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Abstract: This review mainly addresses applications of polymer/graphene nanocomposites in certain
significant energy storage and conversion devices such as supercapacitors, Li-ion batteries, and fuel
cells. Graphene has achieved an indispensable position among carbon nanomaterials owing to its
inimitable structure and features. Graphene and its nanocomposites have been recognized for provid-
ing a high surface area, electron conductivity, capacitance, energy density, charge–discharge, cyclic
stability, power conversion efficiency, and other advanced features in efficient energy devices. Fur-
thermore, graphene-containing nanocomposites have superior microstructure, mechanical robustness,
and heat constancy characteristics. Thus, this state-of-the-art article offers comprehensive coverage on
designing, processing, and applying graphene-based nanoarchitectures in high-performance energy
storage and conversion devices. Despite the essential features of graphene-derived nanocomposites,
several challenges need to be overcome to attain advanced device performance.

Keywords: graphene; nanocomposite; polymer; energy storage; conversion; supercapacitor; batteries;
fuel cell

1. Introduction

Progression in energy technologies demands the use of innovative competent nano-
materials to attain the desired high performance of those technologies [1]. Graphene is
one of the most unique nanomaterials adopted for advanced nanocomposite formation [2].
Graphene has the advantages of being lightweight, strong, and eco-friendly, and has su-
perior physical features [3,4]. Moreover, graphene has good electron conductivity and
charge-storing properties that are useful for cutting-edge energy and electronic applications
like energy production, storage, sensors, electronics, etc. [5–7]. The high surface area,
electrical, and electrochemical characteristics have been found to be suitable for designing
supercapacitor electrodes for charge storage [8]. In addition, graphene has been applied
to enhance the charge storage of batteries and fuel cell devices [9]. Supercapacitors with
graphene nanomaterials have been used as the most efficient energy storage devices [9].
Moreover, Li-ion batteries employing graphene have been researched for their good en-
ergy storage capabilities [10,11]. In addition, graphene-derived materials have also been
explored for their use in fuel cells [12]. Utilizing graphene and its related nanomaterials
has revealed several valuable features and high performance in terms of charge or energy
storing and conversion applications [13]. To design graphene nanomaterials for charge
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or energy storage and conversion, various facile fabrication methods, matrix–nanofiller
interactions, morphology, stability, capacitance, charge density, energy density, cyclic per-
formance, efficiency, and other valued properties have been analyzed [14]. However, to
use graphene-derived nanocomposites for high-efficiency energy storage and conversion
applications, various design and performance challenges need to be overcome [15,16].

In recent years, functionally graded graphene-reinforced composites have been fo-
cused on heavily in the literature [17]. Functionally graded graphene-reinforced composite
materials have the advantages of being lightweight and multi-functional and having ad-
vanced mechanical and physical features for the development of next-generation devices.
The designs of the graphene-reinforced composites have been explored for piezoelectric
actuators [18]. Consequently, the influence of a graphene-reinforced composite-based piezo-
electric layer has been investigated for these devices. Accordingly, Maxwell’s equation
has been used for the piezoelectric layer of the composites. The design of functionally
graded graphene-reinforced composites has been found to be valuable for nanoelectrome-
chanical or microelectromechanical systems like nanosensors and nanoactuators. However,
defects and imperfections have been observed in functionally graded graphene-reinforced
composites [19]. In this context, the 3D poroflexibility theory has been applied to ex-
plore the bending responses of the composites. The horizontal friction force and elastic
parameters were used for modeling the substrate. The discrete singular convolution in-
tegration technique was used to observe the stress–strain responses of the composites.
Including higher contents of graphene considerably affected the stress and displacement
properties of the composites. Furthermore, the stresses and strains of functionally graded
graphene-reinforced composites have been studied using the higher-order shear deforma-
tion theory [20]. Here, the module of elasticity was found using the modified Halpin–Tsai
model, whereas Poisson’s ratio was utilized to measure the mixture. Hence, the dispersion,
conducting, piezoelectric, and mechanical performances of these functional composites
have been successfully analyzed using the advanced theoretical and modeling techniques
for high-performance energy device applications.

