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Abstract: In this study, we introduce semi-supervised machine learning models designed to predict
molecular properties. Our model employs a two-stage approach, involving pre-training and fine-
tuning. Particularly, our model leverages a substantial amount of labeled and unlabeled data
consisting of SMILES strings, a text representation system for molecules. During the pre-training stage,
our model capitalizes on the Masked Language Model, which is widely used in natural language
processing, for learning molecular chemical space representations. During the fine-tuning stage, our
model is trained on a smaller labeled dataset to tackle specific downstream tasks, such as classification
or regression. Preliminary results indicate that our model demonstrates comparable performance
to state-of-the-art models on the chosen downstream tasks from MoleculeNet. Additionally, to
reduce the computational overhead, we propose a new approach taking advantage of 3D compound
structures for calculating the attention score used in the end-to-end transformer model to predict anti-
malaria drug candidates. The results show that using the proposed attention score, our end-to-end
model is able to have comparable performance with pre-trained models.

Keywords: machine learning; Plasmodium falciparum; molecular property; transformers; large-scale
training

1. Introduction

Accurate prediction of molecular properties plays a crucial role in the chemical and
pharmaceutical industries, enabling effective drug discovery and development. In the
United States, an estimated 85% of drug candidates fail during clinical trials despite
the extensive and expensive development process [1]. Many of these failures could be
prevented by accurately predicting key properties of molecules, such as toxicity or bio-
activity, whereas there have been various approaches like quantitative structure–activity
relationship and high-throughput screening for drug discovery, these methods are both
computationally intensive and time-consuming [2]. Consequently, there is a pressing need
for prediction approaches that can swiftly and accurately evaluate molecular properties.

Machine learning models have emerged as a highly promising and potentially ground-
breaking approach in pharmaceutical scientific research, providing data-driven predictions [3–7].
In recent research utilizing large language models, the canonical SMILES notation [8] has
become the preferred format for representing molecules, as it provides a unique string
representation for each molecule. Machine learning models achieve a better understanding
of specific molecular properties as they are exposed to a larger number of data during
training.

Hence, the success of these machine learning methods is heavily dependent on the
availability of extensive labeled training data. However, acquiring such a vast amount of
molecular properties through screening experiments is prohibitively expensive [9].

In this study, we present a novel variant of the language model that utilizes SMILES
strings as input. Our primary focus is on developing machine learning models for predict-
ing molecular properties. To achieve this, we propose a two-stage approach consisting of
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pre-training and fine-tuning, which effectively leverages a large amount of labeled and
unlabeled data. During the pre-training phase, our model utilizes the Masked Language
Model, a well-established unsupervised learning mechanism, on a large-scale unlabeled
dataset. Subsequently, the model undergoes fine-tuning using a labeled dataset to en-
hance prediction performance. Through the evaluation of common downstream tasks from
MoleculeNet, we demonstrate that our model exhibits comparable performance to other
state-of-the-art prediction models. The overview of our model is shown in Figure 1.

Figure 1. Overview of our model with two stages: pre-training on large-scale unlabeled datasets and
fine-tuning on smaller labeled datasets for downstream tasks.

Additionally, we also present the end-to-end model to predict a label (active, i.e., success-
fully reacts against Plasmodium falciparum parasite species, or inactive, i.e., no reaction
against Plasmodium falciparum parasite species) for a given experimentally verified anti-
malaria drug candidate. Malaria is a disease caused by a single-celled blood pathogen of
the genus Plasmodium. Among the five known parasite species that can cause malaria in
humans, Plasmodium falciparum (PF) poses the greatest threat and is responsible for the
majority of malaria-related deaths [10]. The Plasmodium parasite exhibits a high muta-
tional capacity and undergoes metabolic changes, making the development of effective
drug treatments an ongoing and unresolved challenge. Furthermore, PF has the ability
to evolve and develop resistance to identified drug compounds. The Centers for Disease
Control and Prevention (CDC) has warned that all classes of antimalarial drugs could lose
their clinical effectiveness, posing a significant risk to malaria eradication efforts [11]. In
addition, Plasmodium falciparum is characterized by an abundance of proteins containing
long glutamine or asparagine repeats. These regions, known as low complexity regions,
have a tendency to form insoluble intracellular aggregates [12,13]. The presence of these
protein deposits within cells is generally associated with cellular stress and toxicity [14].
This unique phenotype of malaria parasites holds potential for the discovery of new ther-
apeutic strategies by exploring the properties associated with these protein aggregates.
Therefore, instead of relying on only sequences representing compounds used in language
models, we include the 3D structures information via contact map to introduce the global
context for those compounds during the training. Overall, the contribution of our work is
the following:

