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Abstract: Glutamate N-methyl-D-aspartate receptor (NMDAR) hypofunction has been proposed to
underlie schizophrenia symptoms. This theory arose from the observation that administration of
NMDAR antagonists, which are compounds that inhibit NMDAR activity, reproduces behavioural
and molecular schizophrenia-like phenotypes, including hallucinations, delusions and cognitive
impairments in healthy humans and animal models. However, the role of specific NMDAR subunits
in these schizophrenia-relevant phenotypes is largely unknown. Mounting evidence implicates the
GluN2D subunit of NMDAR in some of these symptoms and pathology. Firstly, genetic and post-
mortem studies show changes in the GluN2D subunit in people with schizophrenia. Secondly, the
psychosis-inducing effects of NMDAR antagonists are blunted in GluN2D-knockout mice, suggesting
that the GluN2D subunit mediates NMDAR-antagonist-induced psychotomimetic effects. Thirdly,
in the mature brain, the GluN2D subunit is relatively enriched in parvalbumin (PV)-containing
interneurons, a cell type hypothesized to underlie the cognitive symptoms of schizophrenia. Lastly,
the GluN2D subunit is widely and abundantly expressed early in development, which could be of
importance considering schizophrenia is a disorder that has its origins in early neurodevelopment.
The limitations of currently available therapies warrant further research into novel therapeutic targets
such as the GluN2D subunit, which may help us better understand underlying disease mechanisms
and develop novel and more effective treatment options.
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1. Schizophrenia—An Overview

Schizophrenia is a severe, debilitating, chronic neuropsychiatric disorder with a life-
time prevalence of 0.72% [1]. It has a complex and heterogeneous presentation making it
difficult to diagnose and to identify a consistent underlying aetiology or pathology. People
with schizophrenia demonstrate high inter-individual variability with respect to symptoms,
disease course, outcome and response to treatment. Schizophrenia symptoms are divided
into three main classes: positive, negative and cognitive deficits. Of the three, positive
symptoms are the most easily identifiable and are defined as psychotic features that are not
usually present in healthy people, and include hallucinations, delusions and disorganised
speech and behaviour [2,3]. Negative symptoms refer to a reduction or disruption in
normal emotions and behaviours manifesting as social and emotional withdrawal, apathy
and avolition [2,4]. Cognitive symptoms vary in severity amongst people with schizophre-
nia and include elements such as deficits in verbal memory, working memory, attention,
executive functioning, cognitive flexibility and processing speed [5].

Schizophrenia typically has an early onset, with most people being diagnosed in
their late adolescence—early adulthood years. The onset of the first psychotic episode
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is usually preceded by a prodromal period during which symptoms gradually emerge
and this period can last several years. An early onset combined with long-term deficits
in social, educational and occupational function make this disorder one of the leading
causes of chronic disability with significant impacts on the quality of life of patients and
their families and caregivers [6,7]. Additionally, this disorder places a substantial economic
burden on health care systems with estimates of annual associated costs reaching up to
USD 150 billion in the United States and AUD 4.9 billion in Australia [8,9].

The causes of schizophrenia are not fully understood but are thought to be multifacto-
rial, involving a complex interplay between multiple genetic variants and environmental
factors. Genome-wide association studies have identified multiple common variants of
small effect spanning over 250 genetic loci, suggesting that schizophrenia is a polygenic
disorder in most cases [10,11]. Genes associated with schizophrenia risk are involved
in various functions, including the regulation of the postsynaptic membrane, synaptic
transmission and neurodevelopmental pathways, including glutamate pathways [11–13].
Non-genetic factors that increase lifetime risk for schizophrenia include obstetric compli-
cations, advanced paternal age, living in an urban setting, childhood trauma or adversity,
cannabis use and first-generation migration [14–21]. Although there have been advances in
our understanding of risk factors associated with schizophrenia, the aetiological complexity
has made it a challenge to identify the underlying disease mechanisms and find effective
cures and preventative strategies.

Currently available pharmacological treatments, chiefly conventional and atypical anti-
psychotics, and psychotherapy, have proven clinical utility and can help manage positive
symptoms in some people [22,23]. However, antipsychotic medications have limited effi-
cacy and are poorly tolerated, with substantial side effects in approximately 30% of people.
Moreover, they usually offer little benefit in improving negative and cognitive symptoms,
and these symptom types therefore remain a pressing, unmet medical need [22,24]. The
prevalence, burden and current lack of effective treatments for schizophrenia highlight a
need to improve our understanding of the underlying mechanisms and neurobiology of
the disorder in order to identify and develop better treatments.

Although the predominant literature has focused on dopaminergic dysfunction in
schizophrenia [25–28], and many of the currently available anti-psychotics target dopamin-
ergic receptors [29–32], the limitations of these treatments suggests that other pathological
processes may be involved. A theory gaining increasing support for the aetiology of
schizophrenia is the hypofunction of one of the major glutamate receptor subtypes, the
N-methyl-D-aspartate receptor (NMDAR) [33–36].

2. Glutamatergic Signalling in the Central Nervous System

Glutamate plays a key role in mediating the homeostatic balance between excitation
and inhibition in the brain, cortico-cortical neurotransmission, neuronal development, neu-
rodegeneration, nervous system plasticity and learning and memory [37]. Glutamate carries
out its actions through its receptors which are divided into two groups: the ionotropic and
metabotropic receptors [38,39]. The ionotropic receptors, namely the NMDA, α-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate receptors, are integral
membrane proteins composed of four large subunits (>900 residues) and act as ligand-gated
cation channels [40]. The metabotropic receptors are G-protein-coupled and activate intra-
cellular biochemical cascades [39,41]. As this review is focused on NMDARs, specifically
the GluN2D subunit and its relevance to schizophrenia, we direct readers to the following
review articles [42–44] for further discussion of the role of AMPA, kainate and metabotropic
receptors in schizophrenia.

