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Abstract: The flow of substances between the blood and the central nervous system is precisely
regulated by the blood–brain barrier (BBB). Its disruption due to unbalanced blood glucose levels
(hyper- and hypoglycemia) occurring in metabolic disorders, such as type 2 diabetes, can lead to
neuroinflammation, and increase the risk of developing neurodegenerative diseases. One of the
most studied natural anti-diabetic, anti-inflammatory, and neuroprotective compounds is resveratrol
(RSV). It activates sirtuin 1 (SIRT1), a key metabolism regulator dependent on cell energy status. The
aim of this study was to assess the astrocyte SIRT1 response to neuroinflammation and subsequent
RSV treatment, depending on systemic glycemia. For this purpose, we used an optimized in vitro
model of the BBB consisting of endothelial cells and astrocytes, representing microvascular and brain
compartments (MC and BC), in different glycemic backgrounds. Astrocyte-secreted SIRT1 reached the
highest concentration in hypo-, the lowest in normo-, and the lowest in hyperglycemic backgrounds.
Lipopolysaccharide (LPS)-induced neuroinflammation caused a substantial decrease in SIRT1 in
all glycemic backgrounds, as observed earliest in hyperglycemia. RSV partially counterbalanced
the effect of LPS on SIRT1 secretion, most remarkably in normoglycemia. Our results suggest
that abnormal glycemic states have a worse prognosis for RSV-therapy effectiveness compared to
normoglycemia.
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1. Introduction

Optimal functioning of the central nervous system (CNS) is ensured within a highly
controlled microenvironment. Effective anatomical and physiological separation of the
brain from the rest of the body and precise regulation of extracellular fluid exchange be-
tween the blood and the CNS remain under the control of the neurovascular blood–brain
barrier (BBB) [1]. Its role is to maintain CNS homeostasis by providing biological sub-
stances essential for the brain’s metabolic activity and neuronal function while protecting
the CNS from uncontrolled flow of nutrients, toxic compounds, or pathogen penetration.
Formation and maintenance of the BBB depend primarily on the interaction between the
endothelium, astrocytic end feet, and pericytes [2,3]. The BBB is formed by microvascular
endothelial cells (ECs) lining the capillaries penetrating the brain and spinal cord of most
organisms with a well-developed CNS [4]. Numerous studies provide conclusive evidence
that brain ECs differ from other vascular endothelia in their morphology, structure, and
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function [5–11]. They protect the brain from potentially harmful substances, yet they consti-
tute a major obstacle for delivering drugs into the CNS [11,12]. Astrocytes (ACs), the most
abundant cells in the CNS, are involved in the compartmentation of the neural parenchyma,
maintenance of the ionic homeostasis and pH regulation of the extracellular space, pro-
viding energy substrates for neurons, and signal mediation between the neurons and the
vasculature [13]. ACs are considered key elements that ensure the BBB’s functionality by
regulating endothelial tightness [14], controlling cerebral blood flow (CBF) [5], and cerebral
metabolic rate [15], as well as the balance of pro- and anti-inflammatory cytokines in the
CNS [16]. Pericytes (PCs) share a basement membrane and form direct synaptic-like focal
contacts with ECs, enabling the exchange of ions, metabolites, second messengers, and
RNAs [17]. PCs can contribute to the regulation of the CBF, the removal of toxic metabolites
from the CNS [18,19], and maintaining the BBB’s integrity by aiding in angiogenesis and
stabilization of microvasculature [17,20].

Inflammation within the CNS can lead to disruption of the BBB and thus increase
the risk of the development of neurodegenerative disorders such as Alzheimer’s disease,
Parkinson’s disease [21], Huntington’s disease [22,23], or Multiple Sclerosis [24–27]. BBB
disturbance can trigger or result from neurodegeneration and can contribute to the exacer-
bation of pathological processes within the CNS [28].

The CNS requires a continuous glucose supply from the circulatory system, since
glucose constitutes the main energy source for the brain cells, which are unable to synthe-
size or store it in the form of glycogen. Fluctuations in blood glucose concentration can
seriously affect the optimal functioning of many signaling pathways [29,30]. Currently,
in the era of the pandemic of obesity, caused by a sedentary lifestyle and a high-calorie
diet, insulin resistance and diabetes, coupled with hyper- and hypoglycemia (elevated
and suboptimal blood glucose concentrations, respectively), have become civilization dis-
eases. Type 2 diabetes, affecting 10% of the world’s human population and associated
with hyperglycemia, is one of the main risk factors for the development of cerebrovascular
diseases [31]. Prolonged, unbalanced blood glucose levels can lead to inflammation and
disruption of the BBB. Dysglycemia (abnormality and/or instability of blood sugar level)
related to diabetes modifies the characteristics of the BBB, increasing its permeability to
signaling molecules (i.e., cytokines, antibodies) and, in consequence, contributing to the
induction of inflammation in the nervous tissue, in particular in ACs and PCs [32–34].
This can provoke further changes in the BBB permeability and lead to uncontrolled glu-
cose influx into the cerebrospinal fluid (CSF) and the CNS and further exacerbation of
neuroinflammation by increased production of innate immunity-activating compounds
in the CSF and in the neurons. Long-lasting neurodegenerative processes in diabetes are
responsible for decreased efficiency of cognitive processes, and insulin resistance-based
diabetes is an important risk factor for the development of Alzheimer’s disease [35,36].
In contrast, hypoglycemia, caused by low glucose consumption or induced iatrogenically
by anti-diabetic/anti-hyperglycemic treatment, leads to an insufficient inflow of glucose
into the CNS. Glucose depletion in neurons can entail ATP deficiency and hypoglycemic
coma, as well as brain cell necrosis, leading to long-term cognitive deficits [37]. Hypo-
glycemia, similarly to hyperglycemia, is linked to neuroinflammation, given the presence
of an inflammatory response and oxidative stress markers in blood and urine samples from
iatrogenic hypoglycemic diabetic patients [38,39]. However, the detailed mechanisms of
this association have not yet been determined.