This state-of-the-art review primarily covers the fundamentals of graphene and its
nanocomposites. Additionally, the energy storage and conversion solicitations of graphene-
derived nanocomposites are scrutinized in terms of important devices. Accordingly, high-
efficiency multi-functional supercapacitors, batteries, and fuel cells are debated. To the best
of our knowledge, this article is pioneering in the field of energy storage and conversion
devices in terms of the review outline, the collected literature, and the wide coverage
of various devices to study the effect of graphene-based nanocomposites. Few previous
reviews of the literature on graphene materials have included a comprehensive survey in
order to support future progress in this field [21]. The future of graphene-derived nanocom-
posites in various energy storage and conversion systems depends upon overcoming the
fabrication- and efficiency-related challenges to form multi-functional supercapacitors,
batteries, and fuel cells.

2. Graphene: An Exclusive Nanocarbon

Graphene is considered an excellent nanocarbon form [22–24]. It has a one-atom-thick
nanostructure containing sp2-hybridized hexagonal carbon atoms with π-orbitals [25–27].
Figure 1 presents the structures of graphene and its interrelated carbon nanomaterials.
Initially, graphene was studied by the scientists Geim and Novoselov (Nobel Prize laure-
ates in physics) in 2010 [28–30]. Since then, various approaches (top-down or bottom-up)
have been adopted to form graphene nanostructures [31–34]. To name a few, graphite
mechanical breakage, exfoliation, chemical vapor deposition, chemical or organic synthesis,
and numerous other methodologies have been used [35–38]. Graphene has a light trans-
parency of 97–98% [39,40]. The electron mobility and thermal conductivity properties of
graphene were found to be 200,000 cm2V−1s−1 and 3000–5000 W/mK, respectively [41,42].
In addition, graphene has a very high Young’s modulus of 1 TPa and was found to be
200–300 times more solid relative to steel [43].
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Figure 1. Structure of graphene and related carbon nanomaterials.

Graphene nanosheets can be held together through van der Waals interactions [44–46].
With all of these remarkable features, graphene and its related materials reveal valuable
applications in energy devices and electronics, in the auto or space sector, and in count-
less other fields [47]. Graphene oxide is developed to be an efficient modified form of
graphene, with hydroxyl, carboxylic, epoxide, and several other oxygen-containing surface
functionalities and spectacular physical features [48]. Graphene, as well as its derived
nanomaterials, have been researched for their superior electrical, thermal, mechanical, and
physical features [49–51]. Consequently, graphene derivatives and nanomaterials have been
used for electronics [52], sensors [53], transistors [54], batteries [55], hydrogen storage [56],
and several other devices and applications [57] (Figure 2).Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 4 of 20 
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3. Graphene-Derived Nanocomposites: Innovative Materials

Graphene-derived nanocomposites have been designed and explored for their fab-
rication, nanofiller contents, nanoparticle scattering, matrix–nanofiller connections, and
physical properties [58]. Specifically, polymer/graphene nanocomposites have been de-
veloped using various thermoplastics, thermosets, and conjugated polymer matrices. In
polyethylene [59] and poly(vinyl alcohol) [60] matrices, the addition of graphene has
enhanced the compatibility, electrical conductivity, and strength features of the ensuing
nanocomposites. Subsequently, Shen and colleagues [61] designed the polystyrene- and
graphene-derived nanocomposites. These nanomaterials depicted π–π interactions between
the sp2-hybridized structure of graphene and styrene rings of polymer (Figure 3). The aro-
matic ring associations caused matrix–nanofiller bonding as well as compatibilization. As a
result, the heat stability properties of the nanocomposites were found to be enhanced. Zhao
and researchers [62] also fabricated polystyrene- and graphene-derived nanocomposites.
The interface formation and interactions caused a percolation threshold of 0.0475 vol.%
and a high electrical conduction of 20.5 Sm−1 [63]. Similarly, polystyrene/graphene nano-
materials were observed to be high in mechanical characteristics due to polymer–filler
bonding [64]. In addition, a poly(methyl methacrylate) matrix was also filled with graphene
nanofiller [65]. The dispersion of graphene nanoparticles established the interconnected per-
colation network for electron conduction. Balasubramaniyan and co-workers [66] formed
poly(methyl methacrylate)- and graphene-derived nanocomposites. The nanocomposites
had an electrical conductivity of 0.039 Sm−1. Additionally, the storage modulus and glass
transition temperature of the nanocomposites were found to be improved with the addi-
tion of graphene. Thus, a graphene additive has been introduced in various polymers to
enhance the physical characteristics of these nanomaterials.
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4. Graphene Consequent Nanocomposites in Supercapacitors

