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Abstract: Heat shock protein 70 (HSP70) regulates the ligand binding of the glucocorticoid receptor
(GR). In asthma patients, heat treatment increased both the GR expression and secretion of extracellu-
lar HSP70 (eHSP70) by bronchial epithelial cells (EC). The objective of this study was to assess the
effects of eHSP70 on GR expression and the GR-dependent regulation of immune response in human
bronchial ECs. Cells were treated with either eHSP70 or transfected with an expression vector for
intracellular HSP70 (iHSP70). Ribonucleic acid (RNA) and protein levels were detected by reverse
transcriptase-polymerase chain reaction (RT-PCR), Western blotting, and immunofluorescence. Inter-
leukin (IL-6 and IL-8) secretion was determined by enzyme linked immunosorbent assay (ELISA). The
overexpression of iHSP70 decreased, while eHSP70 increased GR expression. In addition, eHSP70 in-
creased the expression of the GR target dual-specificity phosphatase 1 (DUSP-1). In doing so, eHSP70
reduced the tumor growth factor (TGF)-β1-dependent activation of extracellular signal-regulated
kinase (Erk)-1/2 and cyclic AMP response element binding protein (CREB) and the secretion of IL-6
and IL-8. Blocking the GR or Toll-like receptor 4 (TLR4) counteracted all eHSP70-induced effects.
This study demonstrates a novel anti-inflammatory effect of eHSP70 by the signaling cascade of
TLR4-GR-DUSP1, which inhibits TGF-β1-activated pro-inflammatory ERK1/2-CREB signaling and
cytokine secretion. The findings suggest that eHSP70 might present a novel non-steroidal therapeutic
strategy to control airway inflammation in asthma.

Keywords: heat shock protein 70; glucocorticoid receptor; dual-specificity phosphatase 1; asthma;
non-steroidal anti-inflammatory effect

1. Introduction

The 70 kDa heat shock protein (HSP70s) belongs to a family of ubiquitous molecular
chaperones that control protein folding and hormone receptor function [1]. HSP70 contains
a nucleotide-binding domain (NBD), a substrate-binding domain (SBD), and a C-terminal
tail of variable length [1]. The main functions of intracellular HSP70 (iHSP70) include
(i) the folding of newly synthesized proteins [2,3]; (ii) the translocation of polypeptides
into mitochondria, chloroplasts, and the endoplasmic reticulum [4,5]; (iii) the assembly
and disassembly of protein complexes [6,7]; (iv) the regulation of protein activity; and
(v) the assembly of complexes with other signaling proteins and transcription factors,
which regulate the function of the glucocorticoid receptor (GR), such as HSP90 folding
and chaperonins [7]. HSP70 also plays a role in stress-related processes such as preventing
protein aggregation [8,9], protein disaggregation [8,10,11], the refolding of protein [12], and
protein degradation [13,14].
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HSP70 can be released upon epithelial cell (EC) death or after extreme stress such
as bronchial thermoplasty [15,16]. Extracellular HSP70 (eHSP70) has been reported to
have dual immune-regulatory roles: (i) it acts as a signaling molecule, which induces
the activation of innate immune cells, or (ii) it attenuates inflammatory response [17–19].
However, the role of iHSP70 and eHSP70 in the regulation of the GR in bronchial EC has
not been investigated.

Compared to controls, the level of eHSP70 in plasma samples from patients with can-
cer, cardiovascular disease, diabetes, or trauma was upregulated [20–23]. Others showed
that eHSP70 bound to the macrophage lipid raft micro-domain and stimulated antigen
phagocytosis, processing, and the major histo-compatibility complex (MHC)-II presentation
of antigens [24]. In THP-1 cells, eHSP70 induced the secretion of interleukin (IL)-1α and IL-
8 and, thus, increased inflammation [25]. In contrast, eHSP70 had anti-inflammatory effects
via stimulating immune-regulatory T cells, resulting in the downregulation of interferon
(IFN)-γ and tumor necrosis factor (TNF)-α, while IL-10 was upregulated [26]. Further-
more, eHSP70 bound both Siglec-5 and Siglec-14, thereby delivering anti-inflammatory
signals via Siglec-5, but it was pro-inflammatory when interacting with Siglec-14 [27].
Moreover, eHSP70 was upregulated in chronic immune diseases such as rheumatoid arthri-
tis, achieving a protective anti-inflammatory feedback effect rather than causing immune
response [28].