Among the most studied anti-diabetic compounds, resveratrol (RSV) stands out as
a promising dietary supplement due to its multiple beneficial effects, confirmed in an-
imal models. These include glycoprotective (sensitizing tissues to insulin) [40,41], anti-
inflammatory [42,43], antioxidant [44], anti-cancer [42,45], antiatherosclerotic [44,46], car-
dioprotective [47], and neuroprotective [48,49] properties. RSV (3,5,4′-trihydroxy-trans-
stilbene) is a polyphenol derivative of stilbene, belonging to the family of flavonoids,
naturally occurring in the skin of grapes and berries, in wine, peanuts, and in knotweed.
RSV can contribute to the extension of life expectancy [44,50]. Its documented mecha-
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nism of action is based on the activation of sirtuin 1 (SIRT1) [51]. Sirtuins, nicotinamide
adenine dinucleotide (NAD)-dependent protein deacetylases, are highly conserved sig-
naling enzymes involved in post-translational epigenetic regulation of metabolism in all
living organisms [52]. They can regulate important intracellular processes, such as energy
expenditure, metabolic patterns, control of reactive oxygen species (ROS) levels, DNA re-
pair/conservation, and cellular aging [53–55]. They were first discovered as gene silencing
factors extending replication life in yeast [56,57] and have since been proven to contribute
to the extension of lifespan and increasing fitness in other organisms [58], notably slow-
ing aging in mammals, depending on the caloric restriction [59,60]. Seven mammalian
sirtuins (SIRT1-7) described so far differ in enzymatic properties, substrates, and cellular
location. Their activity depends mostly on the availability of the oxidized NAD form
(NAD+) [61]. They are commonly synthesized in the brain [62,63], and their concentration
and/or activity decrease with age [64,65]. SIRT1 is the most studied of all sirtuins and is
most commonly expressed in neurons and glial cells cultured in vitro [62]. It is expressed
in different regions of the adult brain and in the white matter of the CNS and deacetylates
histones and numerous transcriptional factors, enzymes, and receptors [66,67]. The brain
and blood levels of SIRT1 decrease with age and general fragility [68], and they are lower
in patients affected by neurodegenerative diseases than in the healthy population [69–72].
The documented neuroprotective activity of SIRT1 is based on blocking apoptosis and
promoting autophagocytosis in the CNS [73]. Despite the documented correlation of SIRT1
secretion with the level of systemic glycemia and its confirmed anti-inflammatory effects
within the CNS, there are no systematic studies comparing the regulation of SIRT1 level
in neuroinflammation upon RSV treatment in different glycemic backgrounds. In the
present work, we addressed this issue using an optimized two-component in vitro model
of the BBB, consisting of endothelial cells and astrocytes. The aim of this study was to
systematically compare the response of astrocytes within the BBB to neuroinflammation
and to RSV treatment by analyzing astrocyte SIRT1 secretion in conditions corresponding
to different levels of systemic glycemia (hypo-, normo-, and hyperglycemia).

2. Results

To perform the experiments, we used an optimized in vitro model of the BBB consisting
of endothelial cells, representing the microvascular compartment (MC), and astrocytes,
representing the brain compartment (BC) (Figure 1).
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depleted of glucose, and in the case of endothelial cells, complete EBM-2 medium supplemented with 
defined D-glucose concentrations: 40 mg/dL (2.2 mM), 90 mg/dL (5 mM), or 450 mg/dL (25 mM), cor-
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Figure 1. Schematic cross-sectional representation of the in vitro model of the blood–brain barrier
used in the present study, consisting of endothelial cells and astrocytes. Astrocytes were seeded in
numbers of 3 × 104 cells into the wells of the 24-well plate (corresponding to the brain compartment
(BC)), and endothelial cells were seeded in numbers of 6 × 104 cells into the inserts (membranes
with 0.4 µm-diameter pores) (corresponding to the microvascular compartment (MC)). After a 24 h
equilibration period, the medium was replaced by a freshly prepared one: in the case of astrocytes,
DMEM medium depleted of glucose, and in the case of endothelial cells, complete EBM-2 medium
supplemented with defined D-glucose concentrations: 40 mg/dL (2.2 mM), 90 mg/dL (5 mM), or
450 mg/dL (25 mM), corresponding to hypo-, normo-, and hyperglycemic conditions in the MC,
respectively.
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2.1. SIRT1 Secretion from Astrocytes Depends on Systemic Glycemia

Initially, we established different glucose concentrations [40 mg/dL (2.2 mM), 90 mg/dL
(5 mM), or 450 mg/dL (25 mM)] in the MC of the BBB model, corresponding to systemic
hypo-, normo-, and hyperglycemia, respectively. We determined the basal level of astrocyte-
secreted SIRT1 in these three glycemic backgrounds. We quantified, by means of ELISA, the
concentration of SIRT1 in the astrocyte culture supernatants in the BC for 60 h following
the establishment of different glycemic conditions in the MC. The results of these assays
are presented in Figure 2.
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Figure 2. Astrocyte-secreted sirtuin 1 concentration assessed by ELISA in the brain compartment of
the blood–brain barrier model in different glycemic conditions (hypo-, normo-, and hyperglycemia,
resulting from applying 2.2 mM, 5 mM, and 25 mM glucose to the microvascular compartment,
respectively). Measurements started 24 h after the establishment of different glycemic conditions in
the microvascular compartment (MC) and continued for 36 h. Samples were taken from the brain
compartment (BC) every 12 h (time points: 0 h, 12 h, 24 h, and 36 h). Mean values of sirtuin 1 (SIRT1)
concentration and standard errors are presented. Asterisks denote significant differences between
glycemic groups (ANOVA and t-tests where appropriate, p value < 0.05). * p < 0.05; ** p < 0.002.

We detected comparable levels of SIRT1 in the BC for all glycemic backgrounds:
211 pg/µL for hypoglycemia, 197 pg/µL for normoglycemia, and 206 pg/µL for hyper-
glycemia 24 h after the establishment of different glucose concentrations in the MC. That is
why we set this time point as the baseline (time point 0 h) for the following measurements.
Over the following 36 h (time points 12 h, 24 h, and 36 h), the SIRT1 concentration in the BC
was held at a similar level for normoglycemic conditions, reaching 109%, 99%, and 92% of
its initial value at time point 12 h, 24 h, and 36 h, respectively. However, for hypoglycemia,
after a slight decrease (by 12% at time point 12 h) it increased substantially, reaching 150%,
and 173% of its initial value at time point 24 h, and 36 h, respectively. For hyperglycemia, it
decreased considerably to 70%, 65%, and 28% of its initial value at time point 12 h, 24 h
and 36 h, respectively.

Comparing different glycemic conditions over time (time points 0 h, 12 h, 24 h, and
36 h), the SIRT1 concentration in the BC increased for hypo-, remained stable for normo-,
and decreased for hyperglycemic conditions. At time point 36 h, the SIRT1 concentration
in the BC reached the highest value for hypo-, the lowest for normo-, and the lowest for
hyperglycemic conditions.

2.2. Neuroinflammation Does Not Alter Astrocyte Morphology and Viability

To verify whether LPS-induced neuroinflammation has an impact on astrocyte mor-
phology and viability, we used optical microscopy to compare astrocytes treated and
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untreated with LPS. Independently, the cell viability was measured using the trypan blue
(TB) exclusion assay for both LPS-treated and LPS-untreated astrocytes. The morphology
of the astrocyte cells in the BC of the BBB model used in the present study (not subjected to
LPS and subjected to LPS) is presented in Figure 3.
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Figure 3. Morphology of astrocyte cells in the brain compartment of the blood–brain barrier model
used in the study. Analogically to the experimental setting of the entire BBB model, astrocytes were
seeded in a number of 3 × 104 cells into the wells of the 24-well plate, and after a 24 h equilibration
period, their medium was replaced by a freshly prepared DMEM medium depleted of glucose.
Neuroinflammation was induced by the addition of lipopolysaccharide (LPS) for 12 h to reach a
final concentration of 0.2 µM. After that time, the cells were fixed in 3% paraformaldehyde (PFA) in
PBS for 30 min at room temperature and stained with hematoxylin and eosin (H&E). Microscope
images were acquired using an inverted cell culture microscope Zeiss Primovert (The Zeiss Group,
Oberkochen, Germany) equipped with light sources: HAL 35 W, 3 W LED (infinity optics), and a
Zeiss Axiocam 105 Color camera; scale bars: 50 µm. Images were analyzed using ZEN 2.3 software.
(a) Non-induced astrocytes (not treated with LPS); (a’) non-induced astrocytes (not treated with LPS)
stained with H&E; (b) induced astrocytes (treated with LPS for 12 h); (b’) induced astrocytes (treated
with LPS for 12 h) stained with H&E.