NMDA Receptor Structure and Function

NMDARs are widely distributed and can be found on both neuronal and non-neuronal
cells. These receptors play a key role in many physiological processes, including neurode-
velopment, synaptogenesis and locomotion, and due to their role as critical mediators of
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activity-dependent synaptic plasticity, they are especially important for learning, memory
formation and other forms of cognition [45–51]. NMDARs are unique in that they require
the concomitant binding of glycine and glutamate along with membrane depolarisation for
activation and are thus referred to as ‘molecular coincidence detectors’ [52–54]. At resting
membrane potential, extracellular magnesium (Mg2+) can be found in the ion channel
pore, blocking NMDARs in a voltage-dependent manner. Partial depolarisation of the
neuron relieves the blockade, opening the channel. The subsequent Ca2+ influx into the
neuron triggers a cascade of events that can influence both local, acute functional synaptic
plasticity and, via changes in gene expression, sustained neural plasticity [55].

The heteromeric composition of NMDARs enables different pharmacological, biophys-
ical and functional properties for the receptor, and these heteromers vary in distribution
and expression, both regionally and temporally, throughout development. The different
subunits that make up the NMDAR are termed GluN1, GluN2 and GluN3. The GluN1
subunit is encoded by a single gene but has eight splice variants [56]. There are four
different GluN2 subunits (A–D), encoded by four different genes and two different Glun3
subunits (A and B) [39,57]. A functional NMDAR is typically composed of two GluN1
subunits and two subunits from among the GluN2A-D and GluN3A-B subunits [45,58].
The obligatory GluN1 subunit is ubiquitously expressed throughout the brain and over the
lifespan [39,59]. Of the GluN2 subunits, which have a more varied and complex temporal
and spatial expression, GluN2A and GluN2B are the predominant subtypes found in the
adult human brain, whilst the GluN2C and GluN2D subunits are more highly expressed
in the developing brain [45,60]. The subunit composition of NMDARs influences its func-
tional properties, including agonist affinity, Mg2+ block, decay kinetics and modulation
by polyamines [61,62]. Given the importance of NMDAR subunits in mediating normal
brain function, it is not surprising that the dysfunction of these subunits has been linked
to various neurological diseases, including schizophrenia. The NMDAR hypofunction
model is one of the most commonly adopted and supported models of schizophrenia and
is often employed to study the aetiology and pathology of the disorder as well as for the
development of novel treatment strategies.

3. NMDA Receptor Hypothesis of Schizophrenia

From the late 1950s, phencyclidine (PCP) and ketamine have been reported to induce
positive, negative and cognitive phenotypes such as psychosis-like dissociative states and
neurocognitive disturbances in healthy individuals like those observed in people with
schizophrenia [63–68]. Furthermore, these drugs exacerbate symptoms, including psychosis
in individuals with schizophrenia [66,69,70]. The NMDAR hypothesis was first proposed
soon after, in the late 1970s–1980s, when it was found that PCP and ketamine carry out
their actions via NMDAR blockade [64,71–73]. The extensive literature drawing parallels
between NMDAR antagonism and many of the unique features of schizophrenia have led
some to postulate that these antagonists might act via the same mechanisms that become
dysfunctional in this disorder [74–76]. In support of this, studies in rodents have shown
that knockdown of the obligatory GluN1 subunit of the NMDAR can result in phenotypes
relevant to schizophrenia, including hyperlocomotion (proposed to be indicative of a
striatal hyperdopaminergic state which underlies positive symptoms such as psychosis),
anhedonia, social deficits, impaired learning and abnormal neuronal oscillations [77–82].

Although NMDAR hypofunction has been linked to schizophrenia symptoms, the
precise underlying mechanisms are still unclear. One hypothesis is that it is primarily
the dysfunction of NMDARs on GABAergic interneurons, rather than more widespread
NMDAR dysfunction, which contributes to the molecular, physiological and behavioural
characteristics of schizophrenia [35,83]. GABAergic interneurons are stimulated by postsy-
naptic NMDAR activation and, in turn, synapse onto excitatory glutamatergic pyramidal
cells in a negative feedback loop. GABAergic interneurons connect to hundreds of pyra-
midal cells in this manner, enabling them to coordinate synchronised network activity
throughout the brain, including the hippocampus. The activity of these glutamatergic pyra-
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midal cells, in turn, drives downstream striatal dopaminergic neurons (Figure 1) [84,85]. In
this way, any disruption to normal NMDAR function would lead to downstream GABAer-
gic and dopaminergic dysregulation. In line with this theory, studies conducted in healthy
humans and in rodent models show that administration of NMDAR antagonists counterin-
tuitively results in the hyperactivity of cortical pyramidal neurons and enhanced cortical
glutamate release by disinhibition [86–95]. This is corroborated by brain imaging data
in both humans and rodents showing that the administration of an NMDAR antagonist
results in net excitation and decreased coordinated burst-firing in the prefrontal cortex,
which is linked to cognitive deficits [89,96–99]. This cortical disinhibition suggests that
NMDAR antagonists may be preferentially targeting the NMDARs on GABAergic interneu-
rons. Additionally, NMDAR antagonists have been shown to reproduce schizophrenia-like
dopaminergic dysfunction, including an increase in striatal D2 receptors and dopamine
release [100–103]. This striatal hyperdopaminergic state has been linked to the positive
symptoms of schizophrenia. In this way, NMDAR hypofunction might be resulting in
a cortical excitatory/inhibitory (E/I) imbalance, affecting the ability of interneurons to
synchronise firing across neural networks, and driving the changes in the dopaminergic
system, ultimately culminating in the clinical symptoms of schizophrenia.
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Figure 1. Mechanisms by which dysfunction of GluN2D-containing NMDARs could potentially result
in symptoms of schizophrenia. This simplified circuit shows that, in healthy individuals, GluN2D-
containing NMDARs stimulate GABAergic interneurons on which they are expressed, which, in
turn, mediate inhibition and coordinate the synchronized firing of networks of excitatory pyramidal
neurons. These pyramidal neurons, in turn, stimulate dopaminergic (DA) neurons in the midbrain
(via the ventral striatum and ventral pallidum, not shown) which project to the associative striatum.
In healthy individuals, this circuit is under homeostatic balance, leading to gamma oscillations
and healthy cognition. In schizophrenia, hypofunction of the GluN2D-containing NMDARs could
lead to GABAergic interneurons increasing excitation of pyramidal neurons by reducing inhibition
(disinhibition) onto pyramidal neurons. The resulting aberrant increase in cortical excitation would
lead to abnormal neuronal oscillations and impaired cognition. Moreover, this hyperactivity might
lead to an overdrive in midbrain DA neurons and enhanced striatal DA, which has been linked to the
positive symptoms of schizophrenia.
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In recent years, there has been mounting evidence of the dysfunction and/or dysregu-
lation of NMDAR-mediated neurotransmission in schizophrenia. Several schizophrenia
candidate genes that affect NMDAR signalling have been identified, including GRIN1,
GRIN2A, GRIN2B and GRIN2D, which are genes encoding the GluN1, GluN2A, GluN2B
and GluN2D subunits of the NMDAR, respectively, as well as the gene encoding D-amino
acid oxidase (DAAO), which regulates the availability of D-serine, a co-agonist at NM-
DARs [11,104–106]. Findings from other genetic and post-mortem patient studies have
further suggested that NMDAR signalling is disrupted in schizophrenia [33,107–109].