The function of the GR, like many signaling proteins, depends on the interaction with
HSP90 and HSP70, which both regulate the structure, function, and ligand binding property
of the protein [7]. Earlier, it was reported that eHSP72 upregulated GR expression during
the acute phase of sepsis [29]. As previously shown, heat therapy in asthma upregulated
the expression of GR and the secretion of eHSP70 by bronchial EC [16]. The data implied
that eHSP70 may play a role in the regulation of the GR in bronchial ECs. However, the
role of eHSP70 for GR function and regulation remains unclear.

Dual-specificity phosphatase 1 (DUSP1) is a downstream signaling protein of the
GR [30,31]. DUSP1 is a key regulator for the resolution of inflammation via dephosphory-
lating mitogen-activated protein kinases (MAPKs) such as extracellular-signal-regulated
kinase (ERK), p38, and c-Jun N-terminal kinase (JNK) [32–34].

The objective of this study was to compare the effect of eHSP70 to that of iHSP70 on
the regulation of the GR in human bronchial ECs. We observed that eHSP70 upregulated
the GR and DUSP1 expression and, thus, achieved an anti-inflammatory effect by blocking
ERK-CREB (cyclic AMP response element binding protein) signaling and thereby reduced
the TGF-β1-stimulated secretion of interleukin (IL)-6 and IL-8.

2. Results
2.1. Effects of HSP70 on GR Expression

The transfection efficiency with the HSP70 expression vector was determined by West-
ern blotting and showed that iHSP70 was significantly upregulated after 24 h (Figure 1a).
The quantitative (q)PCR and Western blot analyses showed that the mRNA and protein
expression of the GR was significantly downregulated in ECs with high iHSP70 expression
(Figure 1b).

In contrast, the expression of mRNA and protein of the GR was significantly up-
regulated after treatment with eHSP70 in both NuLi-1 and primary ECs (Figure 2a,b).
Immunofluorescence microscopy showed an increased GR level (green) in NuLi-1 cells
after 24 h of treatment with eHSP70 (Figure 2c). Moreover, most of the GR was located in
the nucleus, indicating its ligand-independent activation by eHSP70 (Figure 2c). These data
indicate that iHSP70 suppressed GR expression in bronchial ECs, while eHSP70 induced
GR expression.
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Figure 1. Effect of HSP70 overexpression on the expression of GR. (a) Representative Western blots 
of HSP70 transfection and the image analysis in NuLi-1. Alpha-tubulin served as the house-keeping 
control protein. Transfection of plasmid HSP70 induced iHSP70 expression in NuLi-1 cells. (b) GR 
mRNA (middle) and protein (right) expression was significantly reduced in cells overexpressing 
iHSP70. Bars show mean ± S.E.M. of three independent experiments. p-values are indicated as fol-
lows: * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001. 
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Figure 1. Effect of HSP70 overexpression on the expression of GR. (a) Representative Western blots of
HSP70 transfection and the image analysis in NuLi-1. Alpha-tubulin served as the house-keeping
control protein. Transfection of plasmid HSP70 induced iHSP70 expression in NuLi-1 cells. (b) GR
mRNA (middle) and protein (right) expression was significantly reduced in cells overexpressing
iHSP70. Bars show mean ± S.E.M. of three independent experiments. p-values are indicated as
follows: * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001.

2.2. Upregulated Expression of DUSP-1

Next, the expression of the GR target DUSP-1 was compared on the mRNA and protein
levels in NuLi-1 cells before and after exposure to eHSP70 (5 mM) over 24 h by Western
blot analysis and immunofluorescence. As shown in Figure 3a, DUSP-1 mRNA and protein
expression was significantly upregulated after 24 h exposure to eHSP70 in NuLi-1 cells.
Immunofluorescence microscopy confirmed this effect of eHSP70 on DUSP-1 expression
(green) after 24 h treatment with eHSP70 (Figure 3b). This suggests eHSP70 enhanced
DUSP-1 expression in bronchial ECs, presumably as a consequence of the above-described
upregulation of the GR by eHSP70.