Supercapacitors have been investigated to be notable charge or energy storage de-
vices [67]. Alterations of device structures using efficient nanomaterials may result in
enhanced charge-storing capabilities of supercapacitors [68]. Additionally, the use of ap-
propriate processing techniques may improve the device’s performance [69–71]. In this
context, nanocarbons and polymer/nanocarbon-derived nanomaterials have been used
for the synthesis of supercapacitor electrodes due to their high robustness, high charge or
power density, as well as capacitance [72–74]. Figure 4 reveals the Ragone plots for various
energy storage devices. These various charge storage devices were plotted according to
their performance. Here, the energy storage devices were developed and analyzed for their
efficiency [75]. It can be stated that the capacitors have proven to be the most effectually
operative charge storage devices.
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Figure 4. Ragone-plot-based comparative behavior of the numerous energy storage devices studied
so far, such as capacitors, superconducting magnetic energy storage capacitors, flywheels, batteries,
and solid oxide fuel cells [76]. SMES = superconducting magnetic energy storage; SOFCs = solid
oxide fuel cells. Reproduced with permission from Elsevier.

Graphene has been accredited to be a remarkable carbon nanomaterial [77]. A signifi-
cant application of graphene was observed for polymeric nanocomposite formation [78,79].
Adding small nanofiller contents to polymer/graphene nanocomposites may increase
their desired physical properties [80]. In energy storage devices and systems, graphene
and graphene-derived nanocomposites have been effectually useful. A successful design
combination for the supercapacitor electrode was developed using conjugated polymers
and graphene [81]. Conjugated polymer/graphene nanomaterials have a low cost, struc-
tural steadiness, high surface area, capacitance, energy density, and charge/discharge
features [82–84]. In this context, numerous polymers have been applied to design the
supercapacitor electrodes such as polyaniline, polypyrrole, polythiophene, and their deriva-
tives [85,86]. Nayak et al. [87] reported a two-electrode solid-state asymmetric supercapaci-
tor cell derived from graphene-supported tungsten oxide nanowires working as negative
electrodes. To check the material performance, the specific capacitance and energy density
performance of the supercapacitor were analyzed. Figure 5 demonstrates the transmis-
sion electron microscopy and high-resolution transmission electron microscopy images of
neat tungsten oxide nanowires and graphene-supported tungsten oxide nanocomposites.
Neat tungsten oxide has nanostructures resembling the nanowire-like morphology. In
the nanocomposite form, a well-oriented nanostructure was observed owing to the single
crystalline nature of the nanomaterial. Figure 6 validates the functioning of a solid-state
asymmetric energy storage device. The asymmetric supercapacitor device was applied for
lightening the red-colored light-emitting diodes. Furthermore, Figure 7 shows the Ragone
plots of the energy density, power density, and cyclic stability profiles of the nanocompos-
ites. Following 4000 charge–discharge cycles, the energy density was maintained in the
range of 6 to 25 W h kg−1. Henceforth, the graphene nanocomposites revealed superior
specific capacitance, energy and power density, and cyclic performance for high-efficiency
supercapacitors.
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Figure 5. (A) TEM image; (B) HRTEM image of WO3 nanowires (inset is the FFT pattern); and
(C) TEM images of graphene-WO3 nanocomposite [87]. TEM = transmission electron microscope;
HRTEM = high resolution transmission electron microscope; FFT = fast Fourier transform. Repro-
duced with permission from the ACS.
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LED = light emitting diode; PVA = poly(vinyl alcohol). Reproduced with permission from the ACS.
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Çıplak and colleagues [88] reinforced the polyaniline matrix with graphene nanofillers,
such as graphene oxide and reduced graphene oxide, in addition to the gold nanoparticles.
Graphene oxide was developed using the Hummers’ method, whereas the nanocomposite
was formed through the in situ polymerization method. The polyaniline/reduced graphene
oxide–gold nanoparticle nanocomposite had a specific capacitance of ~213 Fg−1, which was
64% higher than the unfilled polyaniline electrode. A superior nanocomposite electrode
performance was observed due to the electrostatic and π–π stacking interactions between
the conjugated polymer and nanocarbon structures. Arthisree and co-workers [89] fabri-
cated a supercapacitor electrode based on the polyacrylonitrile and polyaniline matrices
and graphene quantum dot nanofiller. The electrode had nanofiller contents of up to
1.5 wt.%. The specific capacitance of the nanocomposites was found to be high, in the
range of >100 to ~600 Fg−1. The superior supercapacitor performance was attributed to
the synergistic effects of the conducting polyaniline and polyacrylonitrile as well as the
graphene quantum dot additive [90,91]. Thus, the exclusive combinations of polymers and
graphene led to high performance designs for advanced supercapacitors.