The normal astrocyte morphology (characteristic star-shaped cell form) and viabil-
ity were maintained independently of LPS administration. Microscopic images of the
astrocytes cultured with or without LPS (50 images in each group) were analyzed by two
independent neuropathologists. Analyzing randomly selected photos on a blind basis, they
were unable to detect differences in cell morphology.

2.3. Neuroinflammation Hinders Astrocyte SIRT1 Secretion in All Glycemic Backgrounds

In order to assess astrocyte response to LPS-induced neuroinflammation in different
glycemic conditions, we compared the level of astrocyte-secreted SIRT1 in the BC of the
BBB model established in different glycemic backgrounds under the influence of LPS
(administered to the BC at time point 0 h for 12 h). We quantified, by means of ELISA, the
concentration of SIRT1 in the astrocyte culture supernatants in the BC for 36 h following
the LPS administration. The results of these assays are presented in Figure 4.
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neuroinflammation in the brain compartment of the blood–brain barrier model in different glycemic
conditions (hypo-, normo-, and hyperglycemia, resulting from applying 2.2 mM, 5 mM, and 25 mM
glucose to the microvascular compartment, respectively). Neuroinflammation was induced by the
addition of lipopolysaccharide (LPS) at time point 0 h for 12 h to the brain compartment (BC) of the
blood–brain barrier (BBB) to reach a final concentration of 0.2 µM. Mean values of sirtuin 1 (SIRT1)
concentration and standard errors are presented. Asterisks denote a significant difference between
glycemic groups (ANOVA and t-tests where appropriate, p value < 0.05). *** p <0.001.

We registered a comparable basal level of SIRT1 (approximately 200 pg/µL) in the
BC before LPS administration (time point 0 h) for all glycemic conditions. LPS caused a
substantial decrease in SIRT1 secretion in all glycemic backgrounds, but this effect was
delayed in time. After 12 h of LPS administration (at time point 12 h), the concentration
of SIRT1 in the BC in all glycemic backgrounds was only slightly different from the one
observed before LPS administration (at time point 0 h). SIRT1 concentration in the BC
increased slightly for normoglycemic conditions, reaching 224 pg/µL (114% of its initial
value), whereas it decreased slightly (by 5%) for hypo- and hyperglycemic backgrounds,
equaling 200 pg/µL and 195 pg/µL, respectively. The effect of LPS was noticeable 24 h
after its administration (time point 24 h) only for hyperglycemia, where the SIRT1 con-
centration in the BC dropped to 13 pg/µL (6% of its initial value). At this time point, the
SIRT1 concentration in the BC for hypo- and normoglycemia decreased slightly, equaling
173 pg/µL and 152 pg/µL, respectively (82% and 77% of their respective initial values).
For hypo- and normoglycemia, the strong effect of LPS was detected only 36 h after its
administration (time point 36 h). Final SIRT1 concentrations in the BC of the BBB model in
all glycemic backgrounds were comparable at the limit of detection and equaled 13 pg/µL
for hypoglycemia (6% of its initial value) and 43 pg/µL for normo- and hyperglycemia
(21% of their respective initial values).

Comparing the LPS-treated to non-treated BBB model in analogous glycemic condi-
tions, over the 36 h after LPS administration (time points 12 h, 24 h, and 36 h; Figures 5–7),
the SIRT1 concentration in the BC was similar in LPS-treated and non-treated groups for
hypo- and normoglycemia and was much higher in LPS-treated BC for hyperglycemia at
time point 12 h, but it was considerably lower for all glycemic backgrounds in LPS-treated
groups at time points 24 h and 36 h.
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ride (LPS) at time point 0 h for 12 h in the brain compartment (BC) of the blood–brain barrier (BBB) 
to reach a final concentration of 0.2 µM. Resveratrol (RSV) solution was added at time point 12 h for 
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Figure 5. Astrocyte-secreted sirtuin 1 concentration assessed by ELISA in hypoglycemic conditions
(resulting from applying 2.2 mM glucose to the microvascular compartment) upon lipopolysaccharide
and resveratrol treatment. Neuroinflammation was induced by the addition of lipopolysaccharide
(LPS) at time point 0 h for 12 h in the brain compartment (BC) of the blood–brain barrier (BBB) to
reach a final concentration of 0.2 µM. Resveratrol (RSV) solution was added at time point 12 h for
24 h to the microvascular compartment (MC) of the BBB to reach a final concentration of 50 µM.
Mean values of sirtuin 1 (SIRT1) concentration and standard errors are presented. Asterisks denote
significant differences between groups (ANOVA and t-tests where appropriate, p value < 0.05).
* p < 0.05; *** p < 0.001.
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Figure 6. Astrocyte-secreted sirtuin 1 concentration assessed by ELISA in normoglycemic conditions
(resulting from applying 5 mM glucose to the microvascular compartment) upon lipopolysaccharide
and resveratrol treatment. Neuroinflammation was induced by the addition of lipopolysaccharide
(LPS) at time point 0 h for 12 h in the brain compartment (BC) of the blood–brain barrier (BBB) to reach
a final concentration of 0.2 µM. Resveratrol (RSV) solution was added at time point 12 h for 24 h to
the microvascular compartment (MC) of the BBB to reach a final concentration of 50 µM. Mean values
of sirtuin 1 (SIRT1) concentration and standard errors are presented. Asterisks denote significant
differences between groups (ANOVA and t-tests where appropriate, p value < 0.05). ** p < 0.01.
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Figure 7. Astrocyte-secreted sirtuin 1 concentration assessed by ELISA in hyperglycemic conditions
(resulting from applying 25 mM glucose to the microvascular compartment) upon lipopolysaccharide
and resveratrol treatment. Neuroinflammation was induced by the addition of lipopolysaccharide
(LPS) at time point 0 h for 12 h in the brain compartment (BC) of the blood–brain barrier (BBB) to reach
a final concentration of 0.2 µM. Resveratrol (RSV) solution was added at time point 12 h for 24 h to
the microvascular compartment (MC) of the BBB to reach a final concentration of 50 µM. Mean values
of sirtuin 1 (SIRT1) concentration and standard errors are presented. Asterisks denote significant
differences between groups (ANOVA and t-tests where appropriate, p value < 0.05). * p < 0.05.

2.4. Resveratrol Modulates Basal Astrocyte SIRT1 Secretion Depending on the Systemic Glycemia

To determine the effect of RSV treatment on astrocyte neuroprotective activity in
different glycemic backgrounds, we compared the level of astrocyte-secreted SIRT1 in the
BBB model constructed in different glycemic conditions. RSV was administered to the MC
at time point 12 h for 24 h. We quantified, by means of ELISA, the concentration of SIRT1 in
the astrocyte culture supernatants in the BC for another 24 h following the administration
of RSV. The results of these assays are presented in Figure 8.
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Figure 8. Astrocyte-secreted sirtuin 1 concentration assessed by ELISA upon resveratrol adminis-
tration to the microvascular compartment of the blood–brain barrier model in different glycemic
conditions (hypo-, normo-, and hyperglycemia, resulting from applying 2.2 mM, 5 mM, and 25 mM
glucose to the microvascular compartment, respectively). Resveratrol (RSV) solution was added at
time point 12 h for 24 h to the microvascular compartment (MC) of the blood–brain barrier (BBB) to
reach a final concentration of 50 µM. Mean values of sirtuin 1 (SIRT1) concentration and standard
errors are presented. There were no significant differences between glycemic groups at any analyzed
time point (ANOVA, p value > 0.05).
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We detected a comparable basal level of SIRT1 (approximately 200 pg/µL) in the BC
for all glycemic conditions 24 h after the establishment of different glycemic conditions
in the MC (time point 0 h). Before RSV administration (at time point 12 h), the SIRT1
concentration in the BC held at a similar level for normoglycemic conditions (reaching
109% of its initial value), whereas it slightly decreased for hypo- and decreased more
considerably for hyperglycemia (equaling 88% and 70% of their respective initial values).
The effect of RSV depended on the glycemic background. Over the following 24 h (time
points 24 h and 36 h), the SIRT1 concentration in the BC increased substantially for hypo-
and less considerably for normoglycemic conditions compared to time point 12 h, whereas
for hyperglycemia it increased compared to time point 12 h but decreased between time
points 24 h and 36 h.