• We introduce a two-stage (pre-training and fine-tuning) model to utilize a large amount
of both labeled and unlabeled data for molecular properties prediction.

• We propose a new approach to calculate the attention score for the transformer layer
taking advantage of 3D structure information of the compounds.

• We show that without relying on the computational expense of a pre-trained and
fine-tuned model using the proposed attention score, our model is able to achieve
comparable performance in predicting anti-malaria drug candidates.

Related Work

Methods for predicting molecular properties can be classified into multiple groups,
with two prominent categories based on the type of molecular input: molecular graph
and molecular string representations. In a molecular graph, each molecule is depicted as
a graph comprising atom nodes interconnected by bond edges. Numerous studies have
employed graph neural networks (GNNs) to acquire molecular representations [15,16].
Recent advancements in this field have introduced more sophisticated techniques for gath-
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ering neighbor data [17]. Furthermore, the integration of attention mechanisms has been
proposed to enhance graph neural networks in [18]. In the study conducted by [19], several
novel pre-training strategies were introduced to train GNNs at both the node and graph
levels, enabling the simultaneous learning of local and global molecular representations.

There are multiple approaches for molecular string representation such as InChI [20],
SELFIES [21], and SMILES [8]. InChI is a textual representation of the chemical structure
of a molecule, designed to be unique and standardized across different databases and
systems, and represents the connectivity of atoms in the molecule, including information
about bond types and stereochemistry. SELFIES (SELF-referencing Embedded Strings) is a
molecular notation system that represents organic molecules using a simplified and human-
readable string format by using a recursive syntax that allows the representation to refer
to itself. SMILES utilizes a sequence of characters to represent molecules in a simple way.
This sequence encompasses atom symbols and bond symbols with a limited set of gram-
mar rules. For example, melatonin, with structure C13H16N2O2, will be represented as
CC(=O)NCCC1=CNC2=C1C=C(C=C2)OC in SMILES representation. The use of SMILES,
which comprises a series of characters, allows for the application of state-of-the-art models
in natural language modeling to extract high-quality features and enable accurate predic-
tions for task-specific purposes. Therefore, researchers have adopted language models to
learn their representations and properties [5,6]. Numerous works have been explored to
encourage learning of high-quality representations with language models including input
reconstruction [22], whereby a model learns to predict masked tokens; input translation [23],
where the goal is to translate the input to another modality or representation; and molecules
generation [24], where the model generates drug-like molecules. Nevertheless, the SMILES
system has its limitations such that the vanilla SMILES system does not provide a bijective
mapping between a SMILES sequence and a molecule, as different valid sequences may
represent the same molecule based on the traversal path of the molecular graph. In order
to overcome this challenge, several canonicalization algorithms have been developed to
ensure the uniqueness of each molecular structure representation [25,26]. In this work, we
focus on SMILES because most of our datasets are taken from MoleculeNet, which is a
benchmark specially designed for testing machine learning methods of molecular proper-
ties, and all SMILES representations are canonical to addressing the issue of representation
ambiguity.