5. Graphene Nanocomposites towards Li-ion Batteries

Li-ion batteries have also been used as effective energy storage devices [92,93]. Pre-
viously, transition metal-oxide-based electrodes have been applied in these energy de-
vices [94,95]. The continuing research on Li-ion battery electrodes focused on their longevity,
large-scale processing, high capacitance, charge or energy storage, and other related proper-
ties [96,97]. Consequently, the research has moved towards using graphene nanocomposites
and polymer/graphene nanomaterials to attain high specific capacitance and current den-
sity (~2000 mAhg−1 and >100 mAg−1, respectively) features [98]. Li and co-workers [99]
designed a Li-ion battery electrode using graphene along with an aligned carbon nanotube.
The resulting nanocomposite electrode depicted good capacity and electron conduction
as well as robustness. Chang and researchers [100] fabricated a Li-ion battery cathode
using graphene- and polysulfur-derived nanocomposites. The homogeneous scattering
of graphene in polysulfur established the efficient electron transferring paths in the ma-
trix. Consequently, the battery cathode had a high areal capacity of about 12 mAhcm−2.
Jiao et al. [101] formed a Li-ion battery anode based on wrinkled nitrogen-doped graphene
and red phosphorus. The nitrogen-doped graphene and the red-phosphorus-derived
nanocomposite electrodes had a high electron conduction owing to the three-dimensional
nature of red phosphorous. Figure 8 shows the formation of the nitrogen-doped graphene
and red-phosphorus-derived nanocomposite through a simple and facile ball milling route.
On the other hand, the solution route, i.e., Hummers’ method, was used to form the
graphene oxide. After that, the cyanamide compound was adopted for the nitrogen doping
of the modified graphene to obtain the N-doped graphene. Figure 9 illustrates the electro-
chemical performance via capacity vs. cyclic number plots and efficiency vs. cyclic number
plots. The nitrogen-doped graphene/red-phosphorus-based nanocomposite electrodes
revealed a very high reversible discharge capacity of >2000 mAhg−1 and an efficiency
of ~88% through 100 cycles. Hence, the effectiveness of using graphene in Li-ion battery
anodes is established.
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Conducting polymer and graphene-derived nanocomposite electrodes have been
designed for Li-ion batteries [102]. Li et al. [103] fabricated a polyaniline-grafted graphene-
oxide-based battery anode. In these nanomaterials, aromatic π–π linking interactions were
observed, which were found to be responsible for a high conductivity and high specific
capacity of 900 mAhg−1. Moreover, the polyaniline-grafted graphene-oxide-derived an-
ode had a high cycling stability and Coulombic efficiency. Guo and researchers [104]
reinforced a conducting polymer poly(4-vinyloxy-2,2,6,6-tetramethyl-piperidine-N-oxyl)
using a graphene nanofiller to form the Li-ion battery cathode. The resulting electrode
had a high electron conduction, a reasonable specific capacity (270 mAh g−1), and an
extended cycling life (20,000 cycles). Chae et al. [105] worked on the polyethylenimine-
and graphene-oxide-based nanocomposites for the battery electrode. Accordingly, a high
reversible capacity of 880 mAhg−1 was attained. Hence, the inclusion of graphene and
graphene oxide provided considerable benefits to the performance of the Li-ion battery
due to dispersion and interactions with the compatible polymer structures [106,107].

