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Abstract: The data on tumor molecular profiling of European patients with prostate cancer is limited.
Our aim was to evaluate the prevalence and prognostic and predictive values of gene alterations in
unselected patients with prostate cancer. The presence of gene alterations was assessed in patients
with histologically confirmed prostate cancer using the ForeSENTIA® Prostate panel (Medicover
Genetics), targeting 36 clinically relevant genes and microsatellite instability testing. The primary
endpoint was the prevalence of gene alterations in homologous recombination repair (HRR) genes.
Overall, 196 patients with prostate cancer were evaluated (median age 72.2 years, metastatic disease
in 141 (71.9%) patients). Gene alterations were identified in 120 (61%) patients, while alteration in
HRR genes were identified in 34 (17.3%) patients. The most commonly mutated HRR genes were
ATM (17, 8.7%), BRCA2 (9, 4.6%) and BRCA1 (4, 2%). The presence of HRR gene alterations was
not associated with advanced stage (p = 0.21), age at diagnosis (p = 0.28), Gleason score (p = 0.17) or
overall survival (HR 0.72; 95% CI: 0.41–1.26; p = 0.251). We identified clinically relevant somatic gene
alterations in European patients with prostate cancer. These molecular alterations have prognostic
significance and therapeutic implications and/or may trigger genetic testing in selected patients.
In the era of precision medicine, prospective research on the predictive role of these alterations for
innovative treatments or their combinations is warranted.

Keywords: prostate cancer; molecular profiling; genomics; mutations; TMPRSS2-ERG; BRCA2;
overall survival; prognostic

1. Introduction

Prostate cancer is the most frequent cancer in men. Recent studies have reported
clinically significant germline pathogenic variants (PVs) in DNA repair genes, mainly
those participating in the homologous recombination pathway, including PVs in BRCA1,
BRCA2, ATM and CHEK2. In addition, germline mutations in mismatch repair (MMR)
genes have also been identified in a smaller proportion of patients with prostate cancer [1,2].
Finally, PVs in HOXB13, a tumor suppressor gene, have been implicated in increasing the
predisposition for prostate cancer [3]. Somatic mutations in DNA repair genes have also
been reported in prostate tumor tissue [4].

Importantly, PVs in different genes have been associated with poor prognosis in pa-
tients with prostate cancer. Patients with localized prostate cancer and carrying BRCA2
germline mutations have poorer clinical outcomes compared to patients without muta-
tions [5–7]. Studies have shown that BRCA2-associated prostate tumors exhibit an aggres-
sive phenotype and are often associated with the presence of the intraductal carcinoma of
the prostate pathology, a poor prognostic feature for prostate cancer [8].

The identification of germline and somatic mutations has several therapeutic impli-
cations. Mutations in genes participating in the homologous recombination repair (HRR)
system have been shown to be associated with clinical benefit from poly-ADP ribose poly-
merase (PARP) inhibitors [4,9–12]. Initially, olaparib was evaluated in a phase II clinical trial
in patients with metastatic castration-resistant prostate cancer (mCRPC) [4]. Among the
16 patients with homozygous deletions and/or deleterious mutations in DNA-repair genes
(BRCA1/2, ATM, CHEK2 and Fanconi’s anemia genes), 14 (88%) had a response to treatment
with olaparib. A randomized, double-blind, placebo-controlled, phase 2 trial evaluated
the combination of olaparib with abiraterone in patients with mCRPC and demonstrated
that the combination led to increased radiographic progression-free survival compared
to abiraterone monotherapy [13]. The TRITON2 was a phase II trial that evaluated the
administration of rucaparib to patients with metastatic mCRPC associated with a BRCA
alteration [11]. The objective response rate was 43.5% in patients with measurable disease.
Recently, rucaparib was shown to be associated with longer imaging-based progression-free
survival (PFS) compared to the physician’s choice in patients with metastatic, castration-
resistant prostate cancer with a BRCA alteration [14]. In another phase II trial (TALAPRO-1),
the benefit of talazoparib was evaluated in previously treated patients with mCRPC and
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PVs in HRR genes [12]. The objective response rate was 29.8% in the patients of the study.
Based on the promising results of the aforementioned clinical trials, olaparib has been
approved by the Food and Drug Administration (FDA) for patients with mCRPC and dele-
terious or suspected deleterious germline or somatic mutations in HRR genes, who have
progressed following prior treatment with enzalutamide or abiraterone. Meanwhile, ruca-
parib has been approved for the treatment of patients with mCRPC and deleterious BRCA
mutations who have progressed after prior treatment with androgen receptor-directed
therapy and a taxane-based chemotherapy. Finally, immune checkpoint inhibitors have
shown significant clinical efficacy in patients with microsatellite instability (MSI)-high
prostate cancer [1].