Comparing RSV-treated to non-treated BBB models in analogous glycemic conditions,
over the 24 h since RSV administration (time points 24 h and 36 h; Figures 5–7), the SIRT1
concentration in the BC was slightly lower in the RSV-treated group for hypoglycemic
conditions (by 20% and 10% at time points 24 h and 36 h, respectively, comparing to time
point 12 h), whereas it was considerably higher in the RSV-treated group for normo- and
hyperglycemic backgrounds (by 26% and 57% at time point 24 h, and by 47% and 185% at
time point 36 h, respectively, comparing to time point 12 h).

2.5. Resveratrol Partially Restores Astrocyte SIRT1 Secretion Hindered by Neuroinflammation,
Depending on the Glycemic Background

To determine the neuroprotective effect of RSV treatment on astrocyte response to
LPS-induced neuroinflammation in different glycemic backgrounds, we compared the level
of astrocyte-secreted SIRT1 in the BBB model subjected to LPS and subsequently treated
with RSV in different glycemic conditions. LPS was added to the BC at a time point of 12 h.
RSV was administered to the MC at time point 12 h for 24 h. We quantified, by means of
ELISA, the concentration of SIRT1 in the astrocyte culture supernatants in the BC for 36 h
following the LPS administration. The results of these assays are presented in Figure 9.
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Figure 9. Astrocyte-secreted sirtuin 1 concentration was assessed by ELISA upon resveratrol treat-
ment of LPS-induced neuroinflammation in the brain compartment of the blood–brain barrier model
in different glycemic conditions (hypo-, normo-, and hyperglycemia, resulting from applying 2.2 mM,
5 mM, and 25 mM glucose to the microvascular compartment, respectively). Neuroinflammation was
induced by the addition of lipopolysaccharide (LPS) at time point 0 h for 12 h to the brain compart-
ment (BC) of the blood–brain barrier (BBB) to reach a final concentration of 0.2 µM. Resveratrol (RSV)
solution was added at time point 12 h for 24 h to the microvascular compartment (MC) of the BBB to
reach a final concentration of 50 µM. Mean values of sirtuin 1 (SIRT1) concentration and standard
errors are presented. There were no significant differences between glycemic groups at any analyzed
time point (ANOVA, p value > 0.05).
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We registered a comparable basal level of SIRT1 (approximately 200 pg/µL) in the BC
for all glycemic conditions before LPS administration (time point 0 h). After LPS administra-
tion (at time point 12 h), the concentrations of SIRT1 in the BC were only slightly different
from the ones observed before (at time point 0 h). SIRT1 concentration in the BC for normo-
glycemic conditions increased by 14% to 224 pg/µL, whereas it decreased slightly (by 5%)
for hypo- and hyperglycemic conditions, equaling 200 pg/µL and 195 pg/µL, respectively.
The effect of RSV depended on the glycemic background. For hypo- and normoglycemic
conditions, the decrease of SIRT1 concentration in the BC was observed only after 24 h of
RSV administration (time point 36 h) (to equal 43% and 64% comparing to the respective
values at time point 12 h), whereas for hyperglycemia, the SIRT1 concentration decreased
substantially after 12 h of RSV administration (to 16% at time point 24 h comparing to time
point 12 h), and then greatly increased (to 58% at time point 36 h comparing to time point
12 h).

Comparing RSV-treated to non-treated BBB models both subjected to LPS in analogous
glycemic conditions, over the 24 h of RSV administration (time points 24 h and 36 h
compared to time point 12 h) (Figures 5–7), the SIRT1 concentration in the BC was higher
in the LPS-RSV-treated BC than in the LPS-treated BC for all glycemic conditions analyzed.

3. Discussion

Sirtuins are highly conserved signaling enzymes that extend lifespan and improve
fitness in numerous organisms, from yeast to fly [58]. In mammals in particular, they
slow down the aging process and decrease the risk of metabolic disorders upon caloric
restriction [59,60]. Sirtuin’s protective properties result from their regulation of stress
management and energy homeostasis [74–76]. They target histones, transcription factors,
co-regulators, and metabolic enzymes to adapt gene expression and metabolic activity to
the cellular energy state [57,77,78]. The most widely studied SIRT1 is a master regulator of
aging, apoptosis, and stress response [79,80]. It is considered a key mediator of the beneficial
effects of caloric restriction [81,82], exerts tumor suppressor activity in cancer and age-
related disorders, regulates insulin secretion and signaling, improves aerobic metabolism,
and protects cells from oxidative stress and inflammation [83]. SIRT1 expression is down-
regulated in obesity, revealing significant negative correlations with waist circumference,
body mass index (BMI), and insulin resistance (IR) [82,84]. Growing evidence indicates
that SIRT1 suppression promotes systemic inflammation, increases oxidative stress, and
reduces aerobic metabolism [85]. SIRT1 has been used as a therapeutic target in preventing
obesity-related IR in childhood and adolescence [84], and similar treatment is considered
for type 2 diabetes.

Here, we addressed the regulation of SIRT1 secretion by astrocytes within the blood–
brain barrier (BBB) in different glycemic backgrounds (hypo-, normo-, and hyperglycemia)
in response to LPS-induced neuroinflammation and subsequent resveratrol (RSV) treat-
ment. We explored an association between systemic glycemia and neuroinflammation
using a two-component optimized in vitro model of the BBB, reflecting the structure and
features of two BBB compartments: its microvascular side (here referred to as “MC”) and
cerebrospinal fluid side (here referred to as “BC”). Commercially available in vitro BBB
models consist mostly of one or two cell types, endothelial cells or/and astrocytes; they
rarely include pericytes. One-component models allow for clear observation of the effect
of experimental procedures on specific cell types, while ignoring the interactions of these
cells with other constituents of the BBB. Two-component models, consisting of two cell
types without additional interfering factors, such as blood or CSF elements, allow for clear
observation of the effects of experimental treatment and thus facilitate the interpretation
of the obtained results. However, the reductionist approach, excluding some important
cellular and non-cellular components from the model, does not fully represent conditions
existing in vivo. In our study, the blood circulating in the microvascular system was
substituted by the dedicated EBM-2 medium supplemented with heat-inactivated fetal
bovine serum (FBS) lacking cellular and active non-cellular blood components such as
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erythrocytes, leukocytes, platelets, or insulin (here denatured and thus inactivated). We
verified glucose penetration through the BBB model from the MC to the BC in different
glycemic backgrounds (Supplementary Figure S1). The obtained values, 65% for hypo-,
68% for normo-, and 71% for hyperglycemic conditions, fall within the range of the ones
reported in vivo (60–70%) [86]. In the experimental model used in our study, we observed
a correlation between glucose concentration in the MC and SIRT1 level in the BC of the BBB.
The interpretation of the obtained results, however, has certain limitations, and conclusions
drawn from this work should not be generalized indiscriminately to the conditions in the
human body without prior inclusion of other components of the in vivo BBB in our model.
Similarly, it is not possible to determine the scale of the contribution of endothelial cells
to the astrocyte response in vivo without including other important cells of the BBB and
the CNS (such as pericytes and neurons) into our model. Here, the use of endothelial cells
and astrocytes in the double-chamber co-culture as a specific optimized BBB model makes
endothelial cells the intentional environment background and allows only to assess the
effect of the interaction of these two cell types within the BBB.