The contribution of the GluN1, GluN2A and GluN2B subunits to schizophrenia pathol-
ogy and symptoms has already been well researched and reported (see [34,110–112]). This
review will instead focus on the relatively understudied GluN2D subunit, as its unique
developmental expression pattern, cellular specificity and electrophysiological properties
suggest that it may play a role in the NMDAR hypothesis of schizophrenia. To this end, we
firstly outline some of these unique physiological features, and then describe the changes
observed in this subunit in people with schizophrenia. Finally, we discuss how alterations
in the expression and function of the GluN2D subunit may contribute to schizophrenia.

4. GluN2D Subunit
4.1. GluN2D Receptor Subunit Expression and Distribution

The GluN2D (common names: NMDAR2D, NR2D, GluRε4) subunit is encoded by the
GRIN2D gene, which consists of 13 exons, spanning 49.3kB, and is located on chromosome
19q13.1-qter in the human genome [39]. The GRIN2D gene has two potential splice isoforms
(NR2D-1 and NR2D-2), the longest of which contains 1356 amino acids [39,113]. In rodents,
GluN2D has been extensively characterized; expression levels are first detected between
embryonic day (E)15 and 18 during late-embryogenesis, with levels peaking by post-natal
day (P)7–10 [114,115]. The GluN2D mRNA and protein expression levels decrease gradu-
ally after the early neonatal phase until late adolescence (P40–50), when they reach their
relatively low steady-state expression level [61,114–116]. During the embryonic and early
neonatal phases, the expression of GluN2D is widespread and detected in several regions,
including the spinal cord, midbrain nuclei, diencephalon (thalamus, hypothalamus), certain
basal ganglia nuclei (substantia nigra and subthalamic nucleus), retina, olfactory bulb, cere-
bellum, cerebral cortex and hippocampus [60,61,113,114,117]. The ubiquitous distribution
of the GluN2D subunit during the early phases of life makes this subunit particularly
interesting amongst the NMDAR subunits as it suggests that GluN2D plays a critical role
in modulating circuit connectivity and function during neurodevelopment. This could be
of significance when considering a disorder such as schizophrenia that is thought to have
its origins in early development [118,119].

As the rodent ages and GluN2D expression levels reduce, it becomes more localized
to distinct cell subtypes [61,114,115]. This is especially apparent in the hippocampus
and cortex, where multiple studies have shown that GluN2D is enriched in parvalbumin
(PV)-containing GABAergic interneurons in mature rodents, whereas its expression and
activity on glutamatergic pyramidal cells decreases [117,120–123]. Electrophysiological
analyses from the adult mouse medial prefrontal cortex (mPFC) showed that a GluN2C/D
positive allosteric modulator, CIQ(+), increased the intrinsic excitability of interneurons and
enhanced excitatory postsynaptic currents (EPSCs) from interneurons, whilst not having
any effect on the surrounding pyramidal cells [121]. Another study found that while CIQ(+)
enhanced EPSCs in WT mice, this effect was missing in GluN2D KO mice [122]. The
sustained expression of GluN2D-containing receptors on interneurons over development
may suggest that this subunit is required to maintain proper inhibitory drive and control
overall circuit function [124,125].

