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Abstract: Flowering Chinese cabbage (Brassica campestris L. ssp. Chinensis var. utilis Tsen et Lee) is a
widely consumed vegetable in southern China with significant economic value. Developing product
organs in the flowering Chinese cabbage involves two key processes: bolting and flowering. Nuclear
factor Y (NF-Y) is a heterotrimeric transcription factor known for its crucial role in various plant
developmental processes. However, there is limited information available on the involvement of this
gene family during flowering during Chinese cabbage development. In this study, 49 BcNF-Y genes
were identified and characterized along with their physicochemical properties, gene structure, chro-
mosomal location, collinearity, and expression patterns. We also conducted subcellular localization,
yeast two-hybrid, and transcriptional activity assays on selected BcNF-Y genes. The findings of this
study revealed enhanced expression levels of specific BcNF-Y genes during the stalk development
and flowering stages in flowering Chinese cabbage. Notably, BcNF-YA8, BcNF-YB14, BcNF-YB20, and
BcNF-YC5 interacted with BcRGA1, a negative regulator of GA signaling, indicating their potential
involvement in GA-mediated stalk development. This study provides valuable insights into the role
of BcNF-Y genes in flowering Chinese cabbage development and suggests that they are potential
candidates for further investigating the key regulators of cabbage bolting and flowering.

Keywords: flowering Chinese cabbage; NF-Y gene family; gibberellin; bolting

1. Introduction

Flowering Chinese cabbage (Brassica campestris L. ssp. Chinensis var. utilis Tsen et
Lee) is a highly cultivated and productive vegetable in southern China. It belongs to
the Chinese cabbage subspecies of Brassica species in the Brassicaceae family. The main
product organ is the flowering stalk. The formation of the flowering stalk involves two
simultaneous processes: bolting, which is characterized by stem elongation and thickening,
and flowering. Gibberellin (GA) is a crucial factor influencing bolting in flowering Chinese
cabbage. Treatment with exogenous gibberellin A3 (GA3) has been shown to induce the up-
regulation of BcSOC1 and genes encoding cell wall structural proteins (BcEXPA11, BcXTH3)
in flowering Chinese cabbage, thereby facilitating early bolting and flowering processes.
Moreover, low temperatures trigger GA accumulation at the stem tip, accelerating growth
and flowering. Conversely, using a GA synthesis inhibitor (PAC) suppresses the initiation
of bolting and flowering [1–4]. BcSOC1, a key regulator in developing the flowering stalk,
promotes early flowering and bolting when overexpressed. This is probably due to the
upregulation of genes encoding cell wall structural proteins. In contrast, the knockdown of
BcSOC1 leads to significant phenotypic differences in plants, underscoring its importance
in flowering Chinese cabbage [5]. Loss-of-function mutations in BcRGL1, a DELLA protein,

Int. J. Mol. Sci. 2023, 24, 11898. https://doi.org/10.3390/ijms241511898 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms241511898
https://doi.org/10.3390/ijms241511898
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-6257-0859
https://doi.org/10.3390/ijms241511898
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms241511898?type=check_update&version=1


Int. J. Mol. Sci. 2023, 24, 11898 2 of 16

affect the expression of various genes in flowering Chinese cabbage. These genes include
the GA regulatory gene BcGASA6, flower-related genes BcSOC1 and BcLFY, and genes
encoding cell wall structural proteins BcEXPA11 and BraXTH3. These mutations promote
flowering and bolting. Conversely, overexpression of BcRGL1 suppressed both bolting and
flowering in flowering Chinese cabbage [6].

The nuclear factor Y (NF-Y) family, known as the CCAAT-binding factor (CBF) or
heme-activating protein, is a conserved heterotrimeric transcription factor complex in
eukaryotes. It consists of three subfamilies: NF-YA, NF-YB, and NF-YC. The NF-Y complex
is formed by associating three members from different subfamilies [7–9]. NF-Y has been
extensively studied and implicated in various biological processes, including plant stress
responses, hormone signaling pathways, and seed development, among others [10–18].
For example, in rice, the complex formed by NF-YB1, NF-YC12, and bHLH144 binds to
the Wx promoter, activating Wx transcription and regulating seed quality [19]. In poplar,
PdNF-YB21 promotes root development by enhancing the expression of PdNCED3, a key
gene involved in ABA synthesis, increasing ABA levels in the roots and promoting growth
under drought conditions [12]. NF-YCs bind to the promoter of BR6ox2 (a gene involved
in BR biosynthesis) to inhibit BR biosynthesis. Furthermore, they maintain the stability of
BIN2, a key inhibitor of the BR signaling pathway, thus influencing the photoregulation of
hypocotyl elongation in Arabidopsis [20].