Recently, transformer models [27,28] have gained significant popularity as archi-
tectures for acquiring self-supervised representations of molecules from text-based rep-
resentations. For instance, MolBERT [29] explores various pre-training objectives on a
dataset comprising 1.6 million compounds, achieving state-of-the-art performance on
well-established benchmarks for virtual screening and quantitative structure–activity
relationships. SMILES-BERT [9] leverages unsupervised pre-training on a dataset of
18.7 million compounds from Zinc, demonstrating the effectiveness of this approach and
the excellent generalization capabilities of the pre-trained model. Another example is
ChemBERTa-2 [30], which introduces a BERT-like transformer model that learns molecu-
lar fingerprints through semi-supervised pre-training, utilizing a dataset encompassing
77 million compounds.

Traditionally, computational approaches were used for drug discovery for malaria,
such as quantitative structure–activity relationship (QSAR) modeling. Early statistical
approaches used in QSAR modeling were linear regression models [31], Bayesian neural
networks [32], and random forests [33]. However, with the availability of large chemical
compound datasets, those statistical methods become more computationally expensive and
not as effective [34]. To address those challenges, deep learning methods, especially neural
networks, have been proposed as a practical solution. Deep learning is particularly well-
suited for QSAR modeling because it is able to compute adaptive non-linear features that
capture complex data patterns in complex chemical data [35]. In [36], they developed a deep
learning protocol to build binary and continuous QSAR models based on large datasets
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and applied them to predict the anti-plasmodial activity and cytotoxicity of untested
compounds for malaria drug candidates.

Machine Learning in Malaria Drug Discovery

The work in [37] developed a machine learning approach to predict novel synergistic
drug interactions using only prior experimental combination screening data and knowledge
of compound molecular structures. Particularly, using each compound’s SMILES represen-
tation, the array of features is generated based on a structural fingerprint descriptor which
is calculated using 2048-bit Morgan fingerprints, a Target Fingerprint descriptor which
is the probability of binding below the training cut-off for each compound vs. 1080 hu-
man protein targets, and the combination of both types of descriptor. Finally, machine
learning models, such as support vector machine classifiers, use these fingerprints to make
inferences between a particular representation and the experimentally observed synergy.
In [38], it is shown that recurrent neural networks can generate molecule structures for
virtual screening campaigns, and with fine-tuning the model can directly produce novel
molecules that are active toward a given biological target. The model uses long short-term
memory trained a large dataset containing SMILES to generate reasonable molecules, then
fine-tuned a smaller dataset to generate biologically active molecules which can be poten-
tial drug targets for anti-malaria. Arshadi et al. [39] introduced DeepMalaria to predict
the anti-Plasmodium falciparum inhibitory properties of compounds using their SMILES.
Particularly, they present the application of graph convolutional neural networks for non-
targeted ligand-based virtual screening for antimalarial drug discovery. In order to convert
molecules to graphs, they use different features to describe each atom, such as the type of
atom, atom degree, implicit valence, and chirality, used to prevent special information loss.
The graph-based model is trained on publicly available antiplasmodial hit compounds
and transfer learning from a large dataset was leveraged to improve the performance of
the model. Moreover, the work in [40] developed five machine learning models to predict
antimalarial bioactivities of a drug against Plasmodium falciparum from the values of the
molecular descriptors obtained from SMILES of compounds. They implemented artificial
neural networks, support vector machine, random forest, extreme gradient boost, and
logistic regression and tested those models on a verified experimental anti-malaria drug
compounds dataset. Lima et al. [41] used shape-based and machine learning methods
for modeling antimalarial compounds to virtually screen a large database of drug-like
molecules to identify promising hits for falciparum strains.

2. Results and Discussion

In order to evaluate our performance, we compare our method with Message Passing
Neural Network (D-MPNN) [42], random forest (RF) [43], Graph Convolutional Networks
(GCN) [44], and Chemberta-2 [30]. For Chemberta-2, we compared six of their proposed
pre-trained models for two different tasks: Masked Language Modeling (MLM) and Multi-
task Regression (MTR) with three different datasets: 5M, 10M, and 77M. All the results for
reference methods are taken from [30].