In humans, the spatial and temporal expression of GluN2D is thought to be consis-
tent with that reported in rodents; however, it is yet to be well characterised. In human
foetal brains, GluN2D mRNA is abundantly expressed and is one of the predominant
NMDAR subunits expressed between gestational weeks 8 and 20 [126]. In contrast, a
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study of neurologically normal, adult human post-mortem brains reported only moder-
ate expression of GluN2D mRNA in the prefrontal, parietal and motor cortices, where
instead the major subtypes expressed were the GluN2A and GluN2B subunits [127]. This
study also reported that whilst GluN2D expression was low within most neurons in the
hippocampus, expression was moderately intense within a small subset of hippocampal
neurons, particularly in the hilus, a region containing many interneurons [127]. A recent
study which used laser microdissection to isolate pyramidal neurons and PV+ interneurons
from the human post-mortem dorsolateral PFC (dlPFC), combined with RNA sequencing
and microarray, provided evidence that the GluN2D subunit is indeed particularly enriched
in PV+ interneurons, but not pyramidal neurons [121]. It should be noted, however, that
whilst the interneurons that were isolated for this study expressed markers specific to PV+
interneurons, such as KCNS3, they also expressed markers common to other interneu-
ron types, such as somatostatin, and thus might not be delimited to PV+ interneurons
alone [121]. Another post-mortem in situ hybridization study revealed that in control
human brains, the GluN2D subunit is preferentially expressed in layers II, IIIa-c, IV, Va and
VIa of the cerebral cortex and at much higher levels in the prefrontal cortex compared with
the parieto-temporal or cerebellar cortices [128].

Multiple studies examining the subunit composition of NMDARs in the central ner-
vous system suggest that while the majority of GluN2D subunits are associated with the
GluN1 subunit, the GluN2D subunit also forms heteromeric assemblies with GluN2A
and/or GluN2B subunits in different brain regions and neuronal subpopulations [129–131].
For example, the GluN2D subunit is shown to primarily form a binary complex with
GluN1 in the thalamus of young (post-natal day 7) and adult rats, whereas this binary
complex is not detected at all in the rat midbrain, where instead the GluN2D subunit forms
triheteromeric assemblies with GluN1 and GluN2A or GluN2B [129]. The varying spatial
expression of the different subtypes of GluN2D-containing NMDARs suggest distinct
functional roles.

4.2. GluN2D Receptor Subunit Function

Glutamate displays 5–6 times greater potency at GluN2D-containing NMDARs than
GluN2A- or GluN2B-containing NMDARs [39,132]. Similarly, GluN1 agonists such as
glycine are most potent when the GluN2 subunit in the NMDAR is GluN2D [133]. GluN2D-
contaning NMDARs also have a weak Mg2+ block that is 10-fold lower than that of
GluN2A- or GluN2B-containing receptors and are also reported to have a slightly lower
Ca2+ permeability [134,135]. The resistance to Mg2+ block suggests that neurons express-
ing the GluN2D subunit may be more responsive to synaptic glutamate release. The
non-competitive NMDAR antagonist ketamine is more potent at, and shows approximately
five-fold selectivity for GluN2D-containing receptors, compared with GluN2A or GluN2B
subunits [136]. This, combined with the fact that GluN2D-containing receptors are pre-
dominantly expressed on interneurons, may suggest that the GluN2D-containing receptors
might be involved in the cortical disinhibition induced by certain NMDAR antagonists
such as ketamine [121,137]. Another unique feature of GluN2D-containing receptors is that
they have the slowest deactivation rate of the GluN2 receptor subtypes, exhibiting 10-fold
slower receptor deactivation than GluN2B and GluN2C receptors and 100-fold slower
than GluN2A receptors [39,62,138]. Application of glutamate to NMDARs containing
the GluN2A subunit was found to generate a macroscopic current with a deactivation
time of tens of milliseconds compared with several seconds for GluN2D-containing NM-
DARs [138]. Importantly, this prolonged decay time is matched with an almost complete
lack of desensitization, giving this subunit the capacity to shuttle large quantities of ions
across the plasma membrane in order to sustain depolarization for a long enough period to
initiate burst-firing [61,138,139]. This ability to generate burst-firing would be especially
important for the interneurons on which they are expressed, possibly at least partially
contributing to their rhythmic, oscillatory nature [137]. Thus, the unique electrophysio-
logical properties of the GluN2D subunit, including resistance to Mg2+ blockade and a
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remarkably long channel decay latency, might prove important for the integrative functions
of the interneurons where this subunit is predominantly expressed. However, it should be
noted that this receptor has a very low open channel probability of 1–4% and, as mentioned
previously, lower Ca2+ permeability than the other GluN subtypes and is also considered a
low-conductance NMDAR, which might imply that it is less effective at depolarizing the
postsynaptic membrane and triggering downstream signalling events [39,140].

GluN2D-containing receptors play a role in both presynaptic and postsynaptic neuro-
transmission. Studies have reported GluN2D-containing NMDARs on interneurons in the
hippocampus and neocortex where they play a key role in postsynaptic signalling [122,141].
GluN2D-containing receptors are thought to enable interneurons to synchronize and coor-
dinate the firing of large groups of cortical pyramidal neurons. A recent study showed that
tonic activation of these GluN2D-containing NMDARs on developing cortical interneurons
is required for proper intrinsic excitability, dendritic arborization, GABAergic synapto-
genesis and inhibitory tone onto excitatory pyramidal cells [141]. GluN2D-containing
NMDARs have also been reported on the dendrites of neurons in the subthalamic nucleus,
on dopaminergic projection neurons in the substantia nigra pars compacta and in the
dorsal horn of the spinal cord, where they contribute to the modulation of the indirect
pathway, mediate dopamine release to the striatum and play a role in pain perception,
respectively [142,143]. GluN2D-containing NMDARs expressed at presynaptic sites are
thought to play a modulatory role in the hippocampus and cerebellum. In the hippocam-
pus, GluN2D, along with GluN2B and postsynaptic metabotropic glutamate receptors,
have been shown to be critical for the induction of spike-time-dependent LTD [144]. This
is a form of synaptic plasticity that occurs when the timing and order of spikes from the
pre- and postsynaptic neurons leads to a long-lasting weakening of the synaptic connection
between them, and is important for refining synapses and neural circuits both during
development and learning and memory in adults [144,145]. In the cerebellum, presynaptic
GluN2D-containing NMDARs help fine tune the release of GABA onto Purkinje cells [146].