In lithium-ion storage batteries, basically different graphene-based nanomaterials
have been used for electrodes such as graphene-supported polymers, graphene-supported
sulfides, graphene-supported metal oxides or alloys, etc. [108]. The synthesis, morphology,
conductivity, electrochemical, and capacitance performances of the graphene-supported
nanocomposites need to be focused on for the improvement of lithium-ion storage bat-
teries [109]. An important factor in using graphene nanomaterials in Li-ion batteries is



Int. J. Mol. Sci. 2023, 24, 11593 9 of 20

the aggregation prevention for long-time functioning [110]. Thus, graphene materials
with a high electrical conductivity must be produced for better battery performance. The
production of a three-dimensional porous conductive network may also facilitate the elec-
tron transference through the battery materials. The controlled morphologies, satisfactory
conductivity, and electrochemical properties as well as the charge storage specification
of graphene nanomaterials have been found to be reliant on the microstructure, nanopar-
ticle size, defect number, dispersion, and appropriate nanomaterial composition using
conjugated polymer and graphene contents.

6. Graphene Nanocomposites for Fuel Cells

The fuel cell is an incipient energy conversion technological development employ-
ing nanocomposite structures for electrolyte membranes or catalysts [111,112]. Continu-
ous research efforts have been made to develop high-performance fuel cells to improve
their electrolyte or catalyst components [113–115]. In this context, various nanocarbon
nanocomposites have been used in the fuel cell parts [116]. Polypyrrole/graphene oxide
nanocomposites have been applied to electrocatalysts and electrode materials [117,118].
The resulting fuel cell revealed a significantly high power conversion efficiency [119,120].
Rahman et al. [121] formed three-dimensional graphene oxide and inserted sulfate ions into
the three-dimensional graphene oxide for proton exchange membrane fuel cells. Figure 10
depicts the freeze-drying technique for the insertion of sulfate ions in a three-dimensional
graphene oxide nanostructure. The freeze-drying method was found to facilitate the forma-
tion of conducting routes as well as the stability of the nanocomposite. Figure 11 presents
the fuel cell functioning while using three-dimensional graphene oxide and sulfate ions
inserted in three-dimensional graphene oxide nanostructures. The fuel cell was operated
at a 100% relative humidity and a temperature of 30 ◦C. The three-dimensional graphene
oxide with inserted sulfate ions had a much higher power density and current density of
~113 mW cm−2 and ~311 mA cm−2, respectively, relative to the three-dimensional graphene
oxide (power density and current density of ~50 mW cm−2 and ~121 mA cm−2, respec-
tively). Moreover, the modified three-dimensional graphene oxide exhibited an elevated
proton conductivity of 3.2 S cm−1 relative to the non-modified three-dimensional graphene
oxide (0.7 S cm−1). The use of the three-dimensional graphene oxide with inserted sulfate
ions was suggested to enhance the proton conduction capability of the nanomaterials due
to their superior fuel cell performance.
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Lee et al. [122] fabricated fuel cell membranes based on the neat Nafion,
Nafion/graphene oxide, and Nafion/platinum–graphene nanocomposites. Figure 12
displays the water uptake and proton conductivity trends for the pristine Nafion and
nanocomposites. Among all systems, the Nafion/graphene oxide revealed a higher water
uptake behavior due to the hydrophilicity of graphene oxide. On the other hand, the proton
conduction of the Nafion/platinum–graphene nanocomposite was observed to be higher
than the neat graphene oxide and the Nafion/graphene oxide nanomaterial. The reason for
this is probably the better ion conduction behavior of the interlinked platinum–graphene
oxide nanostructure in the polymer matrix. To discover the robustness and stability of the
membranes, the mechanical properties were studied (Table 1). Owing to the well-linked
nanocomposite formation, the tensile strength of the nanocomposite was found to increase
with the graphene oxide loading, whereas the elongation of break gradually decreased.
Hence, the high performance Nafion membranes filled with graphene were developed for
competent fuel cell applications.
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Table 1. The tensile strength and elongation at break features of casting Nafion and Nafion/GO
nanocomposite membranes [122]. GO = graphene oxide. Reproduced with permission from Elsevier.