Meanwhile, a significant number of investigators have evaluated the prevalence of
germline PVs in patients with prostate cancer, data regarding the prevalence of somatic
PVs is limited. Our aim was to evaluate the prevalence of clinically relevant somatic PVs in
patients with metastatic, locally advanced or high-grade prostate cancer and assess their
prognostic and predictive role in those patients.

2. Results
2.1. Patient Characteristics

Overall, 219 patients with prostate cancer were evaluated in this study. Twenty-three
patients were excluded due to insufficient or low-quality DNA extracted from the FFPE
specimen. The median age at diagnosis was 72.2 years (IQR: 64.3, 75.2). The majority
of patients (141 patients, 71.9%) presented with metastatic disease. Of the 184 patients
with available data for family history, 36 (19.6%) reported a family history of cancer, while
10 (5.4%) had a history of prostate cancer, specifically. The patients’ detailed clinicopatho-
logical characteristics are summarized in Table 1.

Table 1. Patient characteristics.

Factor Total
(N = 196)

Age at diagnosis 69.6 (46.8, 95.0)
PSA at diagnosis * 28.0 (0.01, 4155.0)
Family history of cancer *

No 148 (80.4)
Yes 36 (19.6)

Family history of prostate cancer *
No 176 (94.6)
Yes 10 (5.4)

Risk group *
Low 9 (6.8)
Intermediate 19 (14.3)
High 40 (30.1)
Very high 64 (48.1)
Unknown 1 (0.75)

Gleason Score *
2–6 15 (7.9)
7 40 (21.0)
8–9 125 (65.8)
10 10 (5.3)

Metastasis
No 55 (28.1)
Yes 141 (71.9)

* Data not available for all subjects. Missing values: age at diagnosis = 1, PSA at diagnosis = 51, family history of
cancer = 12, family history of prostate cancer = 10, risk group = 63, Gleason score = 6. Values presented as median
(min, max) or N (column %).
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2.2. Tumor Molecular Profiling

Tumor molecular alterations were identified in 120 of 196 (61%) patients. The most
commonly mutated genes are shown in Figure 1. Specifically, alterations in HRR genes
were reported in 34 (17.3%) patients, in 14.3% and 3.1% of patients with metastatic and
early disease, respectively. Commonly mutated HRR genes were ATM (17, 8.7%), BRCA2
(9, 4.6%) and BRCA1 (4, 2%). Rearrangements in TMPRSS2-ERG, a potentially prognostic
gene, were identified in 26 (13.3%) patients. Eight (4%) patients harbored alterations in
MMR genes.
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Markedly, comparison of the genotypes of 26 patients’ tumors sequenced with both
the Medicover Genetic’s prostate cancer assay and the custom Ampliseq IAD207308_231
panel yielded similar results in all but four instances. Specifically, tumor profiling with both
panels ascertained the lack of clinically significant variants in 9 patients and the presence
of 12 alterations in ATM, BRCA2, CTNNB1, MSH2, PIK3CA, PTEN and TP53 in 11 patients.
Meanwhile, TMPRSS2-ERG rearrangements and AR or MYC amplifications, present in
the tumors of 6 out of the aforementioned 26 patients, were exclusively identified by the
Medicover Genetic’s prostate cancer assay, since such structural variants are not targeted
by the Ampliseq IAD207308_231 panel. Of note, four variants were retrieved only with
the Medicover Genetic’s prostate cancer assay in three patient tumors; these variants were
targeted by the Ampliseq panel as well, which, considering the respective samples’ good
quality metrics in either case, could reflect the tumor’s heterogeneity in terms of different
subclones. In addition, microsatellite instability was detected in 6 out of 196 patients (3.1%)
(Supplemental Table S3). The profiles of gene alterations in the affected tumors are shown
in Figure 2 and Supplemental Table S3.