Interestingly, it has been reported that the human GRIN2D gene contains four estrogen-
responsive elements which are highly preserved in the rat, suggesting that the GluN2D
subunit might be under neuroendocrine control [147]. In line with this, a study using
ovariectomised rats found an upregulation of GluN2D mRNA in the hypothalamus fol-
lowing 17β-estradiol treatment [147]. Given the well-established links between fluctuating
levels of 17β-estradiol and schizophrenia onset and symptom severity [148], it is intrigu-
ing to consider that one of the actions by which 17β-estradiol may exert its effects is via
regulation of GluN2D and other NMDAR subunits [149].

Overall, considering its expression peaks during development, and that it is pre-
dominantly located on interneurons where its unique properties likely contribute to the
integrative function of the interneurons, it is highly likely that the GluN2D receptor subunit
plays an important role in the NMDAR hypothesis of schizophrenia.

5. Alterations to GluN2D in Schizophrenia

There is evidence to suggest that the GluN2D subunit is altered in schizophrenia. A
study of approximately 200 Japanese people with schizophrenia found single nucleotide
polymorphisms (SNPs) in the gene for the GluN2D receptor that might contribute to
schizophrenia susceptibility [150]. They report that specific combinations of four SNPs
within the GRIN2D gene were significantly associated with schizophrenia. These spe-
cific combinations were found in three pairs of SNPs: INT10SNP–EX13SNP2, EX13SNP2–
EX13SNP3 and EX6SNP–EX13SNP2 [150]. A recent mutation-screening study also identi-
fied an ultra-rare, loss-of-function splice-site mutation (c.1412G>A) in the exonic region of
the GRIN2D gene, which may lead to the creation of a truncated, nonfunctional GluN2D
receptor, thereby contributing to schizophrenia risk [151]. This study additionally found
four missense mutations in schizophrenia patients in the GRIN2D gene, and although the
actual functional impact of these amino acid substitutions was not examined, in silico
analysis classified each of the four variants as disease-causing based on their predicted
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effect on protein function [151]. An in situ hybridization study on post-mortem human
tissue reported a 53% increase in the proportion of GluN2D mRNA expression in the PFC
of people with schizophrenia (see Table 1) [128]. This increase in the proportion of GluN2D
expression was not seen in anti-psychotic-treated control brains, proving that the change
was specific to schizophrenia and could not be attributed to treatment with anti-psychotics
alone [128]. However, in another in situ hybridization study, no change in the mRNA levels
of the GluN2D subunit was observed in the dlPFC of people with schizophrenia [152].
Furthermore, in a post-mortem Western blot study, no change in the protein expression of
the GluN2D subunit was observed in the dlPFC and anterior cingulate cortex in elderly
people with schizophrenia when compared with a control group [153]. In one human
post-mortem study, laser microdissection was used to isolate a population of glutamatergic
relay neurons and another mixed glial and GABAergic interneuron population (including
PV+ interneurons) from the medial dorsal thalamus of people with schizophrenia and
controls [154]. This study revealed decreased expression of the GluN2D transcript in gluta-
matergic relay neurons in the medial dorsal thalamus, whilst no changes were observed
in the mixed glia and interneuron population in schizophrenia [154]. These relay neurons
project to the PFC, suggesting that alterations to GluN2D in schizophrenia might contribute
to the disruption of the thalamocortical circuit thought to be involved in the attention
and sensory processing deficits and negative symptoms seen in schizophrenia [155–157].
Another study of a small sample size (n = 19) found that GluN2D gene expression was
increased in the right cerebellum of post-mortem human schizophrenia brains compared to
controls [158]. However, this study included people with schizophrenia who had been tak-
ing anti-psychotic medications chronically, which could have contributed to any differences
observed compared to controls. These discrepant results highlight the need for further
studies examining the region- and cell-specific expression and function of the GluN2D
subunit in the brains of people with schizophrenia. In the following sections, the expected
consequence of mutations in GRIN2D and changes in GluN2D expression are discussed.

Table 1. Summary of post-mortem studies of GluN2D NMDAR subunit expression in schizophrenia.

Reference Outcome Measure Brain Region Direction of Change

[128] mRNA Prefrontal cortex and cerebellum ↑ in PFC
↔ in cerebellum

[152] Receptor binding and mRNA Dorsolateral prefrontal cortex ↔

[153] Protein Dorsolateral prefrontal cortex and
anterior cingulate cortex ↔

[154] mRNA Medial dorsal thalamus ↓ in glutamatergic relay neurons
↔ in mixed glial-interneuronal cells

[158] Receptor binding and mRNA Cerebellum
↑ mRNA in the right cerebellum
↔ mRNA in left cerebellum and

receptor binding

PFC = prefrontal cortex, mRNA = messenger ribonucleic acid. ↑ = increased expression, ↓ = decreased expression,
↔ = no change.

6. Consequences of Loss of GluN2D Function

Strategies to explore the influence of GluN2D function include using animal models
and pharmacological tools to study behavioural and physiological measures which have
relevance to schizophrenia.

