuring the inhibitory effect on the chemical-
mediator release from mast cells, neutrophils, macrophages, and microglial cells and
established that when inhibited in a concentration-dependent manner, the formyl-Met-Leu-
Phe (fMLP)/cytochalasin B (CB)-stimulated superoxide anion formation in neutrophils has
an ICsg value of 17.1 + 0.40 um [33-37].

Artocarpol F Artocarpol G Artocarpol |
HO
HO, HQ HO, HQ HO,
x° ) D
HO Q HO HO .
= = = Sy
(¢] (o]
o7 OH o] R
Tournefolic acid B Tournefolic acid B Tournefolic acid B
methyl ester ethyl ester

Figure 3. Structure of Artocarprol A, Artocarprol D, Artocarprol E, Artocarprol F, Artocarprol G,
Artocarprol I, Tournefolic acid B, Tournefolic acid B methyl ester, and Tournefolic acid B ethyl ester.
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2.8. Tournefolic Acid B, Tournefolic Acid B Methyl Ester, and Tournefolic Acid B Ethyl Ester
(Figure 3)

Tournefolic acid B, Tournefolic acid B methyl ester, and Tournefolic acid B ethyl
ester (TAB derivative) were isolated from the stems of Tournefortia sarmentosa Lam. [39,40].
Tournefortia sarmentosa Lam. (the family Boraginaceae) extract has been used in Taiwan
as a detox agent, an anti-inflammatory agent, and for promoting blood circulation for
the removal of blood stasis [39]. The TAB derivative effectively attenuates neurotoxicity
mediated by Ap, glutamate, NMDA, and 1-methyl-4-phenylpyridinium. Specifically, TAB
achieves this by abrogating calcium overload in the mitochondria and hindering the caspase
8-truncated bid—cytochrome C pathway [41—44].

2.9. The Physicochemical Approaches to Estimate Medical Activity

Several physicochemical and biological properties can be associated with the activity
of compounds based on the knowledge of their chemical structure. To analyze the prop-
erties of the dibenzol[b,f]oxepine scaffold affecting the possibility of passive penetration
through biological membranes, calculations of lipophilicity (XLogP3-AA), molar mass,
topological polar surface area (TPSA [A2]), and number of hydrogen bond donors and
hydrogen bond acceptors were made [45,46]. For orally administered compounds, the
value of TPSA should be less than 120 A2, and that for compounds intended to cross the
blood-brain barrier should be lower than 60-70 A2 [47], the molar mass < 500, hydrogen
bond donor count < 5, and hydrogen bond acceptor count < 10. The listed parameters for
dibenzo[b,f]oxepine derivatives extracted from plants are presented in Table 1. The struc-
ture of the dibenzo[b,f]Joxepine scaffold meets the literature criteria for orally administered
and potentially active compounds (XLogP3-AA 3.9; molar mass 194.23 g /mol; TPSA 9.2 A2;
hydrogen bond donor count is 0; and hydrogen bond acceptor count is 1). Therefore, it is
not surprising that this scaffold is part of the molecules exhibiting therapeutic properties
(Table 1). All extracted compounds have TPSAs less than 120 A2, and often less than
70 A2 for molecules intended to cross the blood-brain barrier. The molar mass is also
<500 for all molecules and most chemicals” active XLogP3-AA is <5. Notably, hydrogen
bonding is a key element of molecular recognition [48]. Over the last decades, it has been
found in physicochemical phenomena such as DNA base pairing, enzymatic catalysis, [49]
host—guest complex formation, [50] and solid-state stabilization [51-53]. The parame-
ters describing interactions of hydrogen bonds are the hydrogen bond donor/acceptor
counts [45,46,48]. In the discovery set, ‘the rule of 5’ [45,46] predicts that good absorption
or permeation is more likely when there are less than 5 H-bond donors and 10 H-bond
acceptors. For all presented compounds, the hydrogen bond donor count is <5 and the
hydrogen bond acceptor count is <10. From Table 1, it can be concluded that the rule of
five is fulfilled for almost all compounds and the molecules show biological activity.