Sanger sequencing for germline analysis was implemented in five patients with an
available peripheral blood sample, and the PVs that were identified in the tumor implicated
a germline origin. In all five patients, a germline status was confirmed in the following
HRR genes: RAD51C (one patient) and ATM (four patients) (Supplemental Figure S1).
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2.3. Clinical Associations

A family history of cancer was more commonly reported in patients with tumors
harboring mutations in HRR genes (11 patients, 35.5%) compared to the rest of the patients
(25, 16.3%) (chi-square p = 0.014). The presence of HRR gene alterations (either of somatic
or of germline origin) was not associated with advanced stage (p = 0.21), age at diagnosis
(p = 0.28) or Gleason score (p = 0.17).

Clinical Outcomes

Within a median follow-up of 49.5 months (0.1–243.5), a total of 96 (49%) deaths were
reported. The median OS for patients with available outcome data (N = 190) was 81 months
(95% CI: 69.5–94.3). There was no difference in OS between patients with advanced prostate
cancer and PVs in HRR genes compared to patients without PVs in those genes (HR 0.72;
95% CI: 0.41–1.26; p = 0.251) or in patients with BRCA1/2 and ATM mutations compared
to the rest of the patients (HR 0.73; 95% CI: 0.40–1.31; p = 0.284) (Figures 3A and 3B,
respectively). Despite previously reported data, mutations in TMPRSS2-ERG were not
associated with prognosis in the patients of our study (HR 0.66; 95% CI: 0.35–1.24; p = 0.198)
(Figure 3C). The patients with mutations in TP53 had a worse OS compared to the rest of
the patients [54.6 months (95%CI 41.2–112.0) vs. 89.1 months (95% CI 75.7–103.0), HR 1.85;
95% CI: 1.17–2.91; p = 0.008] (Figure 3D). Finally, no association was identified in terms of
PFS between the aforementioned molecular subgroups of patients. Only one patient with
HRR alteration was treated with olaparib; therefore, no association with response to PARP
inhibitors could be performed.
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Figure 3. Prognostic significance of mutations in our patient cohort. There was no difference in overall
survival (OS) between patients with and without mutations in (A) homologous recombination repair
genes (HR 0.72; 95% CI: 0.41–1.26; p = 0.251), (B) BRCA1/2 and ATM genes (HR 0.73; 95% CI: 0.40–1.31;
p = 0.284) and (C) TMPRSS2 rearrangements (HR 0.66; 95% CI: 0.35–1.24; p = 0.198). (D) The presence
of TP53 mutations was associated with worse overall survival in patients with prostate cancer
(HR 1.85; 95% CI: 1.17–2.91; p = 0.008).

3. Discussion

Tumor molecular profiling is being extensively used to assess for the presence of
clinically relevant PVs that will enable individualization of treatment of patients with cancer.
However, tumor molecular data in patients with prostate cancer associated with clinical
data are scarce. In this study, we evaluated the prevalence of somatic PVs in clinically
relevant genes and combined clinical and genomic data to investigate their prognostic or
predictive significance in European patients with prostate cancer. We indeed identified
clinically relevant pathogenic variants in the patients of our study and demonstrated the
prognostic potential for select genes. These molecular alterations have prognostic and
therapeutic implications and/or may trigger genetic testing in selected patients.

