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Abstract: Rates of pregnancy-related acute kidney injury (PR-AKI) have increased in the U.S over
the past two decades, but how PR-AKI affects the blood–brain barrier (BBB) is understudied. AKI
is associated with increased amounts of uremic toxins, like indoxyl sulfate (I.S), whose chronic
administration leads to BBB and cognitive changes. This study’s objective was to determine if (1) PR-
AKI increases I.S and (2) if administration of I.S during pregnancy elicits renal injury and/or increases
BBB permeability. From gestational day (GD) 11 to GD19, Sprague Dawley rats were given either
100 or 200 mg/kg body-weight dose of I.S. PR-AKI was induced on GD18 via 45 min bilateral renal
ischemic reperfusion surgery. On GD18, metabolic cage metrics and metabolic waste was collected
and on GD19 blood pressure, and BBB permeability (by Evan’s Blue infusion) were measured. I.S and
creatinine were measured in both urine and circulation, respectively. One-way ANOVA or student
t-tests were performed using GraphPad Prism with a p < 0.05 significance. I.S and PR-AKI led to
oliguria. I.S administration led to increased BBB permeability compared to normal pregnant and
PR-AKI animals. These results suggest that I.S administration during pregnancy leads to increased
BBB permeability and evidence of renal injury comparable to PR-AKI animals.

Keywords: blood–brain barrier; acute kidney injury; indoxyl sulfate

1. Introduction

Pregnancy-related acute kidney injury (PR-AKI) is associated with both maternal
and fetal morbidity and mortality [1]. PR-AKI rates have increased from 2.4 to 6.3 per
10,000 deliveries in the U.S from 1999 to 2011 [2]. Additionally, PR-AKI has an overall rate
of hospitalizations at 0.08% in the U.S from 2006 to 2015 [3]. It is believed that PR-AKI
arises from several factors, including hypertensive pregnancies and sepsis [4]. Even though
PR-AKI itself remains understudied, it is well established that acute kidney injury (AKI)
along with chronic kidney disease (CKD), independent of pregnancy, is associated with
changes in blood–brain barrier (BBB) permeability as well as cognitive changes associated
with BBB damage [5,6].

Indoxyl sulfate (I.S.), a uremic toxin, is involved in the progression from AKI to CKD
as its concentration increases due to reductions in renal function [7,8]. Clinical and ex-
perimental studies have shown positive correlations between the severity of renal injury
and increasing concentrations of circulating I.S. [9–11]. Additionally, I.S. is associated with
cognitive deficits in the presence of renal injury [12,13]. We have reported that following
PR-AKI, post-partum rats experience progression of renal injury and incidentally have
an increase in circulating I.S. compared to control rats [14]. The objective of the current
study was to determine (1) if pregnant rats with AKI had increased I.S. and (2) if adminis-
tration of I.S. during pregnancy elicits renal injury and/or increases BBB permeability. We
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hypothesize that PR-AKI will lead to an increase in I.S. and potentially BBB permeability
that is mirrored in pregnant rats administered I.S. We found that administration of I.S
during pregnancy leads to renal dysfunction similar to that seen in PR-AKI rats while also
increasing BBB permeability.

2. Results
2.1. Indoxyl Sulfate Excretion Is Increased following PR-AKI

To determine if experimental AKI (generated by bilateral renal ischemic reperfusion
surgery on gestational day (GD) 18) led to increased I.S. and if administration of I.S.
during pregnancy was associated with renal damage we measured a number of urinary
biomarkers. Concentrations of urinary I.S. were significantly increased in response to
PR-AKI and a higher dose of I.S. compared to normal pregnant (NP) rats (p = 0.003, p = 0.01;
Figure 1A). Urinary I.S. levels were significantly lower in rats administered low doses of
I.S. (100 mg/kg/day) compared to PR-AKI rats (p = 0.04). However, there was a significant
decrease in urine output among PR-AKI (p = 0.007), 100 I.S. (p = 0.03), and 200 I.S. (p = 0.03)
groups relative to NP rats (p = 0.008; Figure 1B). PR-AKI rats had significantly more
circulating serum creatinine compared to NP (p = 0.003), 100 I.S. (p = 0.02), and 200 I.S.
(p = 0.004; Figure 1C) rats. When measuring proteinuria, 200 mg/kg of I.S. led to increased
proteinuria compared to NP (p = 0.05) and PR-AKI rats (p = 0.04; Figure 1D). These results
suggest that while PR-AKI did not decrease I.S. excretion during pregnancy, both PR-AKI
and rats administered I.S. had evidence of renal injury.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 2 of 10 
 

 

was to determine (1) if pregnant rats with AKI had increased I.S. and (2) if administration 
of I.S. during pregnancy elicits renal injury and/or increases BBB permeability. We hy-
pothesize that PR-AKI will lead to an increase in I.S. and potentially BBB permeability that 
is mirrored in pregnant rats administered I.S. We found that administration of I.S during 
pregnancy leads to renal dysfunction similar to that seen in PR-AKI rats while also in-
creasing BBB permeability. 