6.1. Genetic Models

GluN2D-knockout (KO) mice are viable, reproduce and grow normally, and have
no overt changes in neuronal histology [159]. Moreover, mRNA levels of the other NM-
DAR subunits are unaffected in these mice [159]. These mice, however, exhibit unique
behavioural phenotypes, including diminished spontaneous motor movements in open-
field tests (Table 2) [159,160]. GluN2D-KO mice also display deficits in spatial learning
and memory, as well as impaired contextual fear memory, but show no deficits in the
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novel object recognition task [137,161,162]. Most studies report no abnormalities in motor
function as measured by the rotarod test, nor any differences in anxiety when compared
with WT mice during the light–dark compartment test and elevated maze test [159,163].
However, Miyamoto et al. report reduced sensitivity to stress induced by the elevated-plus
maze, the light–dark compartment test and forced swim tests in these KO mice [160]. The
discrepancies in these findings might be due to the differences in the way the tests were
performed, which could be sensitive to subtly different anxiety- or fear-related behaviours.
This study also reported a downregulation of dopamine, serotonin, norepinephrine and
their metabolites in the hippocampus and striatum of GluN2D-KO mice [160]. GluN2D-KO
mice are reported to have a normal prepulse inhibition response, which is known to be
deficient in schizophrenia [137,164]. This suggests that they might not model all aspects of
schizophrenia. Interestingly, the hyperlocomotion-inducing effects of PCP and ketamine are
reduced in GluN2D-KO mice, indicating that the GluN2D subunit plays an important role
in mediating the effects of these drugs [137,163,165]. Additionally, the motor impairments,
locomotor sensitization and increase in extracellular dopamine seen following PCP or
ketamine administration in WT mice is not seen in GluN2D-KO mice [163,165,166]. These
data suggest that the GluN2D subunit mediates the hyperdopaminergic-inducing effects of
the NMDAR antagonists, PCP and ketamine. Autoradiography studies revealed that the
increase in neuronal activity induced by sub-anaesthetic ketamine in the medial prefrontal
cortex, entorhinal cortex, presubiculum and caudate putamen in WT mice is not seen in
GluN2D-KO mice [98,137,167].

Table 2. Summary of schizophrenia-relevant behavioural phenotypes in GluN2D-knockout mice.

Reference Sex Pharmacological
Manipulation and Dose

Behavioural
Domain

Examined
Behavioural Tests Used Main Findings

[159] Not specified N/A Locomotion, anxiety,
novelty preference

Open field test, novelty
preference test, light–dark
compartment test, elevated

plus-maze

↓ spontaneous locomotion,
↓ novelty preference,
↔ change in anxiety

[160] Not specified N/A Locomotion, anxiety
Open field test, light–dark
compartment test, elevated
plus-maze, forced swim test

↓ spontaneous locomotion,
↓ anxiety

[163] Male Acute and chronic PCP
(3 mg/kg) Locomotion Open field test ↓ PCP-induced

hyperlocomotion

[161] Male N/A

Locomotion,
contextual fear

memory, spatial
memory

Open field test, fear
conditioning test, Y-maze

↓ spontaneous locomotion,
↓ contextual fear memory,

↓ spatial memory

[165] Male and female Acute PCP (3 mg/kg) Motor function Rotarod
↓ PCP-induced motor

impairment

[137] Male Acute ketamine
(30 mg/kg)

Locomotion, spatial
memory

Open field test, Morris
water maze

↓ ketamine-induced
hyperlocomotion,
↓ spatial memory

acquisition

[166] Male Subchronic ketamine
(25 mg/kg) Locomotion Open field test ↓ ketamine-induced

hyperlocomotion

[162] Not specified

Acute (RS)-ketamine (10
or 20 mg/kg),

(R)-ketamine (10 or
20 mg/kg), (S)-ketamine

(10 or 20 mg/kg)

Novel object
recognition task

Novel object recognition
task

↓ (R)-ketamine-induced
novel object recognition

deficits

N/A = not applicable, PCP = phencyclidine. ↓ = decreased, ↔ = no change.

GluN2D-KO mice were reported to have similar basal neural oscillatory power be-
tween frequency ranges 30 and 200 Hz when compared with WT mice [168]. However,
whilst the administration of the NMDAR antagonists MK-801, ketamine and memantine
increased oscillatory power in WT mice, they had very little effect on GluN2D-KO mice,
especially at the high gamma frequency range (65–140 Hz) [168]. Similarly, Sapkota et al.
reported that ketamine increased gamma frequency (30–140 Hz) oscillatory power in WT
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mice but elicited a much less pronounced increase in GluN2D-KO mice, which was more
apparent at the high frequency (>60 Hz) range [137]. This suggests a role for the GluN2D
subunit in modulating the high-frequency neural network oscillations induced by NMDAR
antagonists. The study by Sapkota et al. also found reduced PV cell density in the substan-
tia nigra and basolateral/lateral amygdala and a trend towards a reduction in the mPFC
and hippocampus in GluN2D-KO mice compared with WT mice [137].

These studies suggest the GluN2D subunit expressing NMDA receptors are critical in
mediating many of the effects of NMDAR antagonists, like ketamine, on the behaviour and
electrophysiology that is relevant to schizophrenia, and thus may, in turn, suggest a role for
the GluN2D subunit in the development of schizophrenia. There is evidence to suggest that
GluN2D-containing NMDARs can contribute to neuronal networks that underlie cognition
and which are found to be disrupted in schizophrenia. GluN2D-mediated signalling could
be promising as a potential therapeutic target for specific symptoms observed in individuals
with schizophrenia.