2.3. The Effects of eHSP70 Involve ERK1/2

DUSP-1 plays a key anti-inflammatory role via the dephosphorylation of MAPKs.
Therefore, the expression and activation of ERK1/2, AKT, and p38 MAPK by Western
blot analysis in NuLi-1 cells exposed to eHSP70 (5 nM) for 24 h were assessed. There was
no difference in AKT and p38 MAPK expression after exposure to eHSP70 (Figure 4a).
However, ERK1/2 MAPK expression was significantly downregulated in eHSP70-treated
compared to untreated cells (Figure 4b). Furthermore, the phosphorylation of ERK1/2 was
significantly downregulated by eHSP70 (Figure 4c). These results suggest that eHSP70
suppressed the expression and phosphorylation of ERK1/2 MAPK.
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Figure 2. Effects of exposure to eHSP70 on the expression of GR in NuLi-1 and primary ECs. (a) 
Exposure to eHSP70 (5 nM) over 24 h significantly induced the expression of GR mRNA (middle) 
and protein (right) in NuLi-1. Bars show mean ± S.E.M. of fourteen independent experiments. (b) 
Exposure to eHSP70 (5 nM) significantly induced the expression of GR mRNA (middle) and protein 
(right) in primary ECs for 24 h. Bars show mean ± S.E.M. of n = 5 human primary EC lines. (c) Rep-
resentative photographs show NuLi-1 cells exposed to eHSP70 for 24 h and stained for GR (green) 
and nuclei (blue); turquoise indicates nuclear GR. P-values are indicated as follows: * p ≤ 0.05; ** p ≤ 
0.01; **** p ≤ 0.0001. 

Figure 2. Effects of exposure to eHSP70 on the expression of GR in NuLi-1 and primary ECs.
(a) Exposure to eHSP70 (5 nM) over 24 h significantly induced the expression of GR mRNA (middle) and
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protein (right) in NuLi-1. Bars show mean ± S.E.M. of fourteen independent experiments. (b) Expo-
sure to eHSP70 (5 nM) significantly induced the expression of GR mRNA (middle) and protein (right)
in primary ECs for 24 h. Bars show mean ± S.E.M. of n = 5 human primary EC lines. (c) Represen-
tative photographs show NuLi-1 cells exposed to eHSP70 for 24 h and stained for GR (green) and
nuclei (blue); turquoise indicates nuclear GR. P-values are indicated as follows: * p ≤ 0.05; ** p ≤ 0.01;
**** p ≤ 0.0001.
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Figure 3. Effects of eHSP70 on the expression of DUSP-1 in NuLi-1 cells. (a) Exposure to eHSP70 over
24 h significantly induced DUSP-1 expression in mRNA (middle) and protein (right) in NuLi-1. Bars
show mean ± S.E.M. of thirteen independent experiments. (b) Representative microphotographs
show NuLi-1 exposed to eHSP70 for 24 h and stained for GR (green) and nuclei (blue). p-values are
indicated as follows: * p ≤ 0.05; *** p ≤ 0.001.

2.4. Downregulated Expression of CREB

Three transcription factors, CREB, AP-1, and NF-kB, are the main targets of ERK1/2
MAPK [35–37]. Therefore, their expressions in NuLi-1 cells after 24 h exposure to eHSP70
(5 nM) was determined by Western blotting. The expression level of CREB was significantly
downregulated, while the expression levels of NF-kB and c-Jun were not affected (Figure 5).
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These data suggest that eHSP70 suppressed CREB as a consequence of the suppression of
ERK1/2 by DUSP-1.
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Figure 4. Effects of eHSP70 on the expression of MAPKs in NuLi-1 cells. (a) Representative Western
blots and bar chart show that exposure to eHSP70 over 24 h did not change the level of AKT (left)
or p38 MAPK (right) expression in NuLi-1 cells. Bars show mean ± S.E.M. of three independent
experiments. (b) Representative Western blots and subsequent image analysis show that eHSP70
significantly reduced ERK1/2 expression and (c) phosphorylation of ERK1/2 over 24 h in NuLi-1
cells. Bars show mean ± S.E.M. of five different human primary bronchial EC lines. p-values are
indicated as follows: * p ≤ 0.05; ** p ≤ 0.01.