2. Results 
2.1. Indoxyl Sulfate Excretion Is Increased following PR-AKI 

To determine if experimental AKI (generated by bilateral renal ischemic reperfusion 
surgery on gestational day (GD) 18) led to increased I.S. and if administration of I.S. dur-
ing pregnancy was associated with renal damage we measured a number of urinary bi-
omarkers. Concentrations of urinary I.S. were significantly increased in response to PR-
AKI and a higher dose of I.S. compared to normal pregnant (NP) rats (p = 0.003, p = 0.01; 
Figure 1A). Urinary I.S. levels were significantly lower in rats administered low doses of 
I.S. (100 mg/kg/day) compared to PR-AKI rats (p = 0.04). However, there was a significant 
decrease in urine output among PR-AKI (p = 0.007), 100 I.S. (p = 0.03), and 200 I.S. (p = 0.03) 
groups relative to NP rats (p = 0.008; Figure 1B). PR-AKI rats had significantly more circu-
lating serum creatinine compared to NP (p = 0.003), 100 I.S. (p = 0.02), and 200 I.S. (p = 0.004; 
Figure 1C) rats. When measuring proteinuria, 200 mg/kg of I.S. led to increased pro-
teinuria compared to NP (p = 0.05) and PR-AKI rats (p = 0.04; Figure 1D). These results 
suggest that while PR-AKI did not decrease I.S. excretion during pregnancy, both PR-AKI 
and rats administered I.S. had evidence of renal injury. 

 
Figure 1. Urinary indoxyl sulfate (I.S.) and kidney assessment in late pregnancy: (A) Urinary I.S. 
was increased in PR-AKI and NP + 200 I.S. rats compared to NP rats, and PR-AKI was increased vs. 
NP + 100 I.S.; (B) urine excretion collected by metabolic cages was significantly decreased in PR-AKI 
and I.S. rats vs. NP rats; (C) serum creatinine was increased in PR-AKI rats vs. all other groups. (D) 
total urinary protein was increased in NP + 200 I.S. rats compared to NP and PR-AKI rats. Individual 
data points are represented as follows: NP (circles), PR-AKI (squares), NP + 100 I.S. (upward trian-
gle), and NP + 200 I.S. (downward triangle). * p < 0.05, ** p < 0.005. 

2.2. Indoxyl Sulfate Administration Decreases Body Weight but Not Kidney Weight during 
Pregnancy 

The effects of I.S. administration during pregnancy on blood pressure and body and 
organ weight was investigated. Blood pressure was assessed at GD19, and there were no 
significant differences in systolic (p = 0.86), diastolic (p = 0.89), or mean arterial blood pres-
sures (p = 0.85) between groups (Table 1). When accounting for bodyweight (BW), renal 
injury whether by PR-AKI (p = 0.03) or I.S. (100 mg/kg I.S. p = 0.009; 200 mg/kg I.S. p = 
0.0004) administration resulted in a decrease in BW compared to NP rats. As swollen or 
atrophied kidneys can occur with renal injury, we determined the kidney/BW ratio among 
groups. PR-AKI rats had a significantly increased kidney/BW ratio relative to NP (p < 
0.0001), 100 mg/kg I.S. (p = 0.003), and 200 mg/kg I.S. (p = 0.03) animals. These findings 
indicate that I.S. administration during pregnancy does not affect blood pressure but does 
negatively affect maternal BW. 

  

Figure 1. Urinary indoxyl sulfate (I.S.) and kidney assessment in late pregnancy: (A) Urinary I.S. was
increased in PR-AKI and NP + 200 I.S. rats compared to NP rats, and PR-AKI was increased vs. NP +
100 I.S.; (B) urine excretion collected by metabolic cages was significantly decreased in PR-AKI and
I.S. rats vs. NP rats; (C) serum creatinine was increased in PR-AKI rats vs. all other groups. (D) total
urinary protein was increased in NP + 200 I.S. rats compared to NP and PR-AKI rats. Individual data
points are represented as follows: NP (circles), PR-AKI (squares), NP + 100 I.S. (upward triangle),
and NP + 200 I.S. (downward triangle). * p < 0.05, ** p < 0.005.