The existing BBB models differ in the species of origin of the cells used (e.g., human,
mouse, rat, porcine, bovine, etc.), their characteristics, and their applications, as is broadly
discussed in the recent reviews [87–89]. The cell types used in this study have been
carefully selected to allow for the representation of the characteristics of the MC and the
BC of the human BBB. The cerebrovascular endothelial cell line hCMEC/D3 can be used as
a model of the single-cell human BBB that can be easily grown and is amenable to cellular
and molecular studies on pathological and drug transport mechanisms with relevance to
the CNS, as postulated by the producer and confirmed by several authors [90,91]. The
astrocytes used in this study are derived from human brain tissue. According to the supplier,
due to their high degree of biological relevance, they are the ideal cell type for studying
fundamental human neurological pathways and diseases, such as neurodegenerative
disorders, brain injuries, and other injuries (e.g., stroke). In the BBB model used in this
study, endothelial cells and astrocytes were separated by a porous membrane, which
prevented direct contact between these two cell types. It has been predicted that pores of
this size (0.4 µm diameter) have a maximum permeability of 1 nm2 [92] and thus allow
for simple diffusion of small anti-inflammatory compounds, such as RSV (atomic mass of
228.25 Da), from the MC to the BC of the BBB [93].

We used SIRT1 as a marker of astrocyte response because of its involvement in coun-
teracting inflammatory and neurodegenerative processes in the CNS. SIRT1 (along with
SIRT6) inactivates p65 subunit of nuclear factor kappa B (NF-κB), and hinders its role of a
secondary mediator for numerous pro-inflammatory cytokines [94]. SIRT1 stimulates the
methylation of the DNA region encoding for IL1β, leading to inhibition of the synthesis of
this key pro-inflammatory cytokine within the CNS [95–97]. In addition, SIRT1 activates the
transcriptional factor A disintegrin and metalloproteinase domain-containing protein 10
(ADAM-10), which results in inhibition of the formation of neuropathogenic aggregates of
Aβ from amyloid precursor protein (APP) and the formation of soluble non-neurotoxic ag-
gregates of APP-α instead [98–100]. This and related microglia interactions with astrocytes
and neurons prevent the generation of neurofibrillary tangles in the form of intraneuronal
deposits of malformed tau proteins [101,102]. Opposite results on the neuromodulatory
potential of SIRT1 were obtained in a recent study on mice, in which in experimentally
induced autoimmune encephalitis, the activation of SIRT1 had detrimental effects on reac-
tive astrocytes, whereas SIRT1 inactivation produced anti-inflammatory effects [103]. This
inconsistency in experimental results highlights the need for further investigation leading
to a better understanding of the nature of SIRT neuromodulation.

The activity of SIRT1 depends on the availability of NAD+, which varies according to
the supply of energy substrates. The rate of conversion of NAD+ to NADH is coupled to
the citric acid cycle. Its initial reaction is the binding of oxaloacetate, a glucose metabolite,
with acetyl coenzyme A, formed from pyruvate or beta-oxidation of free fatty acids [104].
Glucose deficiency, characteristic of hypoglycemia, leads to decreased cellular levels of
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oxaloacetate and pyruvate, resulting in a slowing down of the citric acid cycle and a lower
rate of NAD+/NADH conversion. In consequence, the concentration of NAD+ increases
in the cells, especially in the mitochondria [105]. In addition, a low supply of energy
substrates in the cell is responsible for the accumulation of AMP from ATP degradation
and the activation of AMP-activated protein kinase (AMPK), stimulating SIRT1 [60,81].
Therefore, moderate caloric restriction may lead to SIRT1 activation, both directly (by
increasing the level of cellular NAD+) and indirectly (by activation of AMPK).

In view of evidence on the correlation of the glycemic status of the organism with
SIRT1 level, we systematically assessed basal astrocyte SIRT1 secretion in the BBB model
constructed in three different glycemic backgrounds (hypo-, normo-, and hyperglycemia).
The results of our experiments are in line with the literature, where SIRT1 secretion in
hypoglycemia was shown to be higher than in normoglycemia and in hyperglycemia to be
lower than in normoglycemia.

Once we determined the correlation of basal SIRT1 astrocyte secretion with the level
of systemic glycemia, we studied the impact of neuroinflammation on astrocyte SIRT1 se-
cretion in different glycemic backgrounds. There are various models of neuroinflammation
used in animal studies, as compared in a recent systematic review [106]. Most commonly
used neuroinflammation inducers injected to the periphery or directly to the CNS include
neurotoxins (activation of the common NF-κB pathway) such as 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP), 6-hydroxydopamine (6-OHDA), lipopolysaccharide (LPS),
protein α-synuclein, and the herbicide paraquat. To induce neuroinflammation in our
study, we used LPS, a microbiome-derived glycolipid that is the major cell wall component
of Gram-negative bacteria. In humans, the major sources of LPSs are gastrointestinal tract-
resident facultative anaerobic Gram-negative bacilli. LPSs have been abundantly detected
in the aged human brain by multiple independent research investigators, and an increased
abundance of LPSs has been associated with Alzheimer’s disease. Microbiome-originated
LPSs and other endotoxins cross gastrointestinal tract physiological barriers into the sys-
temic circulation and penetrate across the BBB into the brain. This pathological process
intensifies during aging and in vascular disorders, including “leaky gut syndrome” [107].
LPS is one of the most potent pro-inflammatory neurotoxins known to date; it activates
many cell types, including monocytes/macrophages [108], endothelial cells [109,110], and
glial and microglial cells [111]. Cellular activation triggered by LPS requires its recognition
by toll-like receptor 4 (TLR4), extracellular lipopolysaccharide binding protein (LBP), and
CD14, which transfer it to a signaling complex composed of myeloid differentiation factor
2 (MD2) and myeloid differentiation primary response 88 (MyD88) protein [112,113]. Bacte-
rial LPS has been conventionally used to study inflammation because it triggers the release
of numerous inflammatory cytokines [114,115], e.g., TNFα, IL1β, IL6, IL8, IL10, IL12, IL15,
and TGFβ in monocytes/macrophages [112,116,117]. Apart from inducing systemic inflam-
mation, which leads to the disruption of the BBB by increasing its permeability [118–120],
LPS induces neuroinflammation and progressive neurodegeneration [121,122]. Human
TLR4-activated astrocytes are implicated in the neuropathogenesis of many infectious and
inflammatory diseases of the brain [123]. TLR4 is constitutively expressed and present in
human naive astrocytes. Its binding to LPS activates the NF-κB pathway and stimulates the
expression and secretion of pro-inflammatory cytokines in a time- and dose-dependent man-
ner, thus promoting the infiltration of leukocytes and amplifying immune responses [124].
NF-κB activation by LPS is dependent on the presence of serum components, such as the
soluble form of CD14 (sCD14) [125]. Therefore, to induce an immediate neuroinflammatory
effect, we administered LPS directly to the BC of the BBB model, and to ensure adequate
astrocyte activation through LPS/TLR4 signaling, we systematically added serum to the
astrocyte culture medium.