For the AM dataset, we compare our method with the best model Extreme Gradient
Boosting (XGB) and Artificial Neural Network (ANN) in [40], and their results are taken
directly from this work [40].

2.1. Classification Problem

The classification performance of our model, as compared to existing methods, is
presented in Table 1. We observe that our method outperforms the majority of comparable
approaches on three out of four datasets. Notably, our model demonstrates exceptional
performance on the ClinTox dataset, achieving the best results. Additionally, in comparison
to Chemberta-2, despite being pre-trained on a smaller dataset of only 5 million, our model
surpasses it on the Bace dataset and exhibits comparable performance on the other two
datasets, which were pre-trained with larger datasets of 10 million and 77 million.
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Table 1. Comparison of our pre-trained model on different dataset vs. existing architectures on
selected MoleculeNet classification tasks. The best results are indicated by the bold numbers.

BACE BBBP ClinTox Tox21

D-MPNN 0.812 0.697 0.906 0.719

RF 0.851 0.719 0.783 0.724

GCN 0.818 0.676 0.907 0.688

MLM-5M 0.793 0.701 0.341 0.762

MLM-10M 0.729 0.696 0.349 0.748

MLM-77M 0.735 0.698 0.239 0.749

MTR-5M 0.734 0.742 0.552 0.834

MTR-10M 0.783 0.733 0.601 0.827

MTR-77M 0.799 0.728 0.563 0.817

Our model 0.808 0.683 0.914 0.781

2.2. Regression Problem

The regression performance of our model, in comparison to existing methods, is
depicted in Table 2. Across the board, our model consistently demonstrates excellent results
on the majority of datasets. However, it is worth noting that the Clearance dataset, which
consists of a smaller sample size of approximately 800 compounds, exhibits slightly less
favorable performance compared to the other datasets. Nonetheless, our model archives a
good performance across the majority of the regression tasks.

Table 3 presents the standard deviation values for classification and regression tasks
on various datasets. We observe that the standard deviations for both classification and
regression tasks are relatively small. This indicates that our model exhibits consistency and
stability in its performance across multiple trials on different datasets. Additionally, the
small standard deviation values suggest that the model’s predictions are robust and reliable.

Table 2. Comparison of our pre-trained model on different dataset vs. existing architectures on
selected MoleculeNet regression tasks. The best results are indicated by the bold numbers.

BACE Clearance Delaney Lipophilicity

D-MPNN 2.253 49.754 1.105 1.212

RF 1.318 52.077 1.741 0.962

GCN 1.645 51.227 0.885 0.781

MLM-5M 1.451 54.601 0.946 0.986

MLM-10M 1.611 53.859 0.961 1.009

MLM-77M 1.509 52.754 1.025 0.987

MTR-5M 1.477 50.154 0.874 0.758

MTR-10M 1.417 48.934 0.858 0.744

MTR-77M 1.363 48.515 0.889 0.798

Our model 1.481 56.063 1.066 0.908
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Table 3. The standard deviation of our model on selected classification and regression tasks.

BACE BBBP ClinTox Tox21 Clearance Delaney Lipophilicity

Classification 0.033 0.025 0.013 0.026 N/A N/A N/A

Regression 0.173 N/A N/A N/A 1.341 0.125 0.037

We find that the degree to which improving performance on the pre-training tasks
transfers to downstream tasks varies by dataset. Considering that we only pre-train the
model for a limited number of epochs (specifically, 10), we have a maximum of 10 data
points available. However, it is important to note that at the initial stages of training,
the model may not have gained sufficient knowledge about the dataset. As a result, it is
preferable to take into account the latter part of the training process, specifically the last
4 epochs, in order to effectively evaluate the impact of transfer learning. In Figures 2 and 3,
we show two examples of transfer learning from the pre-training stage to the fine-tuning
stage with varying degrees of success. Although the improvements in pre-training loss
may not result in perfectly linear enhancements in Clintox classification performance, the
relationship between the two exhibits a close resemblance to a linear trend, which is highly
promising for our purposes. However, for Bace regression, this trend does not hold. These
findings indicate that the performance of the model is influenced by the characteristics of
the datasets used.