Table 1. The XLogP3-AA, TPSA, and hydrogen bond donor/acceptor count parameters for ex-
tracted dibenzo[b,f]oxepines from plants. The data were taken from [45,46]. Norsecocularidine,
4-hydroxysecosarcocapnine, Artocarpol A, Artocarpol G, and Artocarpol I are derived from plants,
but there is no information about the parameters listed below.

Entry Name of Compound XLogP3-AA 1?;5? Hgi:ﬁegoi(:;d iz’ir;ﬁ)inci?::
1 Pacharin 3.6 58.9 2 4
2 Bauhiniastatin 1 25 72.8 1 5
3 Bauhiniastatin 2 35 68.2 2 5
4 Bauhiniastatin 3 35 68.2 2 5
5 Bauhiniastatin 4 3.6 58.9 2 4
6 Bauhinoxepin A 45 58.9 2 4
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Table 1. Cont.

Entry Name of Compound XLogP3-AA ];1;5? H]gi;(:iegoi(:zd iZir;iinC]?)?::tl
7 Bauhinoxepin B 55 58.9 2 4
8 Yagonine 2.6 74.3 0 6
9 Aristoyagonine 2.7 57.2 0 5
10 Secocularidine 3.8 51.2 1 5
11 Secocularine 42 40.2 0 5
12 Secosarcocapnine 42 40.2 0 5
13 Norsecosarcocapnine 3.7 49 1 5
14 Artocarpol D 54 58.9 2 4
15 Artocarpol E 7.9 69.9 3 4
16 Artocarpol F 5.1 77 .4 2 6
17 Tournefolic acid B 2.8 107 4 6
18 Tournefolic acid B methyl 32 96.2 3 6

ester
19 Tournefolic acid B ethyl ester 3.5 96.2 3 6
20 Combretastatin A-4 3.7 57.2 5

3. Biosynthesis of Dibenzo[b,floxepines

The biosynthetic pathway of dibenzo[b,fJoxepins has not yet been thoroughly explored.
However, a possible biosynthetic route for the dibenzo[b,f]oxepine derivatives Yagonine
and Aristoyagonine has been proposed by the Vidal group (Scheme 1) [54]. Yagonine
was obtained from the oxidation of 4-hydroxysarcocapnine epimers with a 41% yield.
Aristoyagonine was received from Yagonine via dehydroxylation and decarboxylation with
a low yield of 7%. The authors postulate this sequence of transformations because such
transformations have previously been observed to occur, typically in other alkaloids [55].
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Scheme 1. Possible biosynthetic pathways of Yagonine and Aristoyagonine.
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4. Structure of Dibenzo[b,floxepine and Synthesis of Dibenzo[b,floxepine Derivatives

Based on the analysis of the diffraction image made with the Enraf-Nonius CAD-4
diffractogram, it was found that dibenzo[b,f]oxepine crystallizes in the orthorhombic sys-
tem marked with the space group P 21/n 21/a 21/m (Pnam) [56], although depending on
the substituents attached to the aromatic rings, the arrangement may differ slightly. As the
authors stated “the ground-state structure” resembles that of a butterfly (saddle-shaped),
with its wings highly bent backwards [57]. The optimum structures of dibenzo[b,f]Joxepine
were also calculated using the DFT B3LYP/6-311++G(2d,p) method and with the polarizable
continuum model (PCM) (which is a commonly used method in computational chemistry
to model solvation effects) [58]. Calculations have shown that the dibenzo[b,f]oxepine
scaffold is not planar and that it adopts a basket conformation in solution. The dihe-
dral angles between the aromatic rings connected with oxygen and the double bond for
dibenzol[b,f]oxepines are about 64.9-68.8°. The characteristic parameters in 'H NMR spec-
tra [58] for the dibenzo[b,f]Joxepine scaffold are: chemical shifts for aromatic protons in
the range 6.5-8.4 ppm, a coupling constant 3] about 7.5-8.5 Hz, chemical shifts for olefinic
protons about 7 ppm, and a characteristic °] coupling constant about 11 Hz for protons
in the AB spin system in the Z configuration. In IR spectroscopy [58], bands in the range
of 3080-3030 cm~! can be seen coming from the valence vibrations = C-H of aromatic
compounds. The characteristic vibration bands of the aromatic ring from 1625 cm™!
to 1440 cm~! are also visible. Aromatic resonance structures of dibenzo[b,f Joxepine in
the Sp, S;, and T; states show that it can act as an “aromatic chameleon” compound,
as the authors claim in reference [59]. 8m-Electron cyclic molecules in their Sy states
typically adopt non-planar structures that are non-aromatic rather than antiaromatic.
Dibenzo[b,f]oxepine Sy, adopts no planar structures and takes fold conformations [60].
Furthermore, dibenzo[b,fJoxepine shows a large Stokes’ shift (Acx = 280 nm; Aepy = 480 nm
in cyclohexane at 23 °C) and a well-defined vibrational structure in the fluorescence spec-
trum [57,61], evidence that a change from a no-planar to a planar conformation occurs in the
S1 state. In the first excited states (51 and T1), the dibenzo[b,f]Joxepine scaffold can become
planar because of the cyclically conjugated (4n + 2) 7t electrons of the central ring, which
meet the requirements for excited-state aromaticity. Dibenz[b,f]oxepine shows an increased
photostability when compared with its 10,11-dihydrogenated analog, a feature that could
be related to the gain in S1-state aromaticity of a cyclic system with (4n + 2) 7-electrons.