2.5. Inhibitors of GR and TLRs Prevented the Influence of eHSP70

To provide further information regarding the regulatory effect of eHSP70 on GR expres-
sion and activity, NuLi-1 cells were grown for 24 h under five different conditions: (i) culture
medium, (ii) eHSP70, (iii) eHSP70 plus GR inhibitor (AL082D06 10 µM), (iv) eHSP70 plus
TLR2 inhibitor (C29 100 nM), or (v) eHSP70 plus TLR4 inhibitor (LPS-RS 100 ng/mL).

The expressions of GR, DUSP-1, ERK1/2, and CREB were determined by Western
blotting. The upregulation of GR and DUSP-1 expression by eHSP70 was mitigated signifi-
cantly when cells were pre-treated with either the GR inhibitor (AL082D06 10 µM), TLR2
inhibitor (C29 100 nM), or TLR4 (LPS-RS 100 ng/mL) inhibitor (Figure 6). In contrast, the
suppression of ERK1/2 MAPK expression and activation by eHSP70 were counteracted in
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cells treated with either the GR or TLR inhibitors (Figure 6). Thus, these results confirmed
that eHSP70 regulates GR and DUSP1 via TLR2 and TLR4.
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Figure 5. Effects of eHSP70 on the expression of transcription factors in NuLi-1 cells. Exposure to
eHSP70 over 24 h did not change c-Jun (left) or NF-kB p65 (middle) expression but reduced that of
CREB (right) in NuLi-1 cells. Bars show mean ± S.E.M. of seven independent experiments. p-values
are indicated as follows: ** p ≤ 0.01.
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Figure 6. Inhibitors of GR and TLRs prevented eHSP70 effects in NuLi-1 cells. Exposure to eHSP70
over 24 h induced GR (upper left) and DUSP-1 (upper right) expression in NuLi-1 cells. Inhibitors of
GR (AL082D06 10 µM), TLR2 (C29 100 nM), or TLR4 (LPS-RS 100 ng/mL) prevented these inductions.
In contrast, exposure to eHSP70 over 24 h significantly reduced ERK1/2 (lower left) and CREB (lower
right) expression in NuLi-1 cells, which was prevented by inhibitors of GR or TLR. Bars show mean
± S.E.M. of three independent experiments. p-values are indicated as follows: * p ≤ 0.05; ** p ≤ 0.01.
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2.6. Cytokines Release

Cytokine secretion was determined by ELISA, showing that IL-6 and IL-8 levels were
upregulated by TGF-β1 (10 ng/m) in the cell supernatant, which was mitigated by eHSP70
(Figure 7). Furthermore, the levels of IL-6 and IL-8 were significantly higher in cells treated
with the GR inhibitor, which might be due to the content of hydrocortisone in the EC
culture medium (Figure 7). Furthermore, the treatment with the TLR4 inhibitor prevented
the downregulation of IL-8 by eHSP70 significantly (Figure 7b). These results together
indicate that eHSP70 downregulates IL-6 and IL-8 via TLR4 and GR.
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Figure 7. eHSP70 reduces TGF-β1-induced cytokine secretion. TGF-β1 (10 ng/mL) stimulation
significantly induced the secretion of IL-6 (upper) and IL-8 (lower) by NuLi-1 cells. Post-stimulative
addition of eHSP70 mitigated this effect. GR inhibitor also prevented the eHSP70 effect on both
cytokines. The combination of eHSP70 and dexamethasone (10−8 M) was used as a control for GR
activation. Inhibition of TLR4 (LPS-RS) significantly prevented the negative effect of eHSP70 on IL-8
secretion. T: TGF-β1; AL: AL082D06; e: eHSP70; Dex: dexamethasone. Bars show mean ± S.E.M. of
three independent experiments. p-values are indicated as follows: * p≤ 0.05; ** p≤ 0.01; *** p≤ 0.001.