6.2. Pharmacological Manipulations

Although currently, to the best of our knowledge, there are no GluN2D-selective drugs
available, competitive antagonists with 3–10-fold higher selectivity for GluN2C/GluN2D
compared with GluN2A/GluN2B-containing NMDARs have been developed. One such
compound, (2R*,3S*)-1-(phenanthrenyl-2-carbonyl)piperazine-2,3-dicarboxylic acid (PPDA),
resulted in more potent inhibition of LTD than LTP in rat hippocampal slices, suggesting
a role for the GluN2D (and GluN2C) NMDAR subunits in hippocampal LTD [169]. An-
other study using PPDA showed that GluN2D-containing NMDARs also contribute to
extrasynaptic currents in rat CA1 neurons [170]. A recent study used an analogue of PPDA,
(2R*,3S*)-1-(9-bromophenanthrene-3-carbonyl)piperazine-2,3-dicarboxylic acid (UBP145),
in combination with GluN2D-KO mice, to show that GluN2D-containing NMDARs play
a role in short-term potentiation (STP) as well as LTP in the mouse hippocampus [171].
This study reported that UBP145 partially inhibited LTP and the slow component of STP
in WT but not GluN2D-KO mice [171]. Whilst the function of STP is lesser known than
LTP, it has been hypothesized that it might play a role in forms of short-term memory, such
as working memory which is known to be disrupted in schizophrenia [172]. These data
together suggest that GluN2D-containing NMDARs contribute to synaptic plasticity and
thus cognitive processes in complex ways. Therefore, it is possible that dysregulation of
these receptors is involved in the cognitive dysfunction seen in schizophrenia.

7. How Might Alterations to the GluN2D Subunit Contribute to Schizophrenia?

Several characteristics of the GluN2D subunit, including peak expression early in
development, its localization to PV+ interneurons in the cortex and hippocampus and,
additionally, reports of alterations to this subunit in post-mortem tissue from people with
schizophrenia, and evidence of GRIN2D being a schizophrenia candidate gene, suggest
that it may be involved in schizophrenia pathology. Below, we propose a mechanism by
which dysfunction of the GluN2D receptor could contribute to schizophrenia.

7.1. GluN2D Subunit and Parvalbumin-Positive GABAergic Interneurons

As previously discussed, inhibitory interneurons have been identified as the key locus
or point of convergence of the glutamatergic, GABAergic and dopaminergic hypotheses of
schizophrenia and are also implicated in the cognitive deficits seen in schizophrenia. Inter-
estingly, in situ hybridization, electrophysiology and immunohistochemistry studies have
revealed that GluN2D-containing NMDARs are specifically enriched in the PV-expressing
subclass of interneurons in the hippocampus and PFC, two regions that underlie learning
and memory function (refer to Section 4.1) [120–122,141]. This makes the GluN2D subunit
particularly intriguing in the context of schizophrenia as several studies have shown that
the hypofunction of NMDARs at fast-spiking PV-containing interneurons is sufficient to
produce schizophrenia-like symptoms, including cognitive dysfunction [84,173–175].
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Despite there being more than 20 different classes of GABAergic interneurons [176], it
is the interneurons containing the calcium-binding protein, PV, that have been proposed to
be especially important in schizophrenia [177,178]. Not only are PV-containing interneurons
crucial for regulating cortical inhibition via the pyramidal neurons they innervate, but also
for the generation of synchronous gamma-frequency oscillations [178–183]. Gamma oscilla-
tions are synchronous electrophysiological brain rhythms in the gamma frequency range
(30–80 Hz) that are crucial for information processing and appropriate cortical function and
underpin a wide range of cognitive processes, including those disrupted in schizophrenia
like working memory [184–186]. Abnormal gamma-frequency synchrony is a major patho-
logical characteristic of schizophrenia and underlies cognitive deficits [186]. For example,
a recent study found lower-amplitude gamma oscillations in people with schizophrenia
while they were performing a working memory task [187]. Similarly, in another cohort
of people with schizophrenia, gamma-band activity was reduced during the sensory pro-
cessing state during an auditory task, but baseline gamma power during the resting state
was increased when compared with healthy controls [188,189]. Additionally, NMDA antag-
onists like ketamine and PCP also induce these same gamma oscillatory disturbances in
healthy humans and rodent models of schizophrenia [95,190–195]. Thus, it is possible that
dysfunction of the GluN2D subunit, which is especially enriched in PV cells in the cortex
and hippocampus, might contribute to the abnormal gamma oscillations and the associated
cognitive deficits seen in schizophrenia. Indeed, studies have found that genetic ablation of
the GluN2D subunit from mice significantly reduces NMDAR antagonist-induced high-
frequency gamma oscillations [137,168]. Alterations of the GluN2D subunit could affect the
ability of PV cells to mediate the inhibition of excitatory pyramidal cells in a synchronised
manner, disrupting the E/I balance and resulting in abnormal neural oscillations. Indeed, a
recent study has found that conditional deletion of the GluN2D subunit from PV interneu-
rons resulted in hyperexcitation of the medial PFC and disruptions to the feedforward
inhibitory circuit [196]. Behaviourally, these mice exhibited hyperlocomotion, increased
anxiety-like behaviour and impaired short-term memory and cognitive flexibility [196].
This study also found that GluN2D ablation from PV interneurons resulted in a down-
regulation of genes involved in GABAergic and dopaminergic synapse function such as
GAD67 and TH, as well as schizophrenia susceptibility genes such as Disc1, ErbB4 and
their downstream targets [196], thus suggesting a critical role for the GluN2D subunit in
PV cells in modulating schizophrenia-relevant changes in neural circuitry, signalling and
behaviours. The selective expression of the GluN2D subunit in PV+ interneurons suggests
it may be a potential therapeutic target that could reverse interneuronal hypofunction
and the currently untreated cognitive impairments that result from these deficits. Positive
modulation of the GluN2D-subunit-containing NMDA receptor indeed increases the firing
rates and restores the GABAergic network stability and reversed working memory deficits
in a mouse model of schizophrenia symptoms [121,122,197]. However, as the GluN2D
subunit is so critical to development, it may prove a challenge to reverse any deficits. A
recent study showed that tonic activation of GluN2C/GluN2D-containing receptors during
development is needed for proper cortical PV interneuron morphological maturation and
complexity, circuit integration and maintaining proper inhibitory tone onto excitatory pyra-
midal cells [141]. The study found that blockade of GluN2C/GluN2D-containing receptors
between post-natal days 7 and 9 was sufficient to cause long-lasting cortical inhibitory
network deficits, as seen in schizophrenia [141].