Dibenzol[b,f Joxepine was first synthesized in 1911 by Pschorr and Knoffler during the
nitration of «, 3-diaryl acrylic acids [62]. Since then, its scaffold has been an important
framework in medicinal chemistry, and its derivatives occur in several medicinally relevant
plants [63,64]. The synthesis of dibenzo[b,f]oxepines can be carried out in some ways [65].
Several methods are discussed below.

e  Wagner-Meerwein rearrangement [66]

Dibenzo[b,f]oxepines can be obtained from 9-hydroxyalkylxanthene via Wagner-
Meerwein rearrangement (Scheme 2) [66]. The solvent used is xylene. This reaction
involves phosphorus (V) oxide as a generating substance carbocation (C1). This carbocation
can transform into a transition state (TS), which then converts to the second carbocation
(C2), which in turn converts to the desired product. C1 can also undergo 3-elimination
to the xanthenylid-9-ene derivative (E1). The nature of the R substituent determines
which of the two reactions is favored. Depending on it, the C1 or C2 carbocation is more
energetically stable.
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Scheme 2. Wagner-Meerwein rearrangement on the example of 9-hydroxyalkylxanthene. Preferred
carbocation in brackets.

1. Ullman coupling with a subsequent Friedel-Crafts reaction [67,68]

In this method, the appropriate acetophenone halogen derivative is reacted with a
phenol derivative (the so-called Ullman diaryl ether synthesis, Scheme 3) [67,68], which
leads to the preparation of a diphenyl ether derivative (A). Conversion of the ketone to
acid or its derivative (B) then takes place, followed by a Friedel-Crafts reaction to give
the compound (C). In the last step, the reduction of the carbonyl group is carried out with
subsequent dehydration, which leads to the preparation of dibenzo[b,f]oxepine.

cl HO o
+ K,CO; 1. Simorpholine
X y © X Y
0 o)
A
o (o) (0)
1. HCI/HOAc 1.[H]
X v - AT B D
> X Y 2H0 X Y
2. polyphosphoric acid —
o]

SN

K/oB c

X=Cl, Y=H
X=H, Y=CI
X=Y=H

Scheme 3. Synthesis of dibenzo[bf]oxepines via Ullman coupling reaction followed by
Friedel-Crafts reaction.