In recent years, the involvement of NF-Y family members in flowering and gibberellin
signaling has gained significant attention. Studies have revealed that NF-Ys form a complex
with CONSTANS to recognize key regulatory motifs in the promoter region of FT genes,
thereby affecting flowering time [21–27]. In the photoperiodic and GA pathways, GA-
mediated degradation of DELLA proteins releases NF-Y from the DELLA-NF-Y complex.
This enables NF-Y to bind to NFYBE, a critical motif in the SOC1 promoter, thereby
promoting SOC1 expression and accelerating flowering in Arabidopsis [28]. In Arabidopsis,
the NF-YC-RGL2 module regulates seed germination by binding to a distinct CCAAT motif
within the ABI5 promoter, a key gene in the ABA signaling pathway. It also co-regulates
a group of genes responsive to GA and ABA [29]. In roses, RhNF-YC9 regulates the
petal expansion rate by influencing GA accumulation and expression of cell proliferation-
related genes [30]. Moreover, DELLA proteins in Arabidopsis suppress SOC1 expression by
weakening the binding of NF-YCs to SOC1 through BRM. This promotes the binding of
BRM to SOC1, collectively inhibiting flowering [31]. These findings highlight the crucial
role of the NF-Y gene family in plant flowering and the GA pathway. Nevertheless,
our understanding of the essential characteristics and functional significance of NF-Y
transcription factors in the flowering Chinese cabbage is still limited. Therefore, this study
aimed to investigate the role of the NF-Y gene family in the product organ development
process of flowering Chinese cabbage.

Using bioinformatics methods, 49 BcNF-Y genes were identified in flowering Chinese
cabbage, with 17 BcNF-A, 20 BcNF-YB, and 12 BcNF-YC. Comprehensive analyses were
conducted to investigate various aspects of these genes, including their physicochemical
properties, gene structure, motif composition, and conserved structural domains. Phyloge-
netic tree analyses were conducted using data from flowering Chinese cabbage, rice, and
Arabidopsis to examine their evolutionary relationship. Additionally, collinearity analysis be-
tween flowering Chinese cabbage and Arabidopsis was performed to determine the potential
roles of these genes. The expression patterns of NF-Y gene family members were examined
in different developmental stages of flowering Chinese cabbage tissues and under GA
treatment. Notably, several NF-Y family members that interact with DELLAs have been
identified and further characterized for their subcellular localization and transcriptional
activity. This study offers valuable insights into the involvement of the NF-Y gene family in
the development of flowering Chinese cabbage. Further, it provides a good set of candidate
genes for future investigations that can be explored in the future to identify key regulators
of flowering Chinese cabbage development.
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2. Results
2.1. Identification of BcNF-Y Family Members

A comprehensive analysis of BcNF-Y genes was performed in the flowering Chinese
cabbage genome. This resulted in identifying 49 non-redundant BcNF-Y genes (17 BcNF-
YAs, 20 BcNF-YBs, and 12 BcNF-YCs). These genes were named BcNF-YA1 to BcNF-YA17
(NF-YA subfamily), BcNF-YB1 to BcNF-YB20 (NF-YB subfamily), and BcNF-YC1 to BcNF-
YC12 (NF-YC subfamily). Physicochemical analysis of the encoded proteins revealed
significant variations in protein length. The length ranges from 102 (BcNF-YB2) to 1374
amino acids (BcNF-YA12). Additionally, the predicted molecular weight of the proteins
varied, the lowest being 11670.12 Da (BcNF-YB11) and the highest being 155711.3 Da (BcNF-
YA5). The theoretical isoelectric point (PI) of the proteins ranged from 4.27 (BcNF-YB8) to
10.11 (BcNF-YB19) (Table 1).

Table 1. Information of the BcNF-Y genes family in flowering Chinese cabbage.

Gene Name CDS (bp) Length (AA) pI MW (Da) Homologs in
Arabidopsis

BcNF-YA1 2430 809 9.36 34,401.98 AtNF-YA6
BcNF-YA2 945 314 9.87 13,514.28 AtNF-YA2
BcNF-YA3 720 239 9.54 28,766 AtNF-YA1
BcNF-YA4 963 320 9.99 20,085.81 AtNF-YA3
BcNF-YA5 1653 550 7.16 155,711.3 AtNF-YA1
BcNF-YA6 846 281 9.74 26,426.97 AtNF-YA2
BcNF-YA7 927 308 6.87 44,034.04 AtNF-YA9
BcNF-YA8 360 119 9.51 24,406.47 AtNF-YA4
BcNF-YA9 696 231 9.61 27,110.81 AtNF-YA5