The commonly mutated genes included TP53, TMPRSS2-ERG, ATM and PTEN. The
majority of TP53 variants laid within exons 4–8 which encode for the DNA binding domain
of the T53 protein and is a hotspot region frequently mutated across multiple cancer
types [15]. Likewise, most APC mutations were frameshift and nonsense mutations that
led to an early termination of the amino acid sequence and resulted in a loss of the FAT
and/or PI3K/PI4K catalytic domain and thereby a loss of ATM protein function [16]. In
addition, PTEN mutations in hotspot regions in the P-loop motif (p.Arg130Ter) as well
as in the greater phosphatase domain (p.Arg173His, p.Gly132Asp, p.Pro169_Ser170insIle,
p.Ala34CysfsTer10, p.Tyr27Cys) were identified in our cohort. The frequencies of these
mutated genes were similar to those of previously reported data in publicly available cancer

Figure 3. Cont.
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Figure 3. Prognostic significance of mutations in our patient cohort. There was no difference in overall
survival (OS) between patients with and without mutations in (A) homologous recombination repair
genes (HR 0.72; 95% CI: 0.41–1.26; p = 0.251), (B) BRCA1/2 and ATM genes (HR 0.73; 95% CI: 0.40–1.31;
p = 0.284) and (C) TMPRSS2 rearrangements (HR 0.66; 95% CI: 0.35–1.24; p = 0.198). (D) The presence
of TP53 mutations was associated with worse overall survival in patients with prostate cancer
(HR 1.85; 95% CI: 1.17–2.91; p = 0.008).
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clinically relevant pathogenic variants in the patients of our study and demonstrated the
prognostic potential for select genes. These molecular alterations have prognostic and
therapeutic implications and/or may trigger genetic testing in selected patients.

The commonly mutated genes included TP53, TMPRSS2-ERG, ATM and PTEN. The
majority of TP53 variants laid within exons 4–8 which encode for the DNA binding domain
of the T53 protein and is a hotspot region frequently mutated across multiple cancer
types [15]. Likewise, most APC mutations were frameshift and nonsense mutations that
led to an early termination of the amino acid sequence and resulted in a loss of the FAT
and/or PI3K/PI4K catalytic domain and thereby a loss of ATM protein function [16]. In
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p.Ala34CysfsTer10, p.Tyr27Cys) were identified in our cohort. The frequencies of these
mutated genes were similar to those of previously reported data in publicly available cancer

Figure 3. Prognostic significance of mutations in our patient cohort. There was no difference in overall
survival (OS) between patients with and without mutations in (A) homologous recombination repair
genes (HR 0.72; 95% CI: 0.41–1.26; p = 0.251), (B) BRCA1/2 and ATM genes (HR 0.73; 95% CI: 0.40–1.31;
p = 0.284) and (C) TMPRSS2 rearrangements (HR 0.66; 95% CI: 0.35–1.24; p = 0.198). (D) The presence
of TP53 mutations was associated with worse overall survival in patients with prostate cancer
(HR 1.85; 95% CI: 1.17–2.91; p = 0.008).

3. Discussion

Tumor molecular profiling is being extensively used to assess for the presence of
clinically relevant PVs that will enable individualization of treatment of patients with cancer.
However, tumor molecular data in patients with prostate cancer associated with clinical
data are scarce. In this study, we evaluated the prevalence of somatic PVs in clinically
relevant genes and combined clinical and genomic data to investigate their prognostic or
predictive significance in European patients with prostate cancer. We indeed identified
clinically relevant pathogenic variants in the patients of our study and demonstrated the
prognostic potential for select genes. These molecular alterations have prognostic and
therapeutic implications and/or may trigger genetic testing in selected patients.

The commonly mutated genes included TP53, TMPRSS2-ERG, ATM and PTEN. The
majority of TP53 variants laid within exons 4–8 which encode for the DNA binding domain
of the T53 protein and is a hotspot region frequently mutated across multiple cancer
types [15]. Likewise, most APC mutations were frameshift and nonsense mutations that
led to an early termination of the amino acid sequence and resulted in a loss of the FAT
and/or PI3K/PI4K catalytic domain and thereby a loss of ATM protein function [16]. In
addition, PTEN mutations in hotspot regions in the P-loop motif (p.Arg130Ter) as well
as in the greater phosphatase domain (p.Arg173His, p.Gly132Asp, p.Pro169_Ser170insIle,
p.Ala34CysfsTer10, p.Tyr27Cys) were identified in our cohort. The frequencies of these
mutated genes were similar to those of previously reported data in publicly available cancer
somatic databases such as COSMIC and TCGA [17,18]. We did not identify any differences
in OS or PFS between patients with molecular alterations in HRR genes and the rest of the
patients. Importantly, patients with PVs in TP53 had a worse OS compared to the rest of
the patients, underlying the need for improvement of management of these patients.

