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Abstract: The establishment and stable inheritance of individual patterns of gene expression in
different cell types are required for the development of multicellular organisms. The important
epigenetic regulators are the Polycomb group (PcG) and Trithorax group (TrxG) proteins, which
control the silenced and active states of genes, respectively. In Drosophila, the PcG/TrxG group
proteins are recruited to the DNA regulatory sequences termed the Polycomb response elements
(PREs). The PREs are composed of the binding sites for different DNA-binding proteins, the so-called
PcG recruiters. Currently, the role of the PcG recruiters in the targeting of the PcG proteins to PREs
is well documented. However, there are examples where the PcG recruiters are also implicated in
the active transcription and in the TrxG function. In addition, there is increasing evidence that the
genome-wide PcG recruiters interact with the chromatin outside of the PREs and overlap with the
proteins of differing regulatory classes. Recent studies of the interactomes of the PcG recruiters
significantly expanded our understanding that they have numerous interactors besides the PcG
proteins and that their functions extend beyond the regulation of the PRE repressive activity. Here,
we summarize current data about the functions of the PcG recruiters.
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1. Introduction

During development of the multicellular organisms, individual patterns of gene ex-
pression are established in each cell type and stably transmitted through many consecutive
cell divisions [1]. The precise control of gene expression in each tissue involves an antago-
nism between the Polycomb transcriptional repressors (PcG) and the Trithorax activator
proteins (TrxG), which regulate the activity of the facultative heterochromatin and the
developmentally regulated euchromatin, respectively [2–5].

The antagonism between the PcG and TrxG proteins was first demonstrated in
Drosophila through studies on the Hox genes that specify the correct segmentation pattern
of the body [3,5–7]. Mutations in the PcG-encoding genes lead to characteristic homeotic
transformations due to an overexpression of the Hox genes, while mutations in the TrxG-
encoding genes dominantly suppress these phenotypes. The loss-of-function mutations
in the TrxG-encoding genes can also cause homeotic transformations, but they instead
occur due to insufficient expression of the Hox genes [3,5–7]. The subsequent studies have
shown that, besides the Hox genes, the PcG/TrxG proteins control transcription of many
developmental genes involved in different cellular processes and dysfunctions of genes
encoding the PcG/TrxG proteins lead not only to various developmental abnormalities but
to cancer as well [8–13].

In Drosophila, the PcG/TrxG group proteins are recruited to the specialized DNA
regulatory sequences—the Polycomb response elements (PREs) [6,14–16]. It was shown that
PREs act as silencers and maintain repression of reporter genes throughout development in
transgenes, thus constituting independent subunits of repression. However, at least some

Int. J. Mol. Sci. 2023, 24, 11394. https://doi.org/10.3390/ijms241411394 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms241411394
https://doi.org/10.3390/ijms241411394
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-2398-0331
https://orcid.org/0000-0001-7354-6870
https://orcid.org/0000-0003-0008-3814
https://doi.org/10.3390/ijms241411394
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms241411394?type=check_update&version=1


Int. J. Mol. Sci. 2023, 24, 11394 2 of 19

PREs demonstrate switchable dual properties and, under certain conditions, can activate
transcription [6,14–17]. In addition, a number of developmentally regulated embryonic
enhancers possess PRE activity in adults [18], indicating that at least some PREs in the
activating state can represent classical enhancer elements. In accordance with the dual
activity of some of the PREs, they can recruit both the PcG and TrxG proteins. It was
suggested that the resulting activity of the PREs