3. Discussion

As summarized in the graphic below (Figure 8), the presented data suggest that
eHSP70 and iHSP70 have opposing effects on the expression of the GR in human ECs.
Furthermore, the data demonstrate a novel anti-inflammatory action of eHSP70, which was
mediated by TLR4 and the subsequent increase in GR and DUSP1 expression and activation
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in ECs. Consequently, the activation of ERK1/2 and CREB was reduced by eHSP70, which
also reduced the TGF-β1-stimulated secretion of IL-6 and IL-8.
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These results are in line with earlier reports that MAPKs regulated the secretion of IL-6
and IL-8 by bronchial ECs [38,39]. TGF-β isoforms have been implicated in the development
of chronic airway diseases and regulate pro-inflammatory cytokine release; thus, we used
TGF-β1 as model of inflammation [40,41].

HSP70 is mainly regarded as an intracellular protein, which is essential as a chaper-
one for other proteins and has a specific role in maintaining the ligand binding structure
of the GR [1,42]. However, there are increasing reports that HSP70 can be secreted un-
der stress conditions and thereby modulate immune response, inflammation, and tissue
remodeling [16,17,19,25–27,43].

In vitro, eHSP70 improved the function of bronchial ECs and reduced the proliferation
of airway smooth muscle cells [16]. An immunohistological assessment of HSP70 and
GR expression in asthma patients treated with bronchial thermoplasty (heat therapy for
severe asthma) confirmed cell-type-specific expression in 450 endobronchial biopsies before
and after treatment. The expression of both proteins inversely correlated with that of the
proliferation marker Ki67, suggesting that high HSP70 and GR expression inhibits the
proliferation of airway smooth muscle cells [44]. In line with these findings, clinical studies
showed that the use of medication, as well as the expression of inflammation markers,
was lastingly reduced after bronchial thermoplasty [45–47]. However, the mechanism
underlying this lasting effect from bronchial thermoplasty is not fully understood.

Based on earlier studies, eHSP70 was used to treat isolated human airway ECs, which
resulted in an upregulation of the GR and the subsequent inhibitor of mitogen-activated
protein kinases (MAPKs), DUSP1, also known as MKP1. It has been reported that DUSP1
mediated the anti-inflammatory effect of dexamethasone by blocking the activation of
MAPKs [30,31]. The non-lethal heat treatment of immortalized airway epithelial cell lines
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(BEAS-2B) showed that HSP70 upregulation was followed by the expression of DUSP1 and
the downregulation of ERK1/2 and JNK MAPK phosphorylation [48]. In other cell types,
the activation of DUSP1 decreased the expression of pro-inflammatory cytokines [32]. In
a mouse model, the activation of GR and DUSP1 expression suppressed the secretion of
TNF-α, IL-1β, and IL-6 [49]. These observations support the idea that eHSP70 exerts its
anti-inflammatory effect via upregulation of the GR and DUSP1.

Downstream of MAPKs, the transcription factor CREB mediated the pro-inflammatory
effect of many stimuli, including TGF-β1 [50]. In this study, eHSP70 also downregulated the
expression and activation of CREB. The inhibitory effects of eHSP70 on all pro-inflammatory
intracellular signaling proteins described above were sensitive to the inhibition of TLR4
and the GR, while TLR2 seems to play a less prominent role. The same applies to the
post-stimulatory inhibitory effect of eHSP70 on the TGF-β1-induced secretion of IL-6 and
IL-8 reported in this study. The role of TLR4 as a receptor for eHSP70 has been reported in
different cell types. In immortalized human embryonic kidney cells, it was reported that
TLR4 mediated the pro-inflammatory effect of exogenous HSP70 by activating NF-κB [51].
TLR4 also regulated the growth of endometriosis by HSP70 [52]. In tumor-associated muscle
wasting, eHSP70 and TLR4 were identified as major mediators of cell regeneration [53]. The
expression level of eHSP70 and its interaction with TLR4 also controlled the regeneration
of skeletal muscles in an animal model of muscular dystrophy [54]. In endothelial cells,
the interaction between HSP70 and TLR4 protected against oxidative lung injury [55].
Exosomes isolated from plasma contained eHSP70, which protected the myocardium from
ischemia–reperfusion injury [56].