2. Ullmann coupling and ring-closing metathesis reaction [69,70]

The substrates of the Ullmann coupling reaction are the halogen derivative and hy-
droxy derivative of styrene. The compounds undergo the following reactions: metathesis
with the closure of the ring and conversion to the dibenzo[bfJoxepine derivative (see
Scheme 4) [69,70].
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Cul, 052003 Grubbs catalyst
MeCN, Ilgand
R R
/ \

R=H,F  R'= H,0CH; Cl,CH;,0CH,CH; C(CHs);

Scheme 4. Reaction for the preparation of dibenzo[b,f]oxepines on the example of the Ullmann
coupling reaction, and then ring-closing metathesis reaction.
3.  Preparation from 2-halogenobenzaldehydes [71]

This is a one-step method that produces dibenzo[b,f]oxepine. The reaction of 2-
halogenobenzaldehyde with a derivative of 2-(2-hydroxyphenyl) acetonitrile runs through
sequential aldol condensation and an intramolecular ether formation reaction in the pres-
ence of Cs,COj3, molecular sieves, and in toluene as a solvent (Scheme 5) [71].

z X HO AN Cs,CO03, molecular sieves
| + | -
% H ,\ toluene, 130°C, 24—48h
R
! o) CN Ry

X= Br, R'= Br,CI, NO,, OMe, F, Me, R?= CH,CN,

Scheme 5. Synthesis of dibenzo[b,f]Joxepines from 2-halogenobenzaldehyde and 2-(2-hydroxyphenyl)
acetonitrile derivatives.

4. Intramolecular aromatic nucleophilic substitution SNAr [58]

The above method of dibenzo[b,fJoxepine synthesis was developed by the research
team of Krawczyk et al. [58] (Scheme 6). Intramolecular aromatic nucleophilic substitution
is conducted in a sodium azide environment, which increases the yield of the reaction by
about 50%. Two strongly electron-withdrawing nitro groups are attached to one of the
stilbene rings. The donating hydroxyl group is located on the second ring. The substitution
of one of the nitro groups by the hydroxyl group gives dibenzo[b,f]Joxepine. The yield of
the reaction is estimated from 88 to even 95% (Scheme 6).

NaN3

DMSO0,120°C

R'=OMe,R%=H, R3=H, R%H
R'=H, R2=0OMe,R3=H, R%=H
R'=H, R2=H, R3=OMe,R*=H
R'=H, R2=H, R3=H, R*=0OMe
R'=OMe, R%=H, R3=0OMe, R*=H
R'=NO,, R>=H, R3=H, R%H

Scheme 6. Synthesis of dibenzol[b,f]oxepines via intramolecular aromatic nucleophilic substitu-
tion SN AT.
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5. Knoevenagel condensation [72]

The authors propose a two-step course of reaction: the first step is a Knoevenagel
condensation, and the next is the Ullmann ether formation (Scheme 7) [72]. The interme-
diate (Scheme 7) after Knoevenagel condensation is converted to dibenzol[b f]oxepine via
cyclization. The reaction from the intermediate can run with Cul (path A) or without Cul
(path B). The yield of this reaction is high at 92%.

0 - OMe -
H
+ Cs,CO; _ NC
Br OMe Knoevenagel =
condensation

Br
L OMe i

intermediate

path A

Cu-catalyzed
NC Ullmann-ether
formation

path B
no Cul
SNAr reaction

Scheme 7. Proposed reaction mechanism of Knoevenagel condensation and, next, the Ullmann ether
formation in the synthesis of dibenzo[b,f]oxepine.

An interesting method is a recently developed simple one-pot synthesis of substituted
dibenzo[b,f]oxepines under transition-metal-free conditions (Scheme 8) [73]. This cascade
process involves nucleophilic aromatic substitution followed by Knoevenagel condensation.
The yield of this process is 77%.

02 N 02N OH
base OHC

= O leCo - o0

Scheme 8. The process involves nucleophilic aromatic substitution followed by Knoevenagel condensation.

6. Intramolecular McMurry reaction [74]

Dibenzo[b,floxepines can also be obtained as a result of an intramolecular McMurry
reaction. In such, the diaryl ethers are used as the substrates. They can be obtained
by the reaction of salicylaldehydes with fluorobenzaldehydes exposed to microwaves.
The McMurry reaction for synthesized dibenzol[b,f]oxepine using TiCly/Zn catalyst in
THEF has a yield of 53-55%. The synthesis mechanism is still under discussion, but the
reaction possibly passes through the intermediate state of metallopinacol formed by the
dimerization of ketyl radicals (Scheme 9).
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— o) S5 i
. / \ h [Ti]l/Zn
/ \ THF, reflux
R1 / \ R2
o)

R'=H, OMe R2=H, F, OMe
Scheme 9. Proposed McMurry reaction course.