In our experiments, the secretion of SIRT1 was almost completely abolished upon
LPS administration in all glycemic backgrounds. The concentration of SIRT1 in astrocyte
culture supernatants dropped to the limit of detection (Figure 4). This observation is
in line with the effect described in the literature, where LPS has been shown to down-
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regulate the SIRT1 expression and its effect was sustained for at least 24 h [126]. Possible
mechanisms underlying decreased secretion of SIRT1 upon LPS treatment are dependent
on NF-κB [127]. Nuclear accumulation of NF-κB can entail increased transport of SIRT1
into the astrocyte nucleus, aiming to antagonize the pro-inflammatory effect of NF-κB by a
negative feedback loop, which is crucial for the precise regulation of inflammation severity.
This can result in decreased SIRT1 cytosol availability and, thus, decreased secretion.
Intracellular SIRT1 concentration upon chronic cell exposure to LPS is responsible for the
self-limitation of inflammatory reactions [128]. NF-κB can also modulate SIRT1 expression.
It increases the expression of IFN-γ [129,130], inhibits SIRT1 transcription via the class II
major histocompatibility complex (MHC) transactivator (CIITA) and transcription factor
hypermethylated in cancer 1 (HIC1) proteins [131], and induces the synthesis of micro-RNA
miR-34a, inhibiting SIRT1 translation [132]. In addition, NF-κB can induce gp91phox and
p22phox enzymes, components of NADPH-oxidase complex, intensifying the formation of
oxygen free radicals [133,134], which serve to eliminate pathogens [135]. Increased ROS
concentration can inhibit SIRT1 activity directly and indirectly through SIRT1 cysteine
oxidation, leading to S-glutathionylation [136–139]. In addition, NF-κB can promote SIRT1
inactivation by GADPH-dependent trans-nitrosylation via induction of isoforms of nitric
oxide synthase (NOS), iNOS, and eNOS [140–142]. NF-κB-induced free radicals and their
subsequent increased intracellular concentration can lead to a reduction of the NAD+ pool,
entailing a decrease in SIRT1 activity [143,144]. Moreover, oxidative stress can increase the
demand for the activity of poly-[ADP-ribose] polymerase 1 (PARP-1), an enzyme competing
with SIRT1 for NAD+ as a cofactor [145].

Once we confirmed the hindering effect of LPS on SIRT1 secretion in all glycemic
backgrounds, we compared the effect of RSV treatment in different glycemic backgrounds
on SIRT1 secretion from astrocytes previously subjected to neuroinflammation. Recent
studies show that RSV administration and the accompanying activation of SIRT1 improved
the health and survival of mice on a high-calorie diet by decreasing insulin resistance [146].
RSV treatment causes an increase in SIRT1 mRNA levels and stimulates the deacetylating
activity of SIRT1 [147,148]. RSV stimulation of SIRT1 is indirect by enhancing the expres-
sion and function of nicotinamide phosphoribosyltransferase (NAmPRTase or NAMPT)
and AMPK, or direct by allosteric activation [149–152]. RSV also decreases the mRNA
levels of TLR4, myeloid differentiation primary response protein MyD88, and TIR domain-
containing adapter molecule 2 inducing interferon-β (TRIF or TRAM2), which suggests
that RSV inhibits the activation of the TLR4 signaling pathway. It suppresses the expression
levels of p38 mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase, extracellu-
lar signal-regulated kinase 1

2 , and interferon regulatory factor 3 (IRF3) proteins. Following
treatment with RSV, similarly to specific inhibitors, the production of pro-inflammatory
mediators, including TNFα, IL6, IL8, and IFNβ, decreases, and the expression of the anti-
inflammatory mediator IL-10 increases. This indicates that RSV exerts its anti-inflammatory
activity through the inhibition of signaling cascades of TLR4, NF-κB, MAPKs, and IRF3,
and that the therapeutic effect of RSV on LPS-induced inflammation is exerted through their
suppression. RSV alleviated the effect of LPS-induced inflammation through inhibition of
MyD88 and TRIF, two upstream proteins in the TLR4 pathway, suggesting MyD88, TRIF,
or their upstream proteins to be the direct targets of RSV responsible for the inhibition of
the LPS-induced inflammation [153].

In our study, we used a standard hematoxylin and eosin (H&E) staining technique
to assess the morphologic integrity of astrocytes. Other staining protocols, based on im-
munohistochemistry (IHC) and immunofluorescence (IF), are available and discussed in
the literature [154,155]. Specific IHC and IF staining techniques are more informative for
visualizing astrocyte populations in vivo, showing morphological and functional hetero-
geneity in different regions of the brain [156,157], as also observed for induced reactive
astrocytes [158]. IHC analysis of the location and expression patterns of specific biomarkers,
such as glial fibrillary acidic protein (GFAP) or S100 calcium-binding protein B (S100β), for
the polymorphous astrocyte subgroups is crucial for exploring their multifunctionality in
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neural tissues under different conditions in vivo, such as progression of neuroinflammation
associated with acute ischemic stroke, brain edema-eliciting diseases, traumatic brain injury,
psychiatric disorders, or neurodegeneration [159–161]. In turn, IHC analysis of cell distri-
bution and expression regulation of aquaporin-4 (AQP4) turns out to be pivotal in studies
on astrocyte communication with other CNS components, especially microglial cells and
pericytes [162,163]. However, our in vitro BBB model was based on a pure homogenous
culture of astrocytes growing in a contact-inhibited monolayer, thus creating epitheloid-like
cells devoid of synaptic contacts and vascular elements [164], thus preventing the formation
of a complex three-dimensional network, as observed in neural tissues in vivo. Therefore,
we considered basic morphology assessment using H&E staining sufficient for the purpose
of this study.

There are two main limitations to our study, both related to the use of an in vitro
model. The first is that the LPS challenge was applied to the BC. This strategy is in
line with stereotaxic experiments in animal models where LPS was administered directly
to the brain tissue [165–167]. A more conventional way to induce neuroinflammation
is via intraperitoneal or intravenous injection of LPS, where it is supposed to reflect a
peripheral infection. Such a strategy was applied in in vivo studies investigating cognitive
impairment [168–170], depression and anxiety [171], fatigue [172], Parkinson’s disease [167],
and systemic inflammation-induced pain [173]. Importantly, the penetration of LPS through
the BBB seems to be dose-dependent [174]. Given the dose of LPS, our in vitro setting
is more likely to mimic a stereotaxic experiment or an acute infection, leading to a non-
negligible diffusion of LPS to the brain.