Figure 2. Transfer learning for fine-tuning performance versus pre-training loss from MLM to ClinTox
classification. The dotted lines represent linear models fit to the data points.

In summary, our model demonstrates excellent performance across all fine-tuned
datasets. This highlights the capability of our model to leverage the unsupervised informa-
tion acquired during the pre-training step with MLM, resulting in a good performer for a
wide range of tasks. The integration of large-scale unsupervised pre-training, coupled with
the MLM approach, enables efficient fine-tuning of our model on labeled datasets.
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Figure 3. Transfer learning for fine-tuning performance versus pre-training loss from MLM to Bace
regression. The dotted lines represent linear models fit to the data points.

Case Study: Anti-Malaria Drug Target Classification

Table 4 presents a comparison of our model with and without pre-training, as well
as existing architectures, on the anti-malaria dataset. Our proposed models demonstrated
superior performance in terms of both accuracy and F1 score when compared to XGB
and ANN methods. These results are consistent with expectations, as the application of
transformer-based models has been demonstrated in effectively detecting underlying pat-
terns and substantially enhancing classification performance. The attention mechanism of
the transformer-based architecture allows for the capture and utilization of intricate patterns
and dependencies within the data, leading to improved performance in classification tasks.

Moreover, even without leveraging pre-training and with limited computational
resources, our end-to-end model exhibited comparable performance to pre-trained models.
The incorporation of 3D inter-atomic contact information enhances the model’s capability
to dynamically allocate its attention to the relevant of the input data, thus reducing the
reliance on prior knowledge acquired through pre-training. These findings underscore the
potential of our approach to deliver robust outcomes while mitigating the computational
overhead typically associated with pre-training. By streamlining the training process, our
approach is able to achieve comparable performance in a more computationally efficient
manner, making it a viable option for various practical applications.

Table 4. Comparison of our model with and without pre-training vs. existing architectures on
anti-malaria dataset.

Acc F1 AUC

XGB 0.8318 0.8412 N/A

ANN 0.8223 0.8445 N/A

With_pre-training 0.8601 0.8721 0.9012

Without_pre-training 0.8553 0.8471 0.8937
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3. Methods and Materials
3.1. Methodology

In this section, we will examine our proposed model. We begin by outlining the details
of the building block of our model, the Transformer Encoder. Subsequently, we present
the approach employed for pre-training our model using a vast amount of unlabeled
data. Furthermore, we detail the fine-tuning process on a smaller dataset for classification
and regression tasks related to molecular properties. As our model treats molecules as
sequences, the input consists of tokenized SMILES representations of the molecules.

3.1.1. Transformer Layers

Traditional transformer follows the encoder–decoder structure [45]. The encoder maps
the input sequence x = (x1, . . . , xn) to a latent sequence of continuous representations
z = (z1, . . . , zn). Then, using the z, the decoder generates output sequence y = (y1, . . . , yn)
as similar to x as possible. At each step, the model is auto-regressively consuming the
previously generated symbols as additional input when generating the next [46]. Our
model is based on the RoBERTa [47] transformer implementation. In contrast to the
original transformer architecture, which incorporates both an encoder and decoder [27],
our model only consists of a transformer layer. This layer comprises three key components:
a pre-attention feed-forward neural network, a self-attention layer, and a post-attention
feed-forward neural network. The pre-attention and post-attention feed-forward layers
are fully connected and shared across all input and output tokens. They map the input
features or the embedded features to the output in another nonlinear space and vice versa.