Sample Tensile Strength (MPa) Elongation at Break (%)

Nafion 9.41 88.30

Nafion/GO 0.5 65.16 31.85

Nafion/GO 3.0 74.69 22.68

Nafion/GO 4.5 79.47 19.12

7. Challenges and Future

Traditionally designed supercapacitors, batteries, or fuel cells have high price, high
density, and low structural reliability problems [123]. Before graphene and its related
nanocomposites were adopted, metal and metal-oxide-based electrodes, catalysts, or elec-
trolyte components were greatly used in these energy devices and systems [124]. However,
using traditional nanomaterials have several processability, structural, and performance
drawbacks towards the functioning of these devices. Here, the designed graphene-based
electrodes or other device components reveal remarkable advantages of being low in price,
reliable, having a high heat stability, and being environmentally friendly. In addition,
using graphene and its derivative nanomaterials may demonstrate high structural stability,
superior mechanical robustness, high specific capacitance, high power density, elevated
charge density, high charge capacity, superior power conversion efficiency, good cyclic
performance, improved recyclability, and a number of other related improved features [125].

The commonly used nanocarbon nanofillers for device electrodes and components
include graphene, graphite, carbon nanotube, etc. Among these, graphene has been found
to be the most efficient to enhance the performance of various energy devices. Moreover,
the use of conjugated polymers has been found to enhance the electron and charge trans-
portation through these remarkable nanomaterials [126,127]. It was observed that the
inclusion of small amounts of graphene nanomaterials in conjugated polymers notably
increased the performance of the energy device components [128]. Additionally, plentiful
research efforts have been performed using graphene-nanomaterial-based energy storing
or converting components to attain a high surface area, good electrochemical performance,
capacitance, charge capacity, charge density, power conversion efficiency, and other charac-
teristics [129,130]. Despite these advantages, graphene-nanomaterial-derived energy device
components have some drawbacks. Most importantly, pristine graphene may have low
charge storing and energy conversion properties. Therefore, graphene nanomaterials can-
not be used without the appropriate structural alterations or nanocomposite formation. The
combinations of the graphene nanomaterials, especially modified graphene and conducting
polymers, have been suggested in the literature. The functional graphene nanoparticles
such as graphene oxide may offer good amalgamation with polymer matrices for various
energy components. Furthermore, the electron conduction, supercapacitance, and fuel cell
performance of the related electrodes and electrolytes have been found to be dependent
upon the combination of conjugated polymers and graphene. Studies on the addition
of optimum amounts of graphene or conducting polymers can be carried out to attain
high efficiency electrodes in the future. For upcoming developments in this field, com-
prehensive research efforts on the structure–property relationships of graphene-derived
nanocomposites must be performed.

More specifically, in supercapacitors, different graphene-derived nanocomposites have
been utilized. Polymer/graphene nanocomposites with a high surface area and pseudoca-
pacitance may result in a fabulous enhancement in the supercapacitor performance [131].
Consequently, multidisciplinary approaches have been found to be essential to understand
the association between microstructure, electrochemistry, materials chemistry/physics,
engineering, physical features, and interactions to overcome the significant challenges of
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these energy storage systems [132]. Improving these lines may resolve the worldwide
critical energy issues that are causing global challenges [133].

Although promising results have been attained for numerous graphene-nanocomposite-
derived Li-ion battery electrode materials, there are some prevailing challenges that need
to be overcome for future developments [134]. Accordingly, the thorough understanding of
the lithium storage mechanism in graphene-derived nanocomposites has been found to be
indispensable to overcome the challenges regarding the surface defects, functionalities, and
hierarchical electrode structures. The graphene dispersion in the nanocomposites has been
considered essential for better Li-ion storage capacity and facile lithium intercalation [135].
The conductivity and mechanical robustness of graphene nanosheets need to be improved
to sustain the repetitive cycling process. The designs of graphene-nanocomposite-derived
Li-ion battery electrodes need to be focused on the rapid lithium ion insertion and ex-
traction processes, stable output of energy, and power density of the batteries [136]. In
addition, the high cost of graphene-nanocomposite-derived electrodes may significantly
limit the scalable production and Li-ion battery application. Moreover, the high surface
area of graphene nanomaterials may be advantageous, but also cause large irreversible
capacity losses. Similarly, porosity in the nanocomposite may also be unfavorable due to
the low volumetric capacity of the Li-ion battery. To achieve a superior electrochemical
performance, an understanding the interfacial interactions in graphene nanomaterials,
morphology control, porosity, defects, and graphene alignment in the nanocomposites have
been found to be essential. The advanced graphene nanocomposite electrodes of Li-ion
batteries can be effectively used for the development of future electronics, scalable energy
storage devices, and electric or hybrid electric vehicles [137].