The second limitation is related to the low penetration of RSV through the BBB. In
preliminary studies conducted in our laboratory using the same experimental setting, the
RSV penetration through the BBB was lower than 1% (0.53%, 0.61%, and 0.55% of the
original RSV concentration were detected in the BC for hypo-, normo-, and hyperglycemic
conditions, respectively). This low RSV penetration might not reflect in vivo experiments
using intrathecal administration [175] or lumbar puncture [176], where penetration of RSV
to the brain is expected to be higher. However, a low penetration of RSV from the MC
to the BC is in line with a low bioavailability of RSV in vivo after oral administration
due to almost complete gastrointestinal absorption (75%), followed by the respective
metabolization by the intestinal and liver mucosa (the first-pass effect) before reaching
the systemic circulation [177,178]. Notwithstanding RSV’s low bioavailability, studies
in animal models suggest that oral RSV administration is sufficient to reduce the risk
of BBB disruption following recurrent strokes, possibly by protecting the endothelium
of the cerebrovasculature [179]. In addition, oral RSV administration used in chronic
pain animal models is thought to have an analgesic effect via SIRT1 up-regulation [180].
Other beneficial effects of oral RSV administration within the CNS are discussed in detail
elsewhere [42,43,48,49]. Improvement of the bioavailability of RSV as a dietary supplement
is achieved by opsonization of the RSV molecule with lipophilic particles [51], by its nano-
encapsulation within liposomes or micelles, increasing its intestinal absorption [181,182],
by modification of the RSV molecular structure (e.g., hydroxylation or metoxylation of its
aromatic rings) [183], or by its intrathecal administration, leading to increased penetration
through the BBB into the CSF [175].

Further research is undoubtedly needed to confirm the obtained results on larger sam-
ples and to provide a detailed comparative assessment of the pro- and anti-inflammatory
cytokine profiles in both compartments of the BBB, as well as to address the state (activa-
tion) of astrocytes and endothelial cells of the applied BBB model in the observed SIRT1
secretion regulation in different glycemic states (e.g., using immunohistochemistry). Also,
it would be interesting to use a molecular approach to address the mechanisms of SIRT1 se-
cretion/activation regulation. Including other components of the BBB in the simple model
used in this study would enable deciphering their particular roles in SIRT1 activation.
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4. Materials and Methods
4.1. Cell Culture

The human endothelial cell line hCMEC/D3 (Sigma-Aldrich, Burlington, MA, USA;
cat. no. SCC066) was obtained from cerebrovascular endothelium, in which capillary
endothelial cells were immortalized by transduction with a lentiviral vector carrying the
catalytic subunit of human telomerase (hTERT) and the SV40 large T antigen. This cell line
was cultured in dedicated EBM-2 medium (Lonza, Basel, Switzerland; cat. no. 190860),
supplemented with Chemically Defined Lipid Concentrate (Life Technologies, Carlsbad,
CA, USA; cat. no. 11905031), 5.7 mM ascorbic acid (Sigma-Aldrich; cat. no. A4544),
12.5 µM human Basic Fibroblast Growth Factor (bFGF) (Sigma; cat. no. F0291), 2.8 mM
hydrocortisone (Sigma-Aldrich; cat. no. H0135), heat-inactivated 10% Fetal Bovine Serum
(FBS) (Gibco, Waltham, MA, USA; cat. no. 12483020), 1 M HEPES, and antibiotic cocktail
(Penicillin and Streptomycin) (Sigma-Aldrich; cat. no. P0781). Human brain progenitor-
derived astrocytes (ThermoFisher Scientific-Gibco, Waltham, MA, USA; cat. no. N7805100)
were cultured in DMEM medium (Gibco; cat. no. 31966-021 or 31966-047) with N-2
Supplement (Gibco; cat. no. 17502001) and heat inactivated 10% Fetal Bovine Serum (FBS)
(Gibco; cat. no. 12483020). Heat inactivation of FBS (30 min at 56 ◦C) leads to denaturation
and inactivation of insulin, insulin-like growth factor 2 (IGF-2), and IGF binding protein
(IGFBP)-2 and -6, identified among 143 proteins in FBS by Tu C et al. [184]. Following the
manufacturers’ instructions, the walls of bottles used for endothelial cell cultures were
previously coated with type I collagen derived from rat’s tail (Merck, Darmstadt, Germany;
cat. no. C7661), whereas the walls of bottles used for astrocyte cultures were pre-coated
with a reduced growth factor basement membrane extract (Geltrex Matrix) (Gibco; cat.
no. A1413202). Cell cultures were maintained at 37 ◦C in a humidified CO2 incubator
(90% humidity, 5% CO2 in air) until reaching 80–90% confluence (which occurred usually
within 3 days of culture for endothelial cells and 4 days of culture for astrocytes), and were
then passaged into new bottles or transferred to 24-well plates. The respective viability
measurements with trypan blue (TB exclusion assay) were performed each time as a routine
test of the culture quality.

4.2. Setup of In Vitro Model of the Blood–Brain Barrier (BBB) in Different Glycemic Backgrounds

The BBB model was constructed by seeding 3 × 104 astrocytes (representing the
brain compartment (BC) of the BBB) into the wells of the 24-well plate pre-coated with
Gibco Geltrex Matrix, followed by seeding 6 × 104 endothelial cells (representing the
microvascular compartment (MC) of the BBB) into the inserts (membranes with 0.4 µm-
diameter pores) pre-coated with type I collagen and introduced into the wells. Each
seeding step was followed by a 24-h equilibration period, after which the confluence of
the respective cell layer was confirmed microscopically and the medium was replaced by a
freshly prepared one; in the case of astrocytes, complete DMEM medium containing glucose
was replaced with DMEM depleted of glucose, and in the case of endothelial cells, complete
EBM-2 medium was replaced with complete EBM-2 supplemented with defined D-glucose
concentrations: 40 mg/dL (2.2 mM), 90 mg/dL (5 mM), or 450 mg/dL (25 mM), reflecting
hypo-, normo-, and hyperglycemic conditions in the MC, respectively. In summary, when
three different glucose concentrations were applied in the MC, the astrocytes in the BC
were temporarily depleted of glucose. Glucose from MC could then gradually penetrate to
the BC of the BBB model to be accessible for uptake by astrocytes. This gradual reversal
of glucose deprivation in the culture media of the BC leads to the metabolic reset of
astrocytes through the depletion of their glycogen stores and promotes SIRT1 activation by
decreasing the NAD+/NADH conversion rate, especially in the mitochondria [185]. The
permeability of the BBB model for glucose was assessed for each glycemic background
independently. Analogically to the two-cell BBB model used in this study, consisting of the
BC and the MC, the endothelial MC and astrocyte-free glucose-free BC were maintained
for 24 h without glucose and subsequently for 24 h following glucose addition to the MC
in concentrations corresponding to hypo-, normo-, and hyperglycemia. After this time,
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glucose concentration in the BC was measured using a colorimetric assay (for details, see
Section 4.5), and the ratio of glucose penetration through the BBB was calculated. The
respective controls were performed using the same BBB model with the same co-cultured
cell lines in three glycemic conditions (hypo-, normo-, and hyperglycemia) to test the
level of three pro-inflammatory cytokines in the BC: TNF-α, IFN-γ, and IL-12. There were
significant differences in concentrations of single but not all pro-inflammatory cytokines in
the BC of the model between different glycemic groups 24 h after glucose addition in the
MC [186].