Cortical pyramidal neurons innervated by PV cells stimulate dopaminergic neurons
in the midbrain which project to the associative striatum. The associative striatum includes
the rostral and dorsal part of the caudate nuclei and is implicated in the pathophysiology
of schizophrenia [198–201]. The associative striatum is rich in dopamine receptors and
dopamine afferents and receptors and is thus thought to be the primary site of action
of antipsychotics. As such, any disruption to the GluN2D-containing NMDARs on PV
cells could also indirectly affect midbrain dopaminergic neurons and lead to enhanced
dopamine release in the striatum which has been linked to the positive symptoms of
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schizophrenia [202]. Following treatment with ketamine, Yamamoto et al. found an
increase in locomotor activity and nitric oxide (NO) synthesis in the dendrites of medium
spiny neurons in the dorsal striatum and PFC in WT but not GluN2D-KO mice [166].
Postsynaptic neuronal NO synthesis is functionally coupled to the stimulation of NMDARs.
The failure of ketamine to induce an increase in striatal NO synthesis in GluN2D-KO
mice provides support for the role of GluN2D-containing receptors in the corticostriatal
neuronal circuit. Similarly, PCP induced an increase in the number of Fos-positive (marker
of neuronal activity) cells in the striatum, prefrontal cortex, thalamus and subthalamic
nuclei of WT but not GluN2D-KO mice [165]. This suggests that the frontal cortex–dorsal
striatum pathway is likely activated by the inhibition of GluN2D-containing NMDARs.

7.2. GluN2D Subunit and Dopaminergic Neurons

Multiple studies have found that the GluN2D subunit forms functional NMDAR
channels in the substantia nigra pars compacta dopaminergic neurons [131,203–205]. The
substantia nigra plays an essential role in modulating motor movement and reward func-
tions. Interestingly, GluN2D-KO mice have a hypolocomotor phenotype and the hyper-
locomotor effects of PCP and ketamine are reduced in GluN2D-KO mice [137,163,166].
The amount of dopamine release in the forebrain following PCP treatment is also reduced
in GluN2D-KO mice [163]. This suggests that GluN2D-containing NMDARs might play
either a direct or indirect role in modulating dopaminergic function and, consequently,
locomotor activity. In people with schizophrenia, there are reports of long-term deficits
in basic motor function and control [206–208]. Thus, it is possible that dysfunction of the
GluN2D subunit could affect burst-firing in these dopaminergic neurons, disrupting their
function in the nigrostriatal circuitry, which is hypothesised to underlie motor symptoms in
schizophrenia [209]. Impairments in reward processing have also been reported in people
with schizophrenia and may underlie some of the negative symptoms in schizophrenia,
such as anhedonia and a lack of motivation [210,211]. A study by White et al. reported
that glutamate in the substantia nigra plays a role in reward processing and found that
glutamatergic dysfunction in the substantia nigra could contribute to reward-processing
deficits [212]. Thus, any alterations to GluN2D-containing NMDARs in the substantia nigra
might also play a role in reward-processing deficits. Indeed, Yamamoto et al. reported
that ablation of the GluN2D subunit in mice resulted in an anhedonic state, indicated by a
reduction in sucrose preference [166]. Additionally, loss of GluN2D-containing NMDARs
resulted in anxiety- and depressive-like behaviours in mice which was linked to disrup-
tions to the modulation of neural activity by GluN2D-containing NMDARs in the bed
nucleus of the stria terminalis [213]. Together, these studies suggest a role for GluN2D-
containing NMDARs in mediating emotional behaviours that are known to be affected in
schizophrenia.

8. Limitations

As this is a narrative rather than a systematic review, there is potential for bias in
the selection of publications which may, in turn, bias the conclusions of this review. A
scoping review with clearly developed, predetermined inclusion and exclusion criteria and
keywords might have led to more replicable and verifiable conclusions. Furthermore, due
to the heterogeneity of the available literature on the GluN2D subunit, we are unable to
make a conclusive statement on the role of the GluN2D subunit in schizophrenia. Instead,
our review of the literature suggests that further research needs to be undertaken to fully
understand the contribution of the GluN2D subunit to this disorder. A major contributor
to the observed heterogeneity may be that the changes in GluN2D in schizophrenia are
cell-specific. Here, recent advances in single-cell and/or single-nuclei RNA sequencing will
enable a more detailed understanding of the role of GluN2D in schizophrenia. Additionally,
we were not able to adequately investigate any potential sex-specific differences in the
expression of the GluN2D subunit or its function or effects in humans or animal models as
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sex was not always included as a variable in the studies examined here. This stresses the
importance of future work to always include sex as a variable.

9. Conclusions

Precipitating factors, including any combination of genetic predisposition and envi-
ronmental factors like maternal infection or obstetric complications, can lead to NMDAR
hypofunction disproportionately at fast-spiking PV-containing interneurons during devel-
opment. This results in pathological phenotypes including impaired oscillatory activity
and neuronal synchrony, cortical disinhibition and dopaminergic dysfunction, ultimately
giving rise to the various symptoms of schizophrenia. Disruption of the GluN2D subunit
and alteration to GluN2D neurotransmission could be a molecular pathway contributing to
the symptomatology of schizophrenia. This is of importance as it may provide new insights
into the aetiology of this disorder and might even lead to the development of novel drugs
for the treatment of specific schizophrenia symptoms, including cognitive dysfunction.
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