While several investigators have evaluated the prevalence and clinical significance
of PVs in patients with prostate cancer, they mostly focused on germline PVs [19]. One
of the largest studies evaluated 1302 tumors from patients with prostate cancer, who had
undergone next-generation sequencing using FoundationOne or FoundationOne CDx
assays [20]. This study reported on the prevalence of tumor molecular alterations in
these patients, and also demonstrated the stability of molecular alterations in HRR genes
during tumor progression. No clinical outcomes were reported in this study; therefore,
the prognostic or predictive significance of these alterations could not be addressed [20].
Another study also demonstrated limited genomic evolution in patients with lung-recurrent
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hormone-sensitive prostate cancer [21]. Finally, similarly to our study, genomic analysis
of 185 tumors demonstrated PVs in DNA damage repair genes in 19% of patients. The
presence of DNA damage repair genes was associated with high-volume disease [22].

In our study, the presence of PVs in HRR genes was not associated with OS in patients
with advanced prostate cancer. Similarly, no association was identified in the PROREPAIR-
B, a prospective study evaluating clinical outcomes depending on germline PVs in patients
with metastatic castration-resistant prostate cancer. The investigators showed no difference
in cause-specific survival between ATM/BRCA1/BRCA2/PALB2 carriers and noncarriers.
The study did, however, report that patients with metastatic castration-resistant prostate
cancer and germline BRCA2 PVs had a worse OS compared to patients without such PVs.
Other investigators demonstrated that germline PVs in BRCA1, BRCA2, PALB2 or ATM
were independently associated with a shorter OS [23]. However, disease prognosis in
patients with PVs may improve with the inclusion of targeted agents, including PARP
inhibitors and immunotherapy, in the treatment of patients with advanced prostate cancer.

Importantly, the predictive role of PVs in HRR genes needs to be evaluated further.
Previous studies suggest that the presence of PVs in HRR genes is associated with clinical
benefit from diverse treatments. For instance, one study showed that patients with BRCA2
germline PVs had improved cause-specific survival and second PFS when abiraterone or
enzalutamide was administered as the first-line treatment compared to taxane therapy [24].
Other investigators demonstrated that patients with BRCA2 PVs had a significantly longer
median PFS with PARP inhibitors compared to those with molecular alterations in other
HRR genes [25]. Finally, germline PVs in BRCA1, BRCA2, PALB2 or ATM were inde-
pendently associated with short time to castration in patients with advanced prostate
cancer [23]. This analysis was precluded in our dataset due to the lack of statistical power.

The limitations of our study include the retrospective sample collection, the inclusion
of patients with heterogenous disease stages and the limited number of patients treated
with PARP inhibitors and/or platinum agents. In addition, germline testing was per-
formed in select patients. The strengths of the study include the large number of patients
with prostate cancer who underwent tumor molecular profiling and the association with
clinical outcomes.

In conclusion, tumor molecular profiling demonstrated clinically significant PVs in
patients with prostate cancer. In our study, PVs in HRR genes were not associated with
OS in patients with advanced cancer. On the contrary, patients with PVs in TP53 had a
worse OS compared to the rest of the patients. As innovative agents and their combinations
are being approved for the treatment of patients with prostate cancer, the evaluation of
the predictive role of tumor molecular alterations for clinical benefit from these agents
is warranted.