The inclusion of graphene in nanocomposites may cause high performance and re-
silience for fuel-cell-based energy conversion devices [138]. Graphene nanocomposites
have been used in the electrodes, bipolar plates, and proton-conducting membranes of fuel
cells. In electrodes, a high electrochemically active surface area is desirable for better electro-
catalytic activity through fuel oxidation–reduction reactions. In the bipolar plates of fuel
cells, durability, anticorrosion, and high performance must be achieved by appropriately
incorporating the dispersed graphene nanomaterials [139]. In proton exchange membranes,
graphene nanocomposite electrolytes must have good ionic conductivity, power density,
and membrane performance [140]. Thus, perfectly designed graphene-based fuel cell
devices with all controlled factors may have a worthy performance for the upcoming
advanced commercial applications.

Henceforward, the future of graphene nanomaterials in energy devices greatly rely
on the development of new innovative materials. In this context, using three-dimensional
graphene-derived nanocomposites in energy systems may bring revolution in this field
(Figure 13). The conversion of two-dimensional graphene into a three-dimensional network
has revealed exceptional features for high-tech applications. The enormous progress
in the field of energy devices has led to the utilization of three-dimensional graphene
architectures [141]. However, there is an immense need for developing three-dimensional
graphene-derived nanocomposite materials to expand the energy-related potential of
graphene nanofoams.

Facile approaches need to be adopted to achieve efficient graphene-derived nanocom-
posites [142]. High-performance graphene nanomaterials have a range of superior physical
characteristics including morphological properties, electron conduction, heat constancy,
mechanical stability, reliability, and so on. All of these properties of graphene-derived
nanomaterials rely on good interactions as well as compatibility between nanocomposite
components, i.e., the polymer and nano-reinforcement [143,144]. As various structural com-
binations of graphene, graphene derivatives, and conducting or non-conducting polymers
have been designed for high-end devices, enhancing their conductivity or capacitance may
sometimes reduce the structural stability of the nanomaterials [145]. Consequently, the de-
sign of graphene nanocomposites must be carefully focused for high-efficiency devices and
systems. Fewer studies have considered the actual mechanisms behind the charge storage
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and energy conversion or production capabilities of these devices, and so comprehensive
research efforts were found to be necessary in this field. Accordingly, the matrix–nanofiller
interface and matrix–nanofiller interactions (hydrogen bonding, electrostatic interactions,
covalent links, etc.) must be considered along with the consistent nanoparticle dispersion
in the ensuing nanomaterials. Hence, plenty of future focused investigations on emerging
energy device components based on graphene nanomaterials are thought to be neces-
sary [146]. In addition to energy devices, the high-tech future of graphene nanocomposites
can be observed in electronics, microwaves, telecommunication, and interrelated devices.
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8. Summary

This overview exclusively and comprehensively debates the progresses in the arena
of graphene and graphene-derived nanocomposites, concentrating on the energy storage
and conversion solicitations. Graphene-derived nanomaterials have been constantly re-
searched for supercapacitance, Li-ion batteries, and fuel cell applications. These devices
have been categorized among the most essential energy storage and conversion devices.
The investigations exposed the stability, charge storage, charge capacity, and conversion
efficiency of these energy systems while employing some efficient carbon nanomateri-
als. In the case of advanced supercapacitors and batteries, using graphene, graphene
oxide, functional graphene, and related nanocomposite nanomaterials amended the charge
storage performance as well as the power conversion and utilization capabilities of the
devices. The employed polymers along with the graphene-based nanofillers were found
to be important to develop the high-efficiency energy-associated devices and systems.
In other words, the choice of graphene nano-reinforcements along with the selection of
polymers were considered indispensable for a better performance of the energy devices.
In addition, the graphene modification as well as the graphene nanocomposite process-
ing methods have played imperative roles in the enhancement of the charge storage and
energy-production-related performance of these materials, resulting in high-efficacy su-
percapacitors and other devices. Consequently, the indispensable features of the energy
devices and systems were enhanced using graphene or its derived nanofillers, graphene
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synthesis methods, nanocomposite fabrication techniques, etc., leading to homogeneous
microstructure, matrix–graphene interactions, electron conduction, specific capacitance,
charge capacity, high charge storing capability, charge–discharge, life cycle, charge density,
power density, cyclic concert, reliability, and numerous related features of these systems.