2.2. Indoxyl Sulfate Administration Decreases Body Weight but Not Kidney Weight during
Pregnancy

The effects of I.S. administration during pregnancy on blood pressure and body and
organ weight was investigated. Blood pressure was assessed at GD19, and there were
no significant differences in systolic (p = 0.86), diastolic (p = 0.89), or mean arterial blood
pressures (p = 0.85) between groups (Table 1). When accounting for bodyweight (BW),
renal injury whether by PR-AKI (p = 0.03) or I.S. (100 mg/kg I.S. p = 0.009; 200 mg/kg I.S.
p = 0.0004) administration resulted in a decrease in BW compared to NP rats. As swollen
or atrophied kidneys can occur with renal injury, we determined the kidney/BW ratio
among groups. PR-AKI rats had a significantly increased kidney/BW ratio relative to
NP (p < 0.0001), 100 mg/kg I.S. (p = 0.003), and 200 mg/kg I.S. (p = 0.03) animals. These
findings indicate that I.S. administration during pregnancy does not affect blood pressure
but does negatively affect maternal BW.
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Table 1. Physiological outcomes measured at GD19 of pregnancy.

NP PR-AKI NP + 100 I.S. NP + 200 I.S. p Value

Systolic Pressure (mmHg) 126.2 ± 12.52 124.3 ± 3.37 129.9 ± 7.02 124.7 ± 4.68 0.86

Diastolic Pressure (mmHg) 91.3 ± 3.04 89.5 ± 2.63 94.0 ± 5.78 90.7 ± 4.1 0.89

Mean Arterial Pressure (mmHg) 102.7 ± 3.29 100.6 ± 2.82 105.9 ± 6.14 101.5 ± 4.23 0.85

Body Weight (g) 338.4 ± 8.3 308.1 ± 10.68 * 305.8 ± 7.29 ** 288.3 ± 9.08 *** 0.002

Kidney/Body Weight (g/g) 2.8 ± 0.12 +++ 3.6 ± 0.12 3.0 ± 0.14 ++ 3.1 ± 0.11 + <0.0001

Pup Weight (g) 2.1 ± 0.15 1.7 ± 0.15 2.1 ± 0.14 2.5 ± 0.14 ++ 0.007

* Denotes p < 0.05, ** p < 0.005 compared to NP, *** p < 0.0001 compared to NP; + denotes p < 0.05, ++ p < 0.005,
+++ p < 0.0001 compared to NP + AKI.

2.3. Indoxyl Sulfate Administration Increases Pup Resorption but Not Placental Efficiency

As the effects of I.S. administration during pregnancy are unknown, we also assessed
the litters between groups to see if there were any differences in birth outcomes. Renal
injury did not significantly reduce pup weight relative to NP rats; however, pups born to
AKI dams were significantly smaller than those born to dams administered 200 mg/kg
I.S. (p = 0.003) as shown in Table 1. It should be noted that litter size, the number of
pup:placenta pairs extracted from the uterus per dam, was decreased between groups
(from 13.4 live pups in NP rats to 10.2 live pups in NP + 200 I.S. rats), and there was a
significant increase in pup resorptions (p = 0.01; Figure 2) with dams administered I.S.
averaging 2.5% resorptions relative to NP at 0.8% and PR-AKI at 0.5%.
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Figure 2. Number of live and resorption pups. The number of live pups decreased significantly in NP
+ 200 I.S. compared to NP and PR-AKI animals. Pup resorption was significantly increased in NP +
200 I.S. compared to NP and PR-AKI animals. Individual data points are represented as followed: NP
(circles), PR-AKI (squares), NP + 100 I.S. (upward triangle), and NP + 200 I.S. (downward triangle).

To further explore the effect of PR-AKI and I.S. administration on pup in utero develop-
ment, we examined placental efficiency (pup weight (g)/placenta weight(g)). Even though
the decreased pup weight in PR-AKI rats did not meet statistical significance, there was
a significant decrease in the placental efficiency of PR-AKI rats (3.31 ± 0.24 g) compared
to the 100 mg/kg I.S. (4.19 ± 0.26 g, p = 0.02) and 200 mg/kg I.S. (4.24 ± 0.26 g, p = 0.02)
groups.