7. Mn(Ill)-based oxidative radical rearrangement [75]

In 2009, Cong et al. [75] performed a Mn IlI-based oxidative 1,2-radical rearrangement
in order to obtain dibenzo[b,f]oxepines (Scheme 10). They used a large excess of Mn(OAc)s
(4 mol equiv.) in boiling glacial AcOH. The yield of this reaction was in the range of
63%-85% depending on the reaction time, substituents, and additives.

Mn(OAc)3

\/

AcOH / H;0, reflux
(v/v 9:1)

R'= Me, Et, i-Pr R2=H, OMe

Scheme 10. Synthesis of dibenzo[b,f]oxepines via Mn(IlI)-based oxidative radical rearrangement.

8.  Sequential Mizoroki-Heck reaction and Pd-catalyzed etherification [76]

The protocol was based on a palladium-catalyzed intramolecular Mizoroki-Heck
reaction of diaryl ethers (Scheme 11). The first step is a nucleophilic aromatic substitu-
tion reaction of 2-bromophenol and 2-fluorobenzaldehyde in the presence of potassium
carbonate. Next, the obtained product reacts in Wittig olefination using methyl triph-
enylphosphonium iodide and potassium tert-butoxide. Closure of the bromoolefin diaryl
ether in the presence of Pdy(dba); tert-butoxide and various phosphine ligands leads to
dibenzol[b,f]oxepine (endo product) and to an exoproduct in the Mizoroki-Heck reaction.
The yield of dibenzo[b,f]oxepine is 59% [76].

P
N
/O Br @F; = Br
F HO K;CO3, MeCN or DMF o S Me o
@; + D 100°c tBuOK
THF, r.t.,1h
| Br
0 PdL base
o 0
:
exo

endo

Scheme 11. Synthesis dibenzo[b,f]oxepine in intramolecular Mizoroki-Heck reaction of diaryl ether.

9.  Oxidative CH bond functionalization and ring expansion with TMSCHN [77]

The authors [77] proposed a direct C-H functionalization/rearrangement sequence ap-
proach (Scheme 12) to obtain dibenzo[b,f]oxepine. They chose trimethylsilyl diazomethane
(TMS-CHNj), which might also facilitate or promote the in situ rearrangement to the
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tricyclic backbone, nonprotic peroxide (PhCO;),, a Cu(OTf), copper catalyst, which is
reduced in situ to active Cu! and different ligands such as 2,2"-bipyridine (to improve the
properties and stability of the copper catalyst). In summary, the C-H functionalization,
insertion, and rearrangement sequence provided the dibenz[b,f]oxepine scaffold with a
moderate 55% yield.

(o) — (o)
A Cu(OTf), bpy, TMS-CHN,, /
|/ ' (PhCO,),, MeCN r.T., 18h %
R —

Cu catalyst
TMSCHN, -"TMS

Y

- Cu

R=H, OMe, F, Ph

Scheme 12. The synthesis of dibenzo[b,f]oxepines using oxidative CH bond functionalization and
ring expansion with the TMS-CHN, method.