Briefly speaking, in this article, we debated the topical research advancements in
the graphene and graphene-derived nanocomposites for important energy storage and
conversion systems. Although substantial developments have been made so far, the mar-
velous potential for real-world applications in cutting-edge energy systems still requires
further research. Importantly, the fabrication of graphene and its related nanocomposites
for diverse energy applications are still in premature stages, where gaps exist in under-
standing the atomic/molecular level functioning, essential limits, and failure of devices.
Moreover, the high surface area of graphene-derived nanomaterials plays a significant part
in supercapacitors and batteries for charge storage. The overall nanocomposite design
supporting the combination of a high surface area and pseudocapacitance of graphene
may result in a tremendous improvement in the charge-storing potential of devices. To
overcome the challenges of energy storage systems, it is essential to develop and under-
stand the multidisciplinary tactics and connections between materials science, engineering,
microstructures, electrochemistry, physical features, and interactions.

Research has revealed the potential of graphene nanocomposites towards the elec-
trodes of rechargeable Li-ion batteries. The high-energy densities of Li-based materials
were found to be favorable for electronic energy storage. Mostly, the anode systems in
Li-ion batteries benefited from using graphene nanocomposites due to their high surface
area and conductivity values. All of these factors caused the high power density and
rate performance of the Li-ion battery anode. In this context, the high surface area of
graphene can accommodate more Li-ions to improve the energy density and capacity of the
batteries. Carefully designed graphene-nanocomposite-based electrodes have been applied
for commercial-level applications. On the other hand, the high surface area, aggregation
trends, and porosity of graphene-derived nanomaterials can also decrease the performance
of the electrode materials due to the formation of the solid electrolyte interphase layer
causing a low first cycle Coulombic efficiency. Hence, the overall practical applications of
graphene nanocomposites in energy storage systems have been limited. Moreover, using
porous graphene-based materials may absorb large amounts of electrolytes, leading to
battery swelling during electrochemical processes and also cost issues.

Moreover, unusually high physical/chemical properties of graphene nanocomposites
have been used for fuel cell applications due to their efficient proton conduction. Graphene-
nanocomposite-derived fuel cell catalysts have cost effectiveness, high durability, and
insensitivity to carbon monoxide during electrocatalysis relative to platinum-based cata-
lysts. In proton-conducting electrolytes, graphene derivatives have oxygen functionalities
to hold water and develop the proton transportation channels. However, due to blending
with polymers, some challenges may arise like aggregation, decreased surface area, and ho-
mogeneity of the electrolyte membranes. Hence, graphene has been blended with different
polymers in order to fabricate nanocomposites for enhancing the processing, mechanical
stability, chemical and electrochemical features, and other functions for applications in
supercapacitors, batteries, and fuel cells. Although great evolutions have already been
attained, the research in this field still faces several unresolved glitches.

Hence, this overview portrays the developments in the field of graphene nanomate-
rials for energy storage and conversion. In this context, several graphene nanofillers and
derived nanomaterials along with polymers such as conjugated polymers, thermoplastics,
and thermosets have been used for nanocomposites in order to attain advanced features of
the energy devices. Appropriately adopting graphene-derived nanomaterials offers some
notable future opportunities towards important energy storage and conversion systems.
Moreover, constant research efforts may resolve the challenges related to the design, prop-
erties, and performance of applying graphene materials in energy devices. Forthcoming
research may extend the use of the above conversed graphene-based nanomaterials to-
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wards efficient photovoltaics, light-emitting diodes, nanogenerators, microelectronics, and
numerous other devices.
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