Since the Transformer Encoder only uses a feed-forward network, it does not inher-
ently capture the temporal information within a sequence. To address this limitation, the
self-attention layer is essential to introduce the temporal relation into consideration for
feature learning. The self-attention mechanism plays an important role in capturing the
relationships among the various elements within the input, whether they are words in
a sentence or characters in a string. By including the self-attention layer, the model be-
comes capable of capturing the contextual dependencies and understanding the sequential
structure of the input data. The self-attention mechanism partitions the input data into
three matrices: the query matrix Q, the key matrix K, and the value matrix V. The query
matrix and the key matrix combine together to form the input for the Softmax function. By
applying the Softmax function, attention weights are generated. These attention weights
are then applied to the value matrix, resulting in the generation of output features that are
attentive to the entire input sequence. Thus, the attention is calculated as the following:

Attention(K, Q, V) = so f tmax(
QKT
√

dk
)V (1)

where dk is the dimension of the query and key matrix.
In our model, we incorporate multi-head attention instead of using a single self-

attention layer. This multi-head attention mechanism enables the model to extract informa-
tion from different representation subspaces, which would not be possible with a single
attention head.

3.1.2. Pre-Training Setup

We adopt the Masked Language Model (MLM) pre-training procedure from RoBERTa.
In MLM, given a partial sentence with masked tokens, using other visible tokens, the model
predicts those masked ones. RoBERTa, being an unsupervised learning model, is capable
of utilizing vast amounts of unlabeled sentences from natural languages for training. In
our approach, we follow a specific method for masking SMILES inputs. We randomly
select 15% of the tokens in SMILES for masking, ensuring that each SMILES has at least
one token masked. For each selected token, there is an 80% chance it will be changed to
a masked token, a 10% chance it will be randomly replaced with another token from the
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dictionary, and a corresponding 10% chance it will be kept unchanged. During the training
of our model, the original SMILES sequences are used as the ground truth. However,
the loss function is computed based solely on the output of the masked tokens within
the sequences. This approach allows the model to focus on learning the representations
and relationships specifically related to the masked tokens, without being influenced by
the remaining tokens in the sequence. The randomness in the masking procedure could
increase the generalization ability of the model and keep it from over-fitting [9].

Furthermore, through the process of learning to retrieve masked tokens, the model
develops a representational topology of the chemical space that exhibits generalizability
in property prediction tasks [48]. The tokens are initially embedded into the feature space
using the tokenizer. Alongside token embedding, positional embedding is also incorporated
to incorporate sequential information. This positional embedding allows the model to
effectively utilize the temporal information present in the input sequences to be used in the
self-attention layer. Figure 4 shows the overview of our pre-training stage.

Figure 4. Overview of the pre-training stage with MLM.

3.1.3. Fine-Tuned Model

Fine-tuning is adequate due to the inherent flexibility provided by the self-attention
mechanism within the transformer layer. This enables our model to be utilized for various
downstream tasks by simply adjusting the input and output components accordingly. In
particular, a straightforward approach involves appending a linear classifier or regressor to
the base model and training them together on a smaller labeled dataset. This joint training
process allows the model to adapt and specialize its predictions for the specific task at hand.
Figure 5 shows the overview of our fine-tuning stage.

Figure 5. Overview of the fine-tuning stage with MLM for classification and regression tasks.

3.1.4. Case Study: Anti-Malaria Drug Target Classification

Since we also want to take advantage of the 3D structures of the drug compound, in
addition to SMILES, we also include the 3D structure of the compound for our proposed
transformer model. Specifically, from the 3D structure, we extract the contact map of each
atom. In simple terms, the contact map of the compound is similar to the adjacency matrix
of the graph. Particularly, the contact map describes the pairs of atoms that are in contact
(within 8 Å of one another) in the compound structure but lie apart (by at least six positions)
in the underlying sequence [49]. One example of the contact map is shown in Figure 6.
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Figure 6. Example of a contact map. Although two Nitrogen atoms are at least six positions apart in
SMILES string, they are within 8 Å of each other.