5. Active Synthetic Dibenzo[b,floxepin Derivatives

Using the methods presented in the previous paragraph, many dibenzo|[b,f]oxepin
derivatives were synthesized and showed biological activity. The antipsychotic properties of
these products were studied by the Smith group [78]. They found that among the tested com-
pounds, dibenz[b,floxepine (1, Figure 4) has the highest dopamine D-4 receptor activity and
is twice as active as clozapine (clozapine is an antipsychotic drug used in the clinic) in block-
ing the D-4 dopamine receptor. The affinity of 10-(4-methylpiperazino)dibenz[b,f]oxepine
for clozapine binding sites in rat brains was studied [79]. [3H] Clozapine binding in the
presence of atropine represents non-muscarinic binding, while binding in the absence of
atropine represents muscarinic (cholinergic) binding. It was found that the ratios of the
ICs¢ values for dopaminergic to non-muscarinic clozapine binding for (2a—c) are 9.4 & 2.0,
7.3 +2.7, and 4.0 £ 1.3, respectively. In turn, the ratios of the ICsy values for dopamin-
ergic to non-muscarinic clozapine binding for clozapine and (2c) are the same. Schindler
and Blattner [80] studied 10-(dimethylaminomethyl)dibenzo[b f]oxepine (3a, Figure 4) and
its acid addition salts. The research confirmed its adrenolytic and depressant effect on
the central nervous system (CNS). It is therefore useful as a sedative, anticonvulsant,
and anesthesia enhancer. In 1980, the Kruse group [80,81] detected similar properties
for [(alkylamino)ethyl]thio]dibenz[b,f]oxepines (3b—-3d, Figure 4). Trabanco and Megen's
group [82-84] synthesized series trans and cis tetrahydrodibenzo[b,f]furo [2,3-d]Joxepin
derivatives and studied their anxiolytic properties (4, Figure 4). The products were evalu-
ated for in vitro affinities for the norepinephrine transporter 5-HT2A and 5-HT2C receptors.
This action was also foreseen based on the EDs5 values obtained in some in vivo assays.
The dibenzo[b,f]oxepine imidazole derivatives (5a, 5b, Figure 4) were recognized as a
novel class of tetracyclic compounds with anti-inflammatory activity through the specific
inhibition of TNF-a secretion [85]. One of the most interesting examples of the use of
dibenzo[b,f]oxepine is a compound that is an AIl (angiotensin II) receptor antagonist (6,
Figure 4) [86]. Angiotensin II causes an increase in blood pressure, which in turn causes
damage to the blood vessels and the heart. AIl antagonists bind to angiotensin receptors,
thereby preventing angiotensin Il itself from binding to its receptor. As a result, this com-
pound may have electrolyte and blood-pressure-regulating properties and antihypertensive
properties. The treatment of progressive neurodegenerative diseases such as Parkinson’s
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and Alzheimer’s diseases [87] with synthetic dibenzo[b,fJoxepine derivatives is of particular
interest. Synthetic dibenzo[b floxepines as antiestrogenic agents have also been studied [88].
The O-bridged compounds (7, Figure 4) were moderately active, and there are no new
reports of research in this direction. A very promising derivative with a dibenzol[b,f]Joxepine
skeleton is omigapil (TCH346 or CGP3466, 8, Figure 4), first synthesized at Ciba-Geigy,
Basel, Switzerland at the beginning of the 21st century. Santhera Pharmaceuticals has since
taken over the production of omigapil and preclinical trials for congenital muscular dys-
trophy [89]. Notably, omigapil has shown safety in Phase 1 clinical trials for patients with
pediatric and adolescent congenital muscular dystrophy (CMD) [89-91]. Recent studies
with omigapil in rats with traumatic brain injury (TBI), which is the largest non-genetic-,
non-aging-related risk factor for Alzheimer’s disease (AD), have shown that TCH346 re-
duces the level of high-level Tau protein and protects mice from neurodegeneration and
AD [92]. Moreover, the derivatives containing the azepane ring presented in Figure 4 (9,
Figure 4) show a strong inhibitory effect on the proliferation of breast cancer cells of the
MDA-MB-231 line [93]. In addition, analgesic [94,95] and antidiabetic [96] properties have
been found for dibenzo|[b,floxepine derivatives, as well as insecticidal activities [97].

(1) =N {i} A §

3
(3a) RN

g i

(2¢): X= Y=H X=H, F, Cl, SCH,4
(3c): R'= R?=C,Hy5;

X=H, F, Cl, SCH;

o O o O < (3d): R'= H; R?=(CH,)CsHs;
XO _ X=H, F, Cl, SCH,
d}/‘— N:TNH

~N ?
' R
(4):x= Cl orBr (5a):R=(CH2),N(CH3)5 X=H or Cl

(5b):R=(CH>)3N(CH3)5 X=H or CI
R1
/ (o)
. Y0
&

RZ
(7):R'=OCH,,CH,N(CH;), OCH,CH=CHy;
R?=H, OH

<O

(9): R=Ph or Et

Figure 4. Structure of dibenzo[b f]oxepine derivatives (1), (2a—2c), (3a-3d) type, (4), (5a,5b), (6), (7),
(8), and (9).
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6. Potential of Dibenzo[b,floxepines as Microtubule Inhibitors