BcNF-YA10 450 149 6.99 88,896.45 AtNF-YA9
BcNF-YA11 783 260 9.04 35,419.5 AtNF-YA5/6
BcNF-YA12 4125 1374 6.32 26,437.07 AtNF-YA3
BcNF-YA13 540 179 8.99 34,091.57 AtNF-YA3
BcNF-YA14 717 238 9.68 30,882.8 AtNF-YA5
BcNF-YA15 645 214 6.36 61,377.49 AtNF-YA7
BcNF-YA16 1188 395 9.95 17,017.99 AtNF-YA8
BcNF-YA17 711 236 9.9 25,671.99 AtNF-YA10
BcNF-YB1 414 137 7.07 14,745.38 AtNF-YB3
BcNF-YB2 309 102 6.91 25,881.06 AtNF-YB12
BcNF-YB3 372 123 5.06 23,121.14 AtNF-YB2
BcNF-YB4 804 267 7.76 13,714.15 AtNF-YB8/10
BcNF-YB5 438 145 5.1 25,587.71 AtNF-YB3
BcNF-YB6 1497 498 8.84 19,813.36 AtNF-YB7
BcNF-YB7 684 227 5.04 15,948.19 AtNF-YB8/10
BcNF-YB8 468 155 4.27 24,485.01 AtNF-YB5
BcNF-YB9 357 118 5.96 25,267.27 AtNF-YB1

BcNF-YB10 408 135 8.92 13,174.68 AtNF-YB3
BcNF-YB11 369 122 4.8 11,670.12 AtNF-YB4
BcNF-YB12 681 226 5.01 56,994.71 AtNF-YB2
BcNF-YB13 693 230 7.07 15,677.32 AtNF-YB9
BcNF-YB14 666 221 8.8 29,546.27 AtNF-YB11
BcNF-YB15 510 169 9.61 25,962.1 AtNF-YB13
BcNF-YB16 456 151 6.91 14,458.08 AtNF-YB7
BcNF-YB17 363 120 5.21 13,011.72 AtNF-YB2
BcNF-YB18 648 215 6.65 17,694.84 AtNF-YB9
BcNF-YB19 969 322 10.11 12,238.18 AtNF-YB9
BcNF-YB20 552 183 5.34 29,312.26 AtNF-YB8/10
BcNF-YC1 717 238 7.12 63,811.16 AtNF-YC11
BcNF-YC2 2070 689 5.7 35,706.48 AtNF-YC11
BcNF-YC3 525 174 6.22 23,990.09 AtNF-YC10
BcNF-YC4 693 230 5.72 12,891.28 AtNF-YC9
BcNF-YC5 636 211 6.7 17,457.36 AtNF-YC1
BcNF-YC6 813 270 4.74 19,047.31 AtNF-YC4
BcNF-YC7 330 109 8.49 17,259.75 AtNF-YC13
BcNF-YC8 417 138 8.9 26,409.45 AtNF-YC2
BcNF-YC9 1734 577 6.93 75,108.26 AtNF-YC9

BcNF-YC10 687 228 6.13 12,824.61 AtNF-YC9
BcNF-YC11 339 112 5.1 25,421.53 AtNF-YC10
BcNF-YC12 459 152 9.1 19,965.36 AtNF-YC11
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2.2. Analysis of Motifs and Conserved Domains in BcNF-Y Family Members

The MEME v5.4.1 software was used to identify motifs and analyze the motif compo-
sition of BcNF-Y proteins. The analysis revealed that members within the same subfamily
exhibited similar conserved motifs (Figure 1a). In the BcNF-Y family, the BcNF-YA sub-
family possessed a unique CBF domain, while the BcNF-YB and BcNF-YC subfamilies
shared the CBFD_NFYB_HMF domain (Figure 1b). The presence of the same domain in
BcNF-YB and BcNF-YC suggests functional similarities between these subfamilies. All
members of the BcNF-YA subfamily contained motifs 2 and 3, with motif 2 exclusively
present in the BcNF-YA subfamily, suggesting its potential role as a constituent of the
CBF domain (Figure 1a). The BcNF-YB subfamily consistently harbored motif 1, except
for BcNF-YB2, BcNF-YB14, and BcNF-YB15, which also contain motif 6. In contrast, the
BcNF-YC subfamily exhibited a unique motif, motif 7 or 1 (Figures 1a and S1).
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Figure 1. Schematic representation of protein and gene structure. (a) Distribution of conserved motifs
in BcNF-Y proteins; different colors represent the 10 conserved domains identified. (b) Each domain
is visually depicted as a colored box. (c) Gene structure of BcNF-Y genes.