2.4. Administration of 200 mg/kg Indoxyl Sulfate during Pregnancy Leads to an Increase in
BBB Permeability

BBB permeability was assessed via infusion of Evan’s Blue, which was measured
in four regions of the brain: frontal cortex, posterior cortex, brainstem, and cerebellum.
PR-AKI did not significantly increase BBB permeability in the frontal cortex region of the
brain (Figure 3A). Rats administered 100 mg/kg I.S. had increased permeability relative
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to both NP (p = 0.0002) and PR-AKI (p = 0.0003) rats in the brainstem; however, there was
no change in permeability in the posterior cortex or cerebellum. BBB permeability was
significantly increased in rats administered 200 mg/kg I.S. compared to NP and PR-AKI
rats in the posterior cortex (p < 0.0001, p < 0.0001), brainstem (p = 0.002, p = 0.002), and
cerebellum (p = 0.01, p = 0.02; Figure 3B–D), respectively. This was also true in the posterior
cortex relative to rats administered 100 mg/kg I.S. (p < 0.0001).
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ence in Evan’s Blue concentration between groups. (B) In the posterior cortex, NP + 200 I.S. had
significantly more Evan’s Blue concentration than NP, PR-AKI, and NP + 100 I.S. groups. (C) In the
brain stem, both NP + 100 I.S. and NP + 200 I.S. had significantly more Evan’s Blue concentration
than NP and PR-AKI groups. (D) In the cerebellum, NP + 200 I.S. had significantly more Evan’s
Blue concentration compared to NP and PR-AKI groups. Individual data points are represented
as followed: NP (circles), PR-AKI (squares), NP + 100 I.S. (upward triangle), and NP + 200 I.S.
(downward triangle). * p < 0.05, ** p < 0.005, *** p < 0.0005.

3. Discussion

PR-AKI has been reported to be associated with an increased risk of cardiovascular
events, mortality, and adverse renal outcomes; however, there is much to understand about
PR-AKI’s short- and long-term effects on the central nervous system and the brain [3,15].
Clinical and rodent studies have indicated that AKI in a non-pregnant state is associated
with increased risk of CKD, and the progression of AKI to CKD is associated with increased
circulating I.S. [16,17]. Similar to CKD, AKI has been reported to serve as a risk factor
for neuroinflammation and dementia. Clinically, AKI and CKD have been found to be
associated with cognitive decline [18,19]. In male mice, a study showed severe AKI (bilateral
nephrectomy or ischemic reperfusion for 60 min) led to increased BBB permeability [6].
In CKD, studies have supported an association with BBB dysfunction, which has also
been associated with increased concentrations of I.S. [13]. The incidence of PR-AKI is
continuing to increase worldwide and up to 14.7% of women affected by this progresses
to CKD, prompting the need for studies, such as the current one [4,20]. The results of the
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current study demonstrate that 24 h of PR-AKI does increase I.S. but does not increase
BBB permeability, whereas direct I.S. administration during pregnancy led to increases in
BBB permeability. These results suggest that longer periods of PR-AKI, and the continued
dysregulation of I.S., might lead to changes in BBB permeability.

BBB permeability was not increased in PR-AKI animals when assessed 24 h follow-
ing injury. Similar findings have been reported in a non-pregnant animal model of is-
chemia/reperfusion, as tight junction proteins claudin-5 and occludin were found to be
unchanged in the brain capillaries of mice subjected to kidney ischemia/reperfusion [21].
When a different non-pregnant animal model of renal injury (both the renal artery and
veins were occluded for 1 h as opposed to just the renal artery) was evaluated, there were
changes in hippocampal BBB function along with cognitive impairment [22]. Rats admin-
istered 200 mg/kg I.S. had significant increases in BBB permeability relative to both NP
and PR-AKI rats. Previous in vitro studies have reported that I.S. increases the expression
of drug transporters at both the gene and protein level at the BBB, indicating another
mechanism by which I.S. may mediate neurological damage [21]. As it is known that I.S.
also disrupts the BBB via activation of the aryl hydrocarbon receptor (AhR), future studies
will examine BBB permeability in post-partum rats with a history of PR-AKI and examine
AhR expression. Given that only rats administered high doses of I.S. had increased BBB
permeability, as we believe that I.S. mediates BBB damage, it stands to reason that rats with
less exposure to I.S. would not have an increase in BBB permeability. Future studies will
help determine the role of I.S. in increasing BBB permeability.