4. Materials and Methods
4.1. Patients

Our study included patients with recurrent, locally advanced, metastatic and/or
high-grade operable prostate cancer. Formalin-fixed, paraffin-embedded, tumor tissue
was retrieved from Pathology Laboratories, accompanied by peripheral blood samples
obtained from patients, when possible. The samples were retrospectively and prospec-
tively collected from patients who received treatment at Hellenic Cooperative Oncology
Group (HeCOG)-affiliated departments of oncology through the years 1995–2019. Clin-
icopathologic characteristics were retrieved from patient medical records. Histological
subtype and Gleason score were recorded from the pathology reports. Importantly, a
detailed family history was recorded, when available. The data collection was conducted in
compliance with the regulations of the bioethics committees of the participating hospitals.
The study was approved by the Institutional Review Boards of General Hospital “Agioi
Anargiri” (17721/29.10.2019), “Euroclinic” (117/28.5.2019), University Hospital of Larisa
(16/8/11/6/20) and the Cyprus National Bioethics Committee (EEBK/EP/2021/18).
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4.2. Sample Evaluation

Available FFPE tumor blocks were subjected to histological review by an experienced
pathologist to evaluate H&E sections to confirm the diagnosis, histologic type, grade and tu-
mor cell content (TCC%); tumor dense areas were also marked for manual macrodissection,
prior to DNA extraction, in order to enrich samples for tumor DNA. Macrodissection was
performed at the Laboratory of Molecular Oncology (LMO), Hellenic Foundation for Can-
cer Research (HeFCR)/Aristotle University of Thessaloniki. TCC% was measured as tumor
nuclei vs. all nuclei in the areas marked for macrodissection. Tumor DNA extraction was
performed from approximately five to ten 10 µm FFPE whole sections, following manual
macrodissection, using the QIAGEN GeneRead DNA FFPE (Qiagen, Hilden, Germany) kit
according to standard procedures. A Qubit dsDNA High Sensitivity (HS) kit was used with
a Qubit 3.0 Fluorometer (Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA) to quan-
tify the extracted dsDNA of the FFPE samples. Moreover, for assessment of germline status,
germline DNA was also extracted from peripheral blood samples from 5 patients (QIamp
DNA Blood Midi Kit, Qiagen, Hilden, Germany) according to manufacturer’s instructions.

4.3. Library Preparation, Target Capture Enrichment and Next-Generation Sequencing

The sample preparation for NGS was performed as described previously [26]. Briefly,
a Lotus DNA Library Prep Kit (Integrated DNA Technologies, Clareville, Iowa) was used
to prepare the DNA libraries from the extracted DNA samples according to manufacturer’s
instructions. Briefly, 60–250 ng of DNA were subjected to enzymatic fragmentation at 32 ◦C
for 7 min, followed by adaptor ligation at 20 ◦C for 20 min and clean up using magnetic
beads. Next, the samples were further subjected to indexing PCR and final bead-based
clean up. DNA concentration was measured through the Qubit fluorometric method and
evaluation of the DNA libraries was performed through the 4150 Agilent Tapestation
System (D100 ScreenTape and High Sensitivity D1000 ScreenTape Agilent, Santa Clara, CA,
USA). Enrichment via hybridization capture-based NGS assay was utilized to capture target
sequences from the DNA library samples. This technology was based on the hybridization
of regions of interest to biotinylated probes called Target Capture Sequences (TACS) that
were specifically designed to target selected genomic loci. The biotinylated probes were
immobilized on streptavidin residues on magnetic beads and the DNA libraries were then
hybridized. A list of the 36 genes targeted by Medicover Genetic’s (Berlin, Germany)
prostate cancer assay is shown in Supplemental Table S1. Enriched libraries were then
subjected to NGS using Illumina platforms.