Since robustness to global changes such as 3D translations and rotations is an underly-
ing principle for molecular representation learning, we seek to satisfy rotation and transla-
tion invariance. So, we take inspiration from SE(3)-Transformer [50] and AlphaFold2 [51],
and apply a convolutional operation to the contact map matrix C as C′ = Conv2d(C) where
Conv2d denotes a 2D shallow convolutional network with a kernel size of 1 × 1. So, the
attention score that input token i pays to input token j is computed as follows:

qi = fQ(xi), ki = fK(xi), vi = fV(xi) (2)

aij =
qi ∗ kT

j√
dk
∗ d′ij (3)

zi =
N

∑
j=1

σ(aij)vj (4)

where { fQ, fK, fV} are embedding transformations; {qi, ki, vi} are, respectively, the query,
key, and value vector with the same dimension dk; σ denotes the Softmax function; dij

′ ∈ C′

controls the impact of inter-atomic contact over the attention score, and zi is the output
embedding of the token i. Figure 7 shows the overview of our end-to-end classification
model for anti-malaria drugs. We use the same transformer layer mentioned previously
but instead of the default attention function, we use the function in Equation (4).

Figure 7. Overview of our model for anti-malaria drugs classification.

3.2. Evaluation Dataset
3.2.1. Pre-Trained Dataset

For our pre-training dataset, we utilize a subset of SMILES data from PubChem [52],
which is the largest open-source collection of chemical structures. To assist the large-scale
pre-training, the SMILES sequences are first canonicalized and shuffled. Specifically, we
select a subset dataset of 5 million SMILES from Chemberta [48]. During the unsupervised
pre-training stage, the SMILES sequences are tokenized into individual tokens using our
tokenizer, serving as the inputs for our model.

3.2.2. Fine-Tuned Dataset

We assess the performance of our models across multiple regression and classification
tasks from MoleculeNet, a comprehensive dataset collection for molecular properties eval-
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uation [53]. These datasets encompass a diverse range of sample sizes, varying from 1000
to 8000 examples, and cover various medicinal chemistry applications such as brain pene-
trability, toxicity, solubility, and on-target inhibition. These datasets serve as benchmarks
for evaluating the efficacy of state-of-the-art machine learning approaches in predicting
molecular properties, which are crucial in the drug discovery process. Additionally, we
incorporate an antimalarial drug candidate dataset [40] into our evaluation. We utilize the
following datasets to further assess the performance of our models for classification and
regression tasks.

• BACE (Classification and Regression): The BACE dataset provides quantitative IC50
and qualitative binding results for a set of inhibitors of human beta-secretase 1
(BACE-1). It has 1513 compounds.

• Clearance (Regression): The dataset contains human clearance, which is the parameter
that determines total systemic exposure to the drug. It has 837 compounds.

• Delaney (Regression): The Delaney dataset contains structures and water solubility
data. It has 1128 compounds.

• Lipophilicity (Regression): The lipophilicity dataset provides experimental results of
the octanol/water distribution coefficient. It has 4200 compounds.

• BBBP (Classification): The blood–brain barrier penetration (BBBP) dataset consists of
binary labels for the prediction of barrier permeability. It has 2039 compounds.

• ClinTox (Classification): The ClinTox dataset compares drugs approved by the FDA
and drugs that have failed clinical trials for toxicity reasons. It has 1478 compounds.

• Tox21 (Classification): The “Toxicology in the 21st Century” (Tox21) contains qualita-
tive toxicity measurements on 12 biological targets, including nuclear receptors and
stress response pathways. It has 7831 compounds.

• Antimalarial (Classification): The antimalarial dataset is a given experimentally ver-
ified antimalarial drug candidate from public chemical databases, ChEMBL and
PubChem. It has 4794 compounds.

For datasets with multiple tasks, we selected a single representative task: the clinical
toxicity (CT_TOX) task from ClinTox and the p53 stress-response pathway activation (SR-
p53) task from Tox21. For each dataset, we randomly select 80% for training, 10% for
validation, and 10% for evaluation.