Despite studies suggesting that PR-AKI and I.S. contribute to cardiovascular dys-
function and hypertension, there were no significant differences in blood pressure in the
current study. We have previously published that experimental PR-AKI does not increase
blood pressure when measured 24 h after injury, which is again confirmed with the current
study [23]. Urine output was decreased in response to both PR-AKI and I.S. administration.
This decrease in urine output combined with the increase in serum creatinine seen in
PR-AKI rats is indicative of renal injury. Rats administered I.S. did not have any significant
changes in creatinine but did have significantly increased proteinuria, which indicates
renal damage. Studies have shown that chronic administration (4 weeks) of I.S. decreases
glomerular function which would negatively impact creatinine levels [24]. Unpublished
data from our lab indicates that rats administered I.S. have no changes in glomerular
function, which supports the lack of change in creatinine levels when compared to NP rats.
Urinary excretion of I.S. was increased in PR-AKI and 200 mg/kg I.S. rats relative to NP rats.
I.S. excretion is mediated via renal organic anion transporter 1 (OAT1), which gradually
loses gene expression as kidney injury progresses [25]. However, during acute cases of
renal injury several animal models have reported an increase in OAT1 expression [26–28].
If indeed renal OAT1 expression is increased in these models similar to those previously
reported, it would explain the increases in excretion of I.S. Given the high affinity of cir-
culating I.S. to albumin, several investigators utilize mass spectrometry to measure I.S.
Indeed, we are currently working on completing this assay now so that in the future we
will be able to ascertain circulating levels of I.S.

Circulating levels of I.S. are inversely related to kidney function in individuals with
CKD [29,30]. Due to the tight binding of I.S. to albumin in the circulation, it is hard to
remove from the circulation via dialysis techniques, which ultimately contributes to the
high levels that remain in the body. Following this accumulation, I.S. works directly (on
vascular smooth muscle cells and endothelial cells) and indirectly (via increased expression
of tissue inhibitors and growth factors) to damage organs and physiological systems [31].
Individuals with CKD are at an increased risk for cognitive impairment; a risk that has
been found to be associated with increased I.S. [32]. One way that I.S. mediates its effects is
through binding the AhR, which is widely expressed throughout the body, including the
central nervous system. I.S. activation of AhR leads to disruption of the BBB in an animal
model of renal injury [13]. Most recently patients with Alzheimer’s disease have been
reported to have increased circulating levels of I.S. and disruption of AhR signaling [33],
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giving further evidence for the role of I.S. in contributing to cognitive dysfunction. Inter-
estingly, the active charcoal adsorbent AST-120 adsorbs I.S., thereby reducing circulating
levels of I.S. and decreasing the decline in renal function [34,35]. In addition to preventing
the progression of CKD, AST-120 in an animal model of CKD also recovered cognitive
function [12,36].

The current study is one of the first to evaluate the impact of I.S. administration during
pregnancy. I.S. is a naturally occurring uremic toxin that occurs as a byproduct of normal
digestive metabolism and has low circulating levels among healthy individuals. An ex
vivo study evaluating the transfer characteristics of I.S. across the human placenta reported
that there was a low maternal-to-fetal transfer of I.S. in healthy placenta cotyledons when
tissues was exposed to I.S. for a short period of time (180 min) [37], further suggesting
that physiologic levels of I.S. may not impair the healthy placenta. Rats administered I.S.
had an increase in pup resorptions that contributed to a decrease in litter size. While pup
weight was not significantly decreased, this is thought to be due in part to the reduction
in litter size. No further evaluation was performed on the fetuses to see if there were
any changes in development. A study by Furukawa et al. reported that fetuses from
mice exposed to indole-3-acetic-acid, another tryptophan derived uremic toxin, have
microencephaly and decreased neuronal formation, indicating that increased uremic toxins
during pregnancy could potentially have negative effects on offspring [38]. Another study
reported that offspring born to dams with experimental CKD prior to pregnancy developed
hypertension [39]. As this was to our knowledge the first study to administer I.S. during
pregnancy, we used doses of I.S. that have previously been reported [40]. Given the
increasing rates of AKI and CKD during pregnancy and the buildup of uremic toxins that
occur as a result of renal injury, we felt it was important to assess the impact of I.S. on pup
outcomes at birth.

The results of the current study, taken together with those from other studies, indicate
the need for further investigations into the long-term effects of PR-AKI and the role of I.S.
in mediating BBB function.