Notably, a very important new application of dibenzo[bf]oxepines is targeting the
polymerization/depolymerization of microtubules. Microtubules are fibers that are part of
the cytoskeleton. They are composed of « and (3-tubulin heterodimers. They form impor-
tant structures from the point of view of cell division—such as karyokinetic spindles [98].
They are responsible for the alignment of the chromosome lines on the metaphase plate
and their precise segregation to the opposite poles during the anaphase of cell division.
Thanks to this, when mitosis occurs correctly, the same amount of genetic material goes
to the daughter cells. There are chemical compounds that bind to the structural unit of
the protein—such as tubulin. Some of them are active substances in anticancer drugs that
disrupt the dynamics of microtubules (the balance of their shortening/extension). This
phenomenon causes cancer cells to undergo apoptosis [99]. The chemical molecules interact
through at least six binding sites: the laulimalide/peloruside binding site, taxane (includ-
ing paclitaxel, docetaxel, and epothilones), vinca (vinblastine, vincristine, vinorelbine),
pironetin, maytansine, and colchicine [100]. Of particular interest from the point of view of
anticancer therapies is the colchicine (10, Figure 5) binding site. This substance effectively
inhibits mitosis by inducing the depolymerization of microtubules, and cancer cells, due
to the faster rate of cell division, are more susceptible to its poisoning. However, it is a
substance with a low therapeutic index and is also very toxic to healthy cells. It causes,
e.g., neutropenia (decrease in the number of neutrophils), gastrointestinal disorders, bone
marrow damage, and anemia [101,102]. For this reason, structurally similar substances in-
teracting with the colchicine binding site are sought. Stilbenoids (combretastatins CA1P-11
and CA4P-12, Figure 5) and dibenzo[b,fJoxepines, which contain the (Z)-stilbene motif in
their skeleton, show great potential [103]. Several derivatives of these compounds have
been studied in the literature, e.g., 13 and 14 (Figure 5). Using molecular modeling, their
ability to interact with tubulin was analyzed. The analysis shows that both compounds
bind to the colchicine binding site through hydrophobic interactions stabilized by hydro-
gen bonds. On the other hand, in vitro studies on cell cultures led to the conclusion that
9-nitrobenzo[b]naphtho [1,2-f]Joxepine (14) has strong cytotoxic properties, as it does not
affect cancer cells selectively, but it also induces apoptosis of “healthy” cells. For this reason,
methods are sought to enable “targeted therapies” that selectively affect cancer cells.

(HO),0PO  ,—
oy dmy e Q8 oo @ Y
o ° o o- g o-
v ] o~ A
(10) (11) (12)

(13) (14)

Figure 5. Structue of colchicine (10), combretastatin CA1P (11), combretastatin CA4P (12), and
dibenzolb,f]oxepines (13,14).

Such a new, but very promising, therapy is photopharmacology (Figure 6) [104-108].
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Figure 6. Idea of photopharmacology.