Notably, significant differences in the number of introns were observed among the
members of the BcNF-Y family in flowering Chinese cabbage. Moreover, while BcNF-
YC7 and BcNF-YC8 lacked introns, BcNF-YA1 had the highest number of introns (n, 19).
Most members had a substantial number of introns (Figure 1c, Table S1). These findings
suggest that the NF-Y family may exhibit diverse regulatory patterns and functional roles
in flowering Chinese cabbage.
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2.3. Phylogenetic Analysis and Chromosomal Distribution

To classify the BcNF-Y family members into distinct subfamilies, a neighbor-joining
phylogenetic tree was constructed using the rice and Arabidopsis NF-Y protein sequences
(Table S2). The phylogenetic analysis helped us predict the function of BcNF-Y by exam-
ining the relationship between NY-F genes from different species. The results showed
three BcNF-Y subfamilies. NF-YA exhibited noticeable differences from the other two
subfamilies, while NF-YB and NF-YC showed closer evolutionary relationships (Figure 2a).
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different colors are used to distinguish members of each subfamily. (b) Chromosomal distribution of
49 BcNF-Y genes in flowering Chinese cabbage.
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The chromosomal localization of the 49 BcNF-Y genes in flowering Chinese cabbage
was visualized using TBtools software (V1.0987). Based on their positions on chromosomes
1–10 (from top to bottom) and their classification into subfamilies, they were designated
as follows: NF-YA subfamily (BcNF-YA1 to BcNF-YA17), NF-YB subfamily (BcNF-YB1 to
BcNF-YB20), and NF-YC subfamily (BcNF-YC1 to BcNF-YC12) (Figure 2b). The findings
revealed an uneven distribution of BcNF-Y genes on the chromosomes, with chromosome
A04 containing only one BcNF-Y gene and chromosome A09 harboring 10 BcNF-Y genes.

2.4. Gene Duplication and Collinearity Analysis

Analyzing the collinearity between genes provides valuable insights into gene family
expansion and duplication events. In the case of BcNF-Y genes, collinearity analysis
revealed 36 duplicated events within the gene family, with chromosome 3 showing the
highest number of duplication events (Figure 3a). Among these duplicates, only BcNF-YC5
and BcNF-YC6 occurred on the same chromosome, while the rest occurred on different
chromosomes (Figure 3a). The expansion of the BcNF-Y gene family is primarily attributed
to segmental duplications.
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Figure 3. Gene duplication and collinearity analysis in Brassica campestris. (a) Duplication analysis
of BcNF-Y genes on different chromosomes. The red lines connect BcNF-Y genes with a collinearity
relationship. (b) Collinearity analysis of NF-Ys from Brassica campestris and Arabidopsis. The green
lines indicate the presence of a collinearity relationship between NF-Y genes.
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Collinearity between genes often indicates the presence of homologous sequences that
may share similar functions. By examining the collinearity between BcNF-Y and AtNF-Y
genes and performing BLASTP and phylogenetic comparisons, the homologous genes of
BcNF-Y in Arabidopsis were identified. The results showed that all 43 BcNF-Y genes have
homologs in Arabidopsis. Specifically, BcNF-YB4, BcNF-YB7, and BcNF-YB20 correspond
to two homologous genes (AtNF-YB8/10) in Arabidopsis, while BcNF-YA11 corresponds to
two homologous genes (AtNF-YA5/6) (Figure 3b, Table 1). Understanding the homology
between BcNF-Y and AtNF-Y contributes to better comprehending the function of BcNF-Y
genes, considering the extensive studies conducted on Arabidopsis AtNF-Y genes.

2.5. Analysis of BcNF-Y Gene Expression in Different Periods and Tissues

To explore the expression patterns of BcNF-Y genes throughout the growth and devel-
opment of flowering Chinese cabbage, transcriptome analysis was conducted using data
from various developmental stages, including three leaf, bud emergence, and flowering
stages [2]. The results showed diverse expression patterns of BcNF-Y genes during the
developmental stages of flowering Chinese cabbage (Figure 4a). Among the 18 BcNF-Y
genes analyzed (11 BcNF-YA and 7 BcNF-YB), their expression levels were upregulated
during the three-leaf stage. Additionally, 15 BcNF-Y genes (3 BcNF-YA, 5 BcNF-YB, and
7 BcNF-YC) showed increased expression levels during the bud emergence stage, while
11 BcNF-Y genes (2 BcNF-YA, 4 BcNF-YB, and 5 BcNF-YC) exhibited elevated expression
levels during the flowering stage (Figure 4a). Specifically, BcNF-YA genes exhibited high ex-
pression during the seedling stage, while BcNF-YC genes demonstrated higher expression
levels, specifically during flower stalk development. These findings indicate that BcNF-YA
may play a more prominent role during the seedling stage, while BcNF-YC appears to be
closely associated with stalk and flower development.

Differential gene expression across different developmental stages and in different
tissues often indicates their distinct functions. To gain further insight into the role of
NF-Y in the growth and development of flowering Chinese cabbage and identify potential
BcNF-Y genes associated with bolting and flowering, qRT-PCR analysis was performed
on 27 BcNF-Y genes across eight stages (cotyledon, first leaf, second leaf, third leaf, fourth
leaf, bolting, bud emergence, rapid bolting, and flowering) and three tissues (root, stem
tip, and leaf). The findings revealed that during bud emergence and fast bolting, 18
genes were upregulated in specific tissues (Figure 4b). In the bud emergence, two BcNF-Y
genes exhibited elevated expression in the stem apex, while seven genes showed increased
expression in the leaves. Additionally, nine genes were upregulated in the root during
bud emergence or rapid bolting stage. Notably, BcNF-YA showed higher expression in
the leaves and roots than in the stem apex. Among the genes highly expressed in the
stem apex, five of the six BcNF-Y genes belonged to the BcNF-YC subfamily, whereas the
BcNF-YB subfamily members exhibited no specific expression trends (Figure 4b). These
findings indicate that the BcNF-YC subfamily may play a crucial role in the bolting process
of flowering Chinese cabbage, while BcNF-YA may primarily contribute to leaf and root
development.