The shortfalls of this study are as follows: (i) the lack of a valid animal model, (ii)
the investigation of different HSP70 monomers and dimers that regulate its function [57],
and (iii) the assessment of heterodimers formed with other HSPs that can regulate its
function [58].

In this study, we provide evidence that eHSP70 might reduce the inflammation of
ECs by activating GR and DUSP1 expression, thereby reducing the activation of pro-
inflammatory MAPK signaling.

4. Materials and Methods
4.1. Reagents and Antibodies

The antibodies used in this study are listed in Tables 1 and 2. Recombinant human TGF-
β1 (#240-B) and recombinant human HSP70 (eHSP70; #AP-100) were purchased from R&D
Systems (Abingdon, UK). The GR inhibitor (AL082D06) was purchased from Selleckchem
(#S6608, Houston, TX, USA). The TLR2 inhibitor (C29) was purchased from MedChem
Express (#HY-100461, Monmouth Junction, NJ, USA). The TLR4 inhibitor (LPS-RS) was
purchased from InvivoGen (#tlrl-rslps, San Diego, CA, USA).

Table 1. Primary antibodies list used for Western blot analysis.

Primary Antibody Dilution Catalog
Number Company

p38 MAPK 1:500 9212S Cell Signaling (Danvers, MA, USA)
c-Jun 1:1000 ab40766 Abcam (Cambridge, UK)

NF-kB p65 1:400 D14E12 Cell Signaling
HSP70 1:2000 #4873 Cell Signaling

α Tubulin 1:5000 MAB9344 R&D systems
DUSP-1 1:1000 48625 Cell Signaling
ERK 1/2 1:1000 9102l Cell Signaling

p-ERK1/2 1:1000 9101s Cell Signaling
AKT 1:1000 4691s Cell Signaling
CREB 1:1000 #4820 Cell Signaling

GR 1:1000 ab183127 Abcam
GAPDH 1:1000 ab181602 Abcam
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Table 2. Primary antibodies used for immunofluorescence.

Primary Antibody Dilution Catalog Number Company

DUSP-1 1:100 48625 Cell Signaling
GR 1:500 ab183127 Abcam

4.2. Cell Isolation and Treatment

Primary ECs were obtained from disease-free bronchus sections of resected lung cancer
patients (n = 5) from the Department of Pathology, University Hospital Basel. The procedure
was approved by the local ethics committee (BASEC: PB_2019-00035). Immortalized ECs
(NuLi-1) was purchased from ATCC. Primary ECs and NuLi-1 were grown in an epithelial
cell selection medium (Cnt-PR-A; CellnTec Advanced Cell Systems, Bern, Switzerland).

Cells were exposed to eHSP70 (5 nM) for 24 h. To provide further information re-
garding the regulatory effect of eHSP70 on GR expression and activity, NuLi-1 cells were
grown in a culture medium under five different conditions for 24 h: (i) culture medium,
(ii) eHSP70, (iii) eHSP70 plus GR inhibitor (AL082D06 10 uM), (iv) eHSP70 plus TLR2
inhibitor (C29 100 nM), and (v) eHSP70 plus TLR4 inhibitor (LPS-RS 100 ng/mL).

To prove the effect of eHSP70 on ERK1/2 signaling, NuLi-1 cells were exposed to
TGF-β1 (10 ng/mL) 30 min before treatment with either (i) eHSP70, (ii) eHSP70 plus GR
inhibitor (AL082D06), (iii) eHSP70 plus TLR2 inhibitor (C29), or (iv) eHSP70 plus TLR4
inhibitor (LPS-RS).