Furthermore, for the purpose of evaluating the performance of other NGS platforms
and panels on the detection of somatic SNVs and indels, a small subset of the patients’
tumor samples, selected at random, was also sequenced at LMO’s Ion Proton Platform,
using a targeted, custom, Ampliseq panel (IAD207308_231) (Supplemental Table S2) that
shares common targets with the Medicover Genetic’s prostate cancer assay, primarily DNA
damage repair genes and others with clinical relevance in prostate cancer [27–29]. Library
preparation with an Ampliseq Library Kit v.2.0 (Life Technologies, Carlsbad, CA, USA) and
Ampliseq primers was performed with standard protocols, as published previously [30].
The resulting libraries were clonally amplified using the One-Touch-2 instrument and
enriched using the OneTouch ES with the Ion PI Hi-Q OT2 200 Kit, followed by Ion Proton
sequencing with an Ion PI Hi-Q Sequencing 200 Kit (Life Technologies, Carlsbad, CA, USA).
Data retrieval and base calling were then accomplished on the Torrent Server (v5.12.0.4)
with variant allele frequencies (VAFs) of >5% accepted by default. Concerning the NGS
metrics of tumor samples sequenced on the Ion Proton, the median mean depth was 3587
(mean: 3748; min–max: 1141–12928) and the median number of amplicons with ≥100 reads
was 99.0% (mean: 98.44%; min–max: 87.64–99.48%).

4.4. Bioinformatics Analysis

Bioinformatic tools were applied for demultiplexing of the NGS output files (bcl2fastq
(v.2.16.0) and alignment of reads to the GRCh37/hg19 human reference genome using
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the Burrows–Wheeler alignment algorithm [31]. Duplicate read entries were removed
and aligned reads files were converted to a binary (BAM) format [32]. Variant calling
was performed using a sensitive and versatile variant caller [33]. The annotation of vari-
ant calls was carried out by VEP [34]. Variant classification was performed according
to AMP/ASCO/CAP guidelines using two variant interpretation platforms, CGI and
Varsome [35–37]. Variants of strong clinical significance (Tier 1) and potential clinical
significance (Tier2) were used for data analysis [38]. Copy number alterations (CNAs)
were detected using a circular binary segmentation algorithm. Gene rearrangements were
identified using structural variant calling algorithms based on discordant pair and split-
read information or local assembly [39–41] followed by an in-house filtering pipeline. One
hundred microsatellite loci (repetitive DNA sequences) across the genome were targeted
for the assessment of microsatellite instability. Instability was assessed for each targeted
microsatellite region. An adjusted cumulative score was generated representing the fraction
of unstable loci and considering only the MSI loci that achieve sufficient coverage for each
sample, based on a linear regression model trained on samples with known MSI status
(using a PCR-based method). Samples with an MSI score of at least 20 were classified as
microsatellite high.

4.5. Sanger Sequencing

Sanger sequencing was performed for 5 patients with suspected germline alterations
identified in their tumor sample. DNA was extracted from peripheral blood as described
above and subjected to sequencing using an ABI 3130xl Genetic Analyzer (Thermo Fisher
Scientific, Waltham, MA, USA).

4.6. Statistical Analysis

Numeric variables are summarized using the median alongside the minimum and
maximum values. Categorical variables are presented using frequencies and percentages.
Associations between categorical variables were tested using the chi-squared test while
the Mann–Whitney test was used to examine associations between categorical and con-
tinuous variables. The significance level was set at a two-sided 0.05. Overall survival
(OS) was defined as the time from date of initial diagnosis until the date of death (from
any cause) or last contact. PFS was assessed in patients with advanced cancer and was
defined as the time from first-line treatment initiation until disease progression, death (from
any cause) or last contact. The Kaplan–Meier method was used to calculate the OS and
PFS probability since diagnosis and chemotherapy initiation, respectively, for the patient
subgroups. Hazard ratios generated by the Cox regression model and median survival
were presented alongside 95% confidence interval (C.I.) The log-rank test was used to
examine whether there was a statistically significant difference between survival functions.
Statistical analyses were performed using the SAS software (SAS version 9.4, SAS Institute
Inc. Cary, NC, USA) and R language (R Core Team: R: A Language and Environment for
Statistical Computing Vienna, Austria: Foundation for Statistical Computing. Available
from: http://www.R-project.org/ (accessed on 20 May 2023), R version 4.2.2, 2022-10-31
ucrt). Ggplot2 R package, survminer R package and survival packages were employed to
conduct the survival analysis and present the Kaplan–Meier curves. A map showing the
profiled gene mutations was generated using BiocManager and GenVisR R packages.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms241411834/s1.
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