Overall, the findings indicate that a significant number of BcNF-Y genes were highly
expressed during the critical stages of flowering and bolting, suggesting their key roles in
the development of flowering Chinese cabbage.

2.6. BcNF-Y Gene Expression Analysis in Flowering Chinese Cabbage under Different Exogenous
Hormone Spraying Conditions

To investigate the influence of the NF-Y gene family on GA-mediated bolting of
flowering Chinese cabbage, we analyzed the transcript levels of NF-Y gene family members
following exogenous spraying with GA3 and PAC (a GA inhibitor). After PAC treatment,
substantial upregulation in transcript levels was observed for all members of the NF-YA
and NF-YC subfamilies. Conversely, no discernible response to the GA treatment was
observed among the members (Figure 5).
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expression patterns in different periods and tissues. CO, cotyledon stage; TWL, two-leaf stage; THL,
three-leaf stage; FL, four-leaf stage; BO, bolting stage; BE, bud emergence stage; FB, fast bolting stage;
FLO, flowering stage.

NF-YB subfamily members exhibited distinct expression patterns (Figure 5). BcNF-
YB5, BcNF-YB15, and BcNF-YB20 exhibited significantly elevated transcript levels after
PAC treatment, whereas their expression levels were unaffected by GA treatment. How-
ever, BcNF-YB14 showed the opposite trend, with significantly increased expression after
GA treatment and no change in expression after PAC treatment (Figure 5). BcNF-YB10
responded to GA3 and PAC treatments, with GA3 treatment significantly reducing its
expression levels and PAC treatment significantly increasing its transcript levels (Figure 5).

2.7. Interactions of DELLAs with NF-Y Subunits and Inter-Subunit Interactions

DELLA proteins have crucial regulatory functions in the GA signaling pathway and
are essential for plant development. To determine the interactions between the BcNF-Y
and BcDELLA proteins in flowering Chinese cabbage, yeast two-hybrid experiments were
conducted. The experiment revealed that BcNF-YA8, BcNF-YB14, BcNF-YB20, and BcNF-
YC5 interacted with BcRGA1, while BcNF-YA12 and BcNF-YB15 did not interact with
BcRGA1 (Figure 6a).
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was employed to investigate protein interactions between BcNF-Ys and BcRGA1. (b) Interactions
among NF-Y subfamily members at the protein. DDO and QDO represent SD/-Trp-Leu medium
and SD/-Trp-His-Leu-Ade medium, respectively. Positive bacteria were stained using X-α-Gal. The
combinations containing AD-empty or BD-empty were used as negative controls.

To determine the interactions among BcNF-Y subfamily members in flowering Chinese
cabbage, yeast two-hybrid experiments were conducted. The results showed that BcNF-YA8
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and BcNF-YA12 did not interact with BcNF-YB14, BcNF-YB15, or BcNF-YB20 (Figure 6b).
However, BcNF-YC5, BcNF-YC5, and BcNF-YC5 interacted with BcNF-YA8, BcNF-YA12,
and BcNF-YB15, respectively, suggesting their potential involvement in complex formation
in flowering Chinese cabbage.

2.8. Subcellular Localization and Transcriptional Activation Analysis of NF-Y Genes

To further elucidate the functions of the BcNF-Y family, selected NF-Y genes were
analyzed for their subcellular localization. The results show that BcNF-YA8-GFP and
BcNF-YA12-GFP fluorescence was exclusively observed in the nucleus, indicating their
localization within the nucleus (Figure 7a). In contrast, the BcNF-YB14-GFP, BcNF-YB20-
GFP, BcNF-YC5-GFP, and BcNF-YB15-GFP fusion proteins exhibited fluorescence in the cell
membrane and nucleus, indicating that these six NF-Y gene family members were localized
in the cell membrane and nucleus of flowering Chinese cabbage (Figure 7a).
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within the cells of Nicotiana benthamiana was examined. (b) Schematic illustration for transcriptional
activity assay. (c) The relative luciferase (LUC) activities observed in Nicotiana benthamiana leaves
indicate the transcriptional activation potential of BcNF-Y proteins. ‘**’ indicates p-value < 0.01, and
‘***’ indicates p-value < 0.001, by one-way ANOVA analysis with Tukey’s HSD test.