The scope of photopharmacology is the design, synthesis, research, and use of drugs
whose activity can be controlled by light. Photopharmacology is a way to solve the
activity of a therapeutic off-target (introduction of the drug to the target only after light
activation) and a way to avoid side effects. This is possible by controlling the activity of the
therapeutic agent from outside the body (Figure 6). Using this therapy, it will be possible to
conduct a selective photo-controlled interaction of the drug with a molecular target located
in the human body. Molecular switches are molecules that can be reversibly switched
between at least two thermodynamically stable states. The pharmacological agents used in
photopharmacology are bioactive molecules capable of changing their state, and, thus, their
structures, under the influence of light-photochromic molecular switches. Azo compounds
are one of the most numerous and most widely studied classes of photochromic molecular
switches. They can exist in two isomeric states—E/Z—with E being on average about
10 kcal/mol more stable than Z. Derivatives of azobenzene are the most popular and most
typically used photochromic molecular switches in biomedical applications. This is due,
among other reasons, to their easy synthesis, relatively high photostationary states and
quantum efficiency, fast photoisomerization, and low photo-quenching coefficient. It should
be emphasized that photochromic switches with an azo group absorb light in the range from
650 nm to 900 nm (visible light range 380-750 nm—harmless), which means that light is not
absorbed by water and hemoglobin and can penetrate deeper tissue layers. The combination
of the aspects of microtubule polymerization inhibition and electromagnetic radiation
activation of compounds containing azo bonds and a dibenzol[b,f]oxepine backbone with
methoxy groups was the subject of research by Borys et al. [109,110]. Firstly, their studies
focused on the synthesis of bioactive compounds interacting with tubulin (protein-building
microtubules performing the function of the cytoskeleton) and assessing their usefulness in
anticancer therapy. Secondly, their research aimed to determine the ability of the newly
obtained azo derivatives of methoxydibenzo[b,f]oxepine to act as molecular switches in the
system with tubulin and the way to activate them under the influence of harmless visible
light (Figure 7).

In silico studies showed that after combining dibenzo[b,f]oxepines with an azo switch,
the molecules interact with the colchicine binding site in tubulin with a part of the
dibenzo[b,f]oxepine, in a part of the azo switch, or both at the same time. Based on
the UV-VIS spectra, it was found that compounds switch in the visible part of the spectrum
and, therefore, these derivatives have the potential to be used in photopharmacology.
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Figure 7. Structure of hybrid dibenzo[b,f]oxepines with azofluorostilbenes (15a-15h) and (16a-16h).

To summarize, in Table 2, synthesized dibenzo[b,f]Joxepine derivatives that exhibit
biological activity or that have such potential are presented.

Table 2. Synthesized compounds exhibiting biological activity.

. s Figure on Which the
Compound Pharmacological Activities Structure Was Placed
1 antipsychotic properties Figure 4
2a—c antipsychotic properties Figure 4
3a-d sedative, anticonvulsant, and anesthetic-enhancing properties Figure 4
4 anxiolytic properties Figure 4
5a,b anti-inflammatory activity Figure 4
6 AlI (angiotensin II) receptor antagonist Figure 4
7 antiestrogenic agent (moderately active) Figure 4
phase 1 clinical trials with pediatric and adolescent congenital muscular .
8 . . Figure 4
dystrophy; reduce the level of high-level Tau protein
9 strong inhibitory effect on the proliferation of breast cancer cells of the Fieure 4
MDA-MB-231 line &
13 the strongest cytotoxic effect against HeLa and U87 cancerous cells lines Figure 5
14 the strongest cytotoxic effect against HeLa and U87 cancerous cells lines Figure 5
In silico studies showed that compounds 15a-h and 16a-h interact with .
15a-h T S . ) Figure 7
the colchicine binding site in tubulin with a part of the dibenzo[b,f]oxepine,
16a-h in a part of the azo switch, or both at the same time. Figure 7

7. The Perspective for Applications of Dibenzo[b,floxepine Derivatives

In conclusion, in this short review, we discussed the use of synthetic and natural
derivatives of dibenzo[b,f]oxepin. We have shown the use of these compounds mainly
in medicine. Several directions can be listed for further research on dibenzol[b,floxepines,
searching for new, not-yet-isolated compounds (naturally occurring dibenzo[b,f]oxepins)
from plants that have a healing effect. Omigapil, which exhibits dose-dependent inhibition
of HIV, dengue virus, and Zika virus [111], appears to have a high potential for medi-
cal use and, as previously mentioned, may alleviate symptoms of congenital muscular
dystrophy. Dibenzo[b,f]oxepines also have the potential as microtubule polymerization
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inhibitors. The use of combinations of dibenzo[b,f]oxepines with molecular switches for ap-
plications in photopharmacology is another way of using these compounds. The activity of
dibenzol[b floxepines should also be checked, as they are small molecules binding to RNAs
implicated in infectious disease (for PreQ(1) riboswitches), whose structure is very similar
to the structure of 2-(dibenzo[b,d]furan-2-yloxy)ethanamine and which have recently been
discovered [112,113].
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