4. Materials and Methods
4.1. Animal Group, Surgery, and Maintenance

Timed-pregnant Sprague Dawley rats arrived from Charles River (Boston, MA, USA)
on GD10. Animals were housed in a temperature-controlled room with a 12:12 reverse light:
dark cycle. All experiments were conducted in accordance with the National Institutes of
Health guidelines and were approved by the Institutional Animal Care and Use Committee
under protocol number 2022-1198 at the University of Mississippi Medical Center.

On GD11, animals were randomly divided into 4 experimental groups (normal preg-
nant (NP, n = 18), PR-AKI (n = 14), NP + 100 I.S. (n = 13), and NP + 200 I.S. (n = 12)). Rats
assigned to the I.S. treatment groups began I.S. treatment (Sigma Aldrich, St Louis, MO,
USA) at either 100 mg/kg BW or 200 mg/kg BW via drinking water from GD11 to 19. To our
knowledge, I.S. has not previously been administered to pregnant rats before, and only one
published study used females; however, most studies use either 100 or 200 mg/kg doses.
For that reason, we elected to use both the 100 and 200 mg/kg dose in our study [36,40,41].

On GD18, animals underwent a 45-min bilateral renal ischemia reperfusion surgery to
induce AKI as described previously [23]. Following the induction of AKI, all rats, regardless
of their grouping, were placed in metabolic cages overnight with water and standard rodent
chow (0.4% sodium) to allow continuous urine collection. On GD19, animals were placed
in restrainers for at least 15 min on a tail warmer plate and allowed to acclimate to their
environment. After acclimation, blood pressure was measured via tail cuff using the CODA
noninvasive blood pressure system (Kent Scientific, Torrington, CT, USA). Following blood
pressure collection, animals were either subjected to Evan’s Blue or euthanized and kidney
weights, serum, and pup weights were collected. All serum and metabolic cage urine were
stored at −20 ◦C until further analysis.
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4.2. Assessment of BBB Permeability

A total of 4% Evan’s Blue (Sigma Aldrich, St. Louis, MO, USA) solution made in 0.9%
NaCl (saline; Baxter, Deerfield, IL, USA) was infused into the jugular vein of an anesthetized
rat and circulated for 30 min followed by a saline flush. The brain was dissected into the
following four regions: frontal cortex (region above the anterior of the circle of Willis),
posterior cortex, brainstem, and cerebellum. These four regions were selected as patients
with CKD had evidence of impairment in these regions [42–44]. The brain regions were
weighed and homogenized in trichloroacetic acid (TCA; Fisher Scientific, Fair Jawn, NJ,
USA) buffer solution (1:1 20% w/v TCA and 0.9% saline) at a 1:3 dilution (w/v) as previously
described [45]. The homogenized samples were centrifuged for 20 min at 10,000× g. The
supernatant was assayed in triplicates, and samples and standards received 95% ethanol.
The Evan’s Blue concentration was measured immediately at an excitation of 620 nm and
an emission of 720 nm using Synergy LX (BioTek, Santa Clara, CA, USA) and Gen5 3.05
software (Biotek, Santa Clara, CA, USA). Data are presented as concentration of Evan’s
Blue (pg)/weight of tissue (g).

4.3. Assessment of Renal Function

Using metabolic cage collections (urine, time in/out, volume of urine), urine output
and urinary I.S. were measured. Urine output was calculated as total urine collected
divided by time (normalized to day) spent in metabolic cage to determine oliguria. Uri-
nary I.S concentrations (ng/mL) were measured via enzyme-linked immunosorbent assay
(ELISA) (My BioSource, San Diego, CA, USA). Serum creatinine concentration (mg/dL)
was determined via an assay (BioAssay Systems, Hayward, CA, USA). All samples for
assays and ELISAs were ran in duplicates and per manufacturer’s instruction.

4.4. Statistical Analysis and Sample Size Determination

Using GraphPad Prism 9, physiological outcomes and Evan’s Blue concentrations
were analyzed using a one-way ANOVA followed by Tukey’s post hoc analysis. Live
and resorption pup data was analyzed by two-way ANOVA followed by Tukey’s post
hoc analysis. Student t-tests were used to analyze urine output, urinary I.S, and serum
creatinine. As some sample sizes were small, we assessed for normal distribution using
the Shapiro–Wilk and Kolmogorov–Smimov test to ensure parametric analyses could be
used. All results passed both tests of normality. Statistical significance was determined as
p < 0.05, and data were represented as mean ± standard error mean.

Using a family-wise alpha level of 0.05, and assuming an effect size of Cohen’s d = 2.44
(based on data from our original PR-AKI study [23]), our sample size provides over 85%
power to compare each of the experimental groups with the NP control groups.
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