Selected members were subjected to transcriptional activity analysis to assess the tran-
scriptional activation abilities of BcNF-Y gene family members. The coding sequence (CDS)
of BcNF-Y was fused to the GAL4 DNA-binding domain (GAL4DB) to generate an effector
construct, while an empty vector and a VP16 served as the negative and positive controls,
respectively (Figure 7b). The results showed that GAL4DB-BcNF-YB15, GAL4DB-BcNF-
YB20, and GAL4DB-BcNF-YA12 exhibited significantly enhanced relative luciferase activity
than in the negative control, indicating that GAL4DB-BcNF-YB15, GAL4DB-BcNF-YB20,
and GAL4DB-BcNF-YA12 may function as transcriptional activators in flowering Chinese
cabbage (Figure 7c). Conversely, GAL4DB-BcNF-YA8 and GAL4DB-BcNF-YC5 exhibited
significantly decreased relative luciferase activities, suggesting that GAL4DB-BcNF-YA8
and GAL4DB-BcNF-YC5 may function as transcriptional repressors (Figure 7c). GAL4DB-
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BcNF-YB14 exhibited no significant difference in relative luciferase activity, indicating that
the full-length BcNF-YB14 protein cannot regulate transcription.

3. Discussion

The NF-Y transcription factor family plays a crucial role in various plant growth
and development stages, and extensive research has been conducted on various plant
species [32–35]. In this study, we identified 49 BcNF-Y genes, consisting of 17 BcNF-A,
20 BcNF-YB, and 12 BcNF-YC genes. Furthermore, investigation of the expression pat-
terns of these BcNF-Y genes across distinct developmental stages and tissues of flowering
Chinese cabbage provided insight into their potential roles in plant development. Addition-
ally, specific NF-Y proteins that interacted with BcRGA1 were identified, and subsequent
subcellular localization and transcriptional activation assays were used to elucidate their
functional properties. These comprehensive findings of this study lay the groundwork
for further functional validation of BcNF-Y genes and the identification of key regulators
involved in developing flower stalks in flowering Chinese cabbage.

Compared to Arabidopsis, a closely related cruciferous family member, flowering
Chinese cabbage exhibited an expansion of the NF-Y gene family with the addition of
13 members [36]. The identification of fragment duplication events supports this expan-
sion. Each subfamily exhibited distinct structural features, conserved domains, and motif
compositions, indicating the evolutionary conservation of NF-Y genes in flowering Chinese
cabbage. Introns play a critical role in splicing processes [37]. Alternative splicing enables a
single gene to generate different mature or messenger RNAs, thereby expanding the pro-
teome of an organism [38]. Furthermore, the number of introns in BcNF-Y family members
was higher than in other plant species, such as alfalfa, castor, and peach. This suggests a
potentially significant regulatory pattern and functional role for BcNF-Y genes in flowering
Chinese cabbage [34,35,39].

NF-Y factors typically form heterotrimeric complexes that recognize and bind to
CCAAT sequences to regulate transcription [40,41]. In the case of NF-YB and NF-YC,
they form dimers in the cytoplasm and then translocate to the nucleus, where they recruit
NF-YA to assemble a functional heterotrimeric complex [9]. There was no interaction
between BcNF-YA and BcNF-YB in the yeast two-hybrid system, which is consistent with
observations in Arabidopsis [42]. The complexity of NF-Y subunit interactions allows for
better targeting of CCAAT boxes and fine-tuning of gene regulation [36].