3.3. Implementation
3.3.1. Model Details

The implementation of our model uses 12 attention heads with 6 layers, for a total
of 72 attention mechanisms, and 3072 fully connected embedding sizes. Our model is
implemented using transformer libraries provided by HuggingFace [54]. We trained the
network by minimizing the root mean square loss for the masked values using the Adam
optimizer [55] with β1 = 0.9, β2 = 0.98, and ε = 1 × 10−9. The model was trained for 10
epochs with a batch size of 512.

In all of our experimental settings, we fine-tune our model with each labeled dataset
for a total of 50 epochs while utilizing early stopping based on the validation loss. The
best-performing model, as determined by the validation data, is selected for the final
evaluation. During the fine-tuning process, we normalize the labels to have a zero mean
and a standard deviation of one for regression tasks. For classification tasks, we employ
balanced class weights to account for potential class imbalances. To ensure reliable and
robust evaluation, we conduct each experiment five times for each dataset. The reported
performance metrics are the average values of the receiver operating characteristic curve
(ROC-AUC) for classification tasks and the root-mean-square error (RMSE) for regression
tasks. In classification tasks, a higher ROC-AUC value indicates better model performance,
whereas, in regression tasks, a lower RMSE value signifies better model performance.
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3.3.2. Tokenizer

We utilized the tokenizer libraries provided by HuggingFace for training our tokeniz-
ers. Specifically, for a given tokenizer, an initial split of the input sequence is performed
by a pre-tokenizer. In addition to the WordPiece tokenizer provided by Hugging Face, we
also incorporated a splitting based on digits. To ensure efficient and effective tokeniza-
tion, we set a maximum vocabulary size of 600 tokens, which is based on a dictionary
containing commonly used SMILES characters. Furthermore, a maximum sequence length
of 512 tokens was employed to accommodate the input sequences.

3.3.3. Case Study: Anti-Malaria Drug Target Classification

We use the same parameters as above, except our model uses eight attention heads
with three layers. The model was trained for 300 epochs with a batch size of 128. Since this
is a classification task, we use accuracy, F1, and ROC-AUC as our performance metrics.

4. Conclusions

In the paper, we introduce a semi-supervised learning approach for predicting molec-
ular properties, aiming to leverage the abundance of unlabeled molecular data effectively.
The core component of our model is RoBERTa, which combines the transformer layer and
attention mechanism. Our semi-supervised method makes use of a substantial amount
of unlabeled data by pre-training the model with MLM. Subsequently, the pre-trained
model can be easily fine-tuned on the labeled dataset to enhance prediction performance.
Preliminary findings indicate that our model achieves a comparable level of performance
to state-of-the-art models on the specific downstream tasks selected from MoleculeNet.

Moreover, we also conducted a case study for our model using an anti-malaria drug
target dataset. To reduce the computational overhead, we also proposed an end-to-end
transformer-based model for drug target discovery. Particularly, we proposed a new
approach to calculate the attention score by taking advantage of both SMILES and 3D
structures of potential drug targets in the transformer layer. The experimental results show
that without pre-trained using large datasets, our model achieved comparable performance
using the new attention score.

Our current analysis covers only a small portion of the experiments we plan to conduct.
We plan to delve into systematic hyperparameter tuning, multitask fine-tuning, and the
utilization of larger pre-training datasets. Additionally, we also would like to try the appli-
cation of larger models, as their capacity to capture more intricate semantic information has
been demonstrated in numerous studies within the field of natural language processing.
Through our work, we believe that we can contribute to the discovery and development of
anti-malaria drugs, aiding in the advancement of this critical area of research.
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Abbreviations
The following abbreviations are used in this manuscript:

PF Plasmodium Falciparum
CDC Centers for Disease Control and Prevention
SMILES Simplified Molecular-Input Line-Entry
GNN Graph Neural Network
MLM Masked Language Modeling
ROC-AUC Area Under the Receiver Operating Characteristic Curve
MTR Multi-Task Regression
XGB Extreme Gradient Boosting
ANN Artificial Neural Network
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