4.3. Induction of Neuroinflammation

Neuroinflammation was induced in the brain compartment (BC) of the BBB model
by the addition of lipopolysaccharide (LPS) (Sigma-Aldrich, cat. no. L2755) into the wells
of the culture plate containing seeded astrocytes to reach a final concentration of 0.2 µM
in complete DMEM medium. After 12 h, the astrocyte medium was replaced by a freshly
prepared complete DMEM without LPS. Supernatants from astrocyte cultures in the BC
were collected before and after the addition of LPS at time points of 0 h, 12 h, 24 h, and
36 h and analyzed to quantify the astrocyte SIRT1 secretion in response to LPS-induced
neuroinflammation. The experiments were repeated in triplicate. The respective controls
were performed using the same BBB model with the same co-cultured cell lines in three
glycemic conditions (hypo-, normo-, and hyperglycemia) in the presence of LPS to test the
level of three pro-inflammatory cytokines in the BC: TNF-α, IFN-γ, and IL-12. There were
significant differences in concentrations of all these pro-inflammatory cytokines in the BC
between LPS-treated and untreated groups 24 h after LPS administration [186].

4.4. Administration of Resveratrol (RSV)

RSV solution was added from the side of the microvascular compartment (MC) of the
BBB model into the inserts of the culture plate containing seeded endothelial cells to reach
a final concentration of 50 µM in EBM-2 medium. Supernatants from astrocyte cultures in
the brain compartment (BC) were collected before and after the addition of RSV at time
points of 12 h, 24 h, and 36 h and analyzed to evaluate the anti-inflammatory effect of
RSV on astrocyte SIRT1 secretion in response to LPS-induced neuroinflammation. The
experiments were repeated in triplicate. We relied on literature data, which exclude the
inflammatory response of astrocytes to RSV 50 µM administration [187], and performed
additional control assays using the same BBB model with the same co-cultured cell lines
in three glycemic conditions (hypo-, normo-, and hyperglycemia) in the presence of LPS
and subsequent addition of RSV to test the level of three pro-inflammatory cytokines in the
BC: TNF-α, IFN-γ, and IL-12. In all the cases, the subsequent addition of RSV in the MC
after the LPS administration in the BC led to a reduction in inflammatory cytokine levels
compared to LPS administration alone [186].

4.5. Glucose Colorimetric Assay

The glucose permeability of the blood–brain barrier (BBB) model used in this study
was assessed independently for each glycemic background using the Glucose Colorimetric
Detection Kit (Invitrogen, Waltham, MA, USA, cat. no. EIAGLUC), following the manufac-
turer’s instructions. Along with biological samples (supernatants from astrocyte cultures),
each ELISA microplate contained positive controls (serial dilutions of Glucose standard,
serving to construct the standard curve) and negative controls (sample dilution buffer
and/or astrocyte culture medium without glucose). Based on standard curves generated
for each assay independently, the glucose concentration in the analyzed samples was
calculated from absorbance units (Au), measured by the microplate spectrophotometer
(ASYS UVM 340 Microplate Reader) at a wavelength of 560 nm. Samples were assayed
in duplicate, and the values were averaged. Colorimetric experiments were performed in
triplicate.
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4.6. Enzyme Linked Immunosorbent Assay (ELISA)

The level of astrocyte-secreted SIRT1 in the brain compartment (BC) was assessed using
the Human SIRT1 ELISA Kit (Abcam, Cambridge, UK, cat. no. ab171573), following the
manufacturer’s instructions. Along with biological samples (supernatants from astrocyte
cultures), each ELISA microplate contained positive controls (serial dilutions of the SIRT1
standard, serving to construct the standard curve) and negative controls (sample dilution
buffer and/or astrocyte culture medium containing or not LPS). Based on standard curves
generated for each assay independently, the SIRT1 concentration in the analyzed samples
was calculated from absorbance units (Au), measured by the microplate spectrophotometer
(ASYS UVM 340 Microplate Reader) at a wavelength of 450 nm. Samples were assayed in
duplicate, and the values were averaged. ELISA experiments were performed in triplicate.
To obtain a better estimate of data variability in each glycemic background analyzed, the
SIRT1 concentration values for time point 0 h were pooled across each experiment, and for
time point 12 h, they were pooled for LPS-untreated and LPS-treated groups.

4.7. Live Cell Fixing and Microscopic Imaging

The cell cultures were fixed in 3% paraformaldehyde (PFA) in PBS for 30 min at room
temperature, then paraffin-embedded and stained with the hematoxylin and eosin (H&E)
standard protocol, described elsewhere [188]. Microscope images were acquired using an
inverted cell culture microscope Zeiss Primovert equipped with light sources: HAL 35 W,
3 W LED (infinity optics), and a Zeiss Axiocam 105 color camera. The micrographs are
representative of three independent experiments. Microscopic images of the astrocytes
cultured with or without LPS (50 images in each group) were analyzed. From each mi-
crograph, three visual fields were randomly selected, each with an area of 136.693 µm2.
Subsequently, the morphology of 10 astrocytes was analyzed in each of these visual fields
by two independent observers, experienced histopathologists. Images were analyzed using
ZEN 2.3 software.

4.8. Statistical Analysis

Statistical analysis was performed using GraphPad Prism 9.0.1 (GraphPad Software,
San Diego, CA, USA, www.graphpad.com, (accessed on 2 October 2022)). Data on S|IRT1
concentrations were initially tested for a normal distribution using D’Agostino’s and
Pearson’s omnibus test. Given there was no evidence against normal distribution, the null
hypothesis of a shared mean of astrocyte SIRT1 concentration across multiple study groups
was tested by ANOVA. When this test provided evidence against the null hypothesis, t tests
were applied for pairwise group comparison. In each test performed, the significance level
was set at 5%. Mean values and standard deviations are summarized in Supplementary
Table S1 for the data presented in Figures 2 and 4–9.

5. Conclusions

We detected different levels of astrocyte-secreted SIRT1 in the BC depending on glu-
cose concentrations in the MC of the used BBB model. We confirmed the hindering effect
of LPS-induced neuroinflammation and the boosting effect of RSV on the level of SIRT1
secreted by astrocytes in the BC of the BBB in all glycemic backgrounds, corresponding
to three extreme glycemic conditions: hypo-, normo-, and hyperglycemia. Finally, we
observed the neuroprotective activity of resveratrol, partially counterbalancing the effect
of LPS on SIRT1 levels in the BC. We brought to light the dependence of astrocyte SIRT1
secretion on the interplay between the glycemic background, LPS-induced neuroinflam-
mation, and the activity of RSV. To our knowledge, this is the first systematic study on the
regulation of SIRT1 secretion in neuroinflammation and upon RSV treatment in different
glycemic backgrounds. The novelty of our study lies in the finding that the decrease in
the effectiveness of RSV in counteracting the effect of LPS in conditions of both hyper-
and hypoglycemia occurs directly at the level of interaction between endothelial cells (the
microvascular compartment of the BBB) and astrocytes (the brain compartment of the BBB).

www.graphpad.com


Int. J. Mol. Sci. 2023, 24, 11640 18 of 25

This was made possible by using a simple in vitro two-component model of the BBB, in
which blood (together with most cellular and non-cellular components) was replaced by a
growth medium. Further research should be undertaken to confirm the obtained results
and to decipher the mechanisms of the described interplay in detail. Including other BBB
components in this model is necessary to enable the extrapolation of the obtained results to
conditions in vivo.
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