In flowering Chinese cabbage, 18 BcNF-Y genes were found to be significantly up-
regulated during the bud emergence and fast-bolting stages, indicating their potential
involvement in flowering stalk development. In Arabidopsis, AtNF-YC3, AtNF-YC4, and
AtNF-YC9 are important factors in the CO-mediated flowering pathway and can redun-
dantly regulate GA- and ABA-mediated seed germination [29]. Similarly, AtNF-YA2,
AtNF-YB2, and AtNF-YC9 can bind to NFYBE, leading to the activation of SOC1 tran-
scription and regulation of flowering in Arabidopsis [28]. Moreover, silencing the rose
homologs of AtNF-YC9 and RhNF-YC9 resulted in reduced GA accumulation and signifi-
cant downregulation of genes involved in cell expansion, inhibiting petal expansion [30]. In
flowering Chinese cabbage, BcNF-YC10 is a homolog of AtNF-YC9 and exhibits significant
upregulation in the stem tip during the bud emergence stage. Based on this observation,
we hypothesized that BcNF-YC10 is an important candidate gene involved in developing
flowering Chinese cabbage flower stalks. In Arabidopsis, overexpression of AtNF-YA2 leads
to a delay in flowering, and miR169 regulates the stress-mediated flowering process and
lateral root development by regulating AtNF-YA2 [43]. In flowering Chinese cabbage,
BcNF-YA6 is a homolog of AtNF-YA2, exhibiting significantly high expression in roots at the
bud emergence stage. This suggests that BcNF-YA6 may play a functional role comparable
to AtNF-YA2. Therefore, we hypothesized that BcNF-YA6 is crucial in flowering and root
development in flowering Chinese cabbage. Further studies on the overexpression and
knockdown of BcNF-Ys could help elucidate their roles in flowering Chinese cabbage
bolting and flowering.
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GA is a well-known regulator of flowering and bolting in flowering Chinese cabbage.
Treating with exogenous GA3 can help accelerate bolting and flowering processes while
promoting stem elongation [44]. Although most BcNF-Y family members showed increased
expression following treatment with PAC (a GA synthesis inhibitor), their responses to GA
treatment were insignificant. However, BcNF-YB14 responded to GA and PAC, with its
expression significantly upregulated in the leaves during the bolting stage. This suggests
that BcNF-YB14 may be involved in GA-mediated bolting in flowering Chinese cabbage
plants. In flowering Chinese cabbage, DELLA proteins function as negative regulators of the
GA signaling pathway, influencing the bolting and flowering processes. One such DELLA
protein in flowering Chinese cabbage is BcRGA1 [4]. Using yeast two-hybrid analysis, the
interactions between BcRGA1 (a DELLA protein) and specific BcNF-Y proteins, including
BcNF-YA8, BcNF-YB14, BcNF-YB20, and BcNF-YC5 were identified. During the bolting
stage, BcNF-YA8 was significantly expressed in the leaves, while BcNF-YB14 was highly
expressed in stem tips during the flowering stage, and BcNF-YB20 was highly expressed in
roots during the fast bolting stage. Transcriptional activity analysis revealed that BcNF-YA8,
BcNF-YB20, and BcNF-YC5 have regulatory roles in downstream transcription. However,
BcNF-YB14 did not exhibit transcriptional regulation, possibly because of the presence of
a transcriptional repressor domain in the full-length protein. These findings suggest that
these four identified BcNF-Y genes likely participate in GA-mediated flowering and bolting
processes in flowering Chinese cabbage.

Transcriptional regulation mediated by NF-Y involves a complex mechanism. In
Arabidopsis, CO can substitute NF-YA to form a CO/NF-YB/NF-YC trimer, subsequently
binding to and regulating the FT promoter [45]. The entire heterotrimeric complex can
recruit additional transcription factors, thereby modulating its binding affinity for CCAAT
boxes [46,47]. Moreover, a pair of AtNF-Y protein complexes (NFY and NF-CO) are in close
proximity to each other and simultaneously bind to two CCAAT boxes located >5.3 kb apart
on the FT promoter, regulating flowering [25,45]. The transcriptional regulatory effects of
NF-Y on downstream genes primarily rely on intact NF-Y complexes. However, the identi-
fication of intact and active NF-Y complexes remains challenging. Nevertheless, we did not
identify any candidate combinations of the NF-Y complexes. Advancements in bioinfor-
matics and more accurate protein interaction predictions can expedite the exploration of
NF-Y complex compositions and facilitate functional studies of NF-Y complexes.

4. Materials and Methods
4.1. Identification of the BcNF-Y Gene Family

AtNF-Ys proteins sequence of Arabidopsis were derived from a previous report [36].
The protein sequences of AtNF-Ys were used as queries and compared to the Brassica
campestris genome using BLASTP with an e-value cutoff of 1 × 10−5 and an identity
threshold of >40%. On the other hand, the hidden Markov model (HMM) profile for
PF02045 and PF00808 were downloaded from the Pfam database (https://www.ebi.ac.
uk/interpro/, accessed on 7 October 2022), which was used to conduct another search
with HMMER v3.3.1 (e-value 1 × 10−5). The non-redundant protein sequences obtained
from both methods were further analyzed using the NCBI Conserved Domain (CD) tool
(https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi, accessed on 7 October
2022) and the SMART database (https://smart.embl.de/, accessed on 7 October 2022) for
confirmation.

4.2. Analysis of Gene Structure, Domains, and Conserved Motifs

Conserved motifs were identified using the online program MEME v5.4.1 with the find
motifs parameter set to 10, while other parameters were kept as default (https://meme-
suite.org/meme/; accessed on 7 October 2022). The SMART database (https://smart.embl.
de/, accessed on 7 October 2022) was used to identify conserved domains with the default
parameters. TBtools software (V1.0987) was used to conduct the structural visualization
analysis [48].

https://www.ebi.ac.uk/interpro/
https://www.ebi.ac.uk/interpro/
https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi
https://smart.embl.de/
https://meme-suite.org/meme/
https://meme-suite.org/meme/
https://smart.embl.de/
https://smart.embl.de/
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4.3. Phylogenetic Analysis

NF-Y gene sequences from Arabidopsis (AtNF-Ys) and rice (OsNF-Ys) were obtained
from previous studies [36,49]. To align all NF-Y, we used the L-INS-I method of the
MAFFT sequence alignment program [50]. A neighbor-joining phylogenetic tree was then
constructed using MEGA11, and the reliability of the tree was assessed using a bootstrap
test with 1000 replicates [51].