4.3. Plasmid Transfection

NuLi-1 cells were transiently transfected with an expression vector for HSP70 (4 µg
and 6 µg), which was purchased from OriGene (#RC200270, OriGene Technologies, Inc.,
Rockville, MD, USA), using Lipofectamine™ 2000 Transfection Reagent (#11668027, Invit-
rogen™, Waltham, MA, USA) for 6 h. After transfection, cells were cultured in an epithelial
cell selective medium, and protein was collected after 48 h.

4.4. RNA Extraction and Real-Time Reverse Transcription Polymerase Chain Reaction

Total RNA was isolated using Quick-RNATM MicroPrep (#R1055, ZYMO RESEARCH,
Irvine, CA, USA). Reverse transcription was performed with a High-Capacity cDNA Re-
verse Transcription Kit (#4368814, Applied Biosystems, Waltham, MA, USA). Quantitative
real-time PCR (qPCR) was performed with FastStart™ Universal SYBR®(#4913850001,
Thermo Scientific, Waltham, MA, USA) to determine the relative gene expression profiles.
The primers used for qPCR are listed in Table 3.

Table 3. Primer sequences used for real-time reverse transcription.

Gene Forward Primer (5′-3′) Reverse Primer (3′–5′)

α tubulin AGGAGTCCAGATCGGCAATG GTCCCCACCACCAATGGTTT
hDUSP1 CTGCCTTGATCAACGTCTCA CTGTGCCTTGTGGTTGTCCT

GR ATAGCTCTGTTCCAGACTCAACT TCCTGAAACCTGGTATTGCCT

Relative mRNA expression was calculated by obtaining the difference between the
∆Ct of the target gene from the control group and that of the group under treatment (∆∆Ct).
The relative value was expressed as RQ (2−∆∆Ct).

4.5. Immunofluorescence Staining and Western Blot

Cells were grown in 8-well chamber slides, treated in different conditions, washed
with PBS, and then fixed in 4% formaldehyde. Primary antibodies (Table 2) were applied
overnight at 4 ◦C, followed by Alexa Fluor™ 488 (#A-11008, Thermo Scientific). Nuclei
were stained by 4′-6-diamidino-2-phenylindole dihydrochloride (DAPI). Images were
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acquired with ECLIPSE Ti2 (Nikon, Tokyo, Japan) and documented with imaging software
NIS-Elements (Nikon).

Cells were lysed in RIPA buffer (#SLCD5849, Sigma, St. Louis, MO, USA), and
the protein concentration of each sample was determined by a BCA protein assay kit
(#XI357440, Thermo Scientific). The protein concentration was adjusted to standardized
levels. For gel electrophoresis, 20 µg of total protein was denatured (10 min at 95 ◦C), and
denatured proteins were size-fractionated (110 V, open Amp, 50 min, at 4 ◦C) in a 4–12%
SDS–PAGE (#M41212, GeneScript, Piscataway, NJ, USA). Proteins were then transferred
onto a nitrocellulose membrane (#88018, Thermo Scientific) by heat-accelerated capillary
transfer and overnight incubation at 50 ◦C.

4.6. Inhibitor Treatment

The eHSP70-activated intracellular signaling cascade was characterized by pre-incubating
the cells with either GR inhibitor (AL082D06, 10 uM), TLR2 inhibitor (C29, 100 nM), or
TLR4 inhibitor (LPS-RS, 100 ng/mL) for at least 30 min prior to stimulation with eHSP70.

4.7. Enzyme-Linked Immunosorbent Assay

Concentrations of IL-6 and IL-8 in supernatants were detected using a DuoSet ELISA
kit (IL-6: DY206, IL-8: DY208,R&D Systems, Abingdon, UK), according to the manufac-
turer’s instructions.

4.8. Statistical Analysis

GraphPad Prism 9.0 software was used for data analysis. Data are represented as
mean ± SEM. Statistical analysis was performed by Student’s t-test or one-way ANOVA
(and nonparametric or mixed) test. The data were presented as mean ± SEM of the re-
sults from at least three independent experiments. A p-value of <0.05 was considered
statistically significant.
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