4.4. Chromosomal Locations, Synteny Analysis

The chromosomal location of BcNF-Y genes was determined using TBtools software
(V1.0987). To analyze the synteny of NF-Y genes, we employed MCScanX with the default
parameters in TBtools (V1.0987) to perform synteny analysis of NF-Y genes was performed
in Arabidopsis, rice, Brassica campestris, and within Brassica campestris [52]. Homologous
genes between Brassica campestris and Arabidopsis thaliana were identified, and synteny
analysis was conducted. The results of the analysis were visualized using TBtools.

4.5. Plant Materials and Treatments

The “youIv501” variety of flowering Chinese cabbage plants was cultivated in a
daylight greenhouse located at the Department of Facility Horticulture, South China
Agricultural University, using a substrate potting technique. To initiate the experiment, the
seeds were sterilized and placed on Petri dishes containing a moist filter for 1 d. Following
germination, the seeds were transferred to cavity trays and then transplanted into seedling
pots filled with a substrate mixture composed of peat, vermiculite, and perlite (in a ratio
of 3:1:1) when the seedlings reached the three-leaf stage. Tissue samples were collected at
various seedling developmental stages of the seedlings, including the cotyledon, two-leaf,
three-leaf, four-leaf, bolting, bud emergence, fast bolting, and flowering stages. Stem tips,
roots, and leaf tissues were collected at each stage. For the exogenous hormone treatment,
GA3 (200 mg/L) and PAC (GA synthesis inhibitor) (10 mg/L) were sprayed onto the
seedlings at the three-leaf stage. Stem tip samples were collected 12 h after the hormone
treatment. Each treatment was replicated three times with 20 seedlings per treatment. All
collected samples were stored at −80 ◦C and later used for RNA extraction.

4.6. RNA Extraction and qRT-PCR

Total RNA was extracted from the sample using the Eastep® Super Total RNA Ex-
traction Kit, and genomic DNA was removed. The cDNAs were prepared using Hiscript
QRT SuperMix (Vazyme, Nanjing, China). The real-time PCR (qRT-PCR) were performed
using the ChamQ SYBR Color qPCR Master Mix (Vazyme, Nanjing, China). Primers were
designed using the NCBI BLAST tool with glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) as the internal reference gene. The relative expression levels were determined
using the 2−∆∆Ct method. qRT-PCR was conducted following the previously described
protocol [44]. Table S3 lists the primers used for the qRT-PCR analyses.

4.7. Yeast Two-Hybrid Assay

Full-length coding sequences (CDS) of BcNF-Ys and BcRGA1 genes were cloned into
pGADT7 and pGBKT7 vectors, respectively. The individual vectors were co-transformed
into yeast cells using the Y2HGold Competent Cells (WEIDI, Shanghai, China). The
co-transformed yeast cells were then plated on a selective medium lacking leucine and
tryptophan (SD/-Leu/-Trp) to ensure the presence of both plasmids. The yeast transfor-
mants were then plated on selective media lacking leucine, tryptophan, histidine, and
adenine (SD/-Trp/-Leu/-His/-Ade) to assess protein interactions. X-α-Gal medium was
used to visualize and confirm the interactions, enabling the identification of blue and white
colonies. Table S4 shows all yeast two-hybrid primers.
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4.8. DLR Assay

The transient transcriptional activity assay was conducted on Nicotiana benthamiana
leaves using a previously described method [53,54]. The full-length coding sequences (CDS)
of BcNF-Ys genes were cloned into the GAL4DB vector to generate the GAL4DB-BcNF-
Ys vector. For the experimental setup, GAL4DB-VP16 was used as the positive control,
GAL4DB-Empty as the negative control, and GAL4DB-BcNF-Ys as the test vector. Agrobac-
terium tumefaciens strains harboring different plasmids were infiltrated into tobacco leaves,
followed by a 48 h incubation period. Determination the luciferase/Renilla luciferase
(Luc/Ren) ratio, enabling the analysis of transcription-al activity [6]. Table S5 lists all DLR
assay primers.

4.9. Subcellular Localization

The full-length CDS sequence of BcNF-Ys without the stop codon was cloned into
the pSUPER1300 vector. The pSUPER1300 empty vector was used as a control. The
recombinant vectors and a localization signal (DsRed) were introduced into Agrobacterium
tumefaciens GV3101 and co-injected into tobacco leaves. After two days, the fluorescence
signal was observed using laser scanning confocal microscopy (Axioimager.D2). Table S6
lists all subcellular localization primers.

Supplementary Materials: The supporting information can be downloaded from: https://www.
mdpi.com/article/10.3390/ijms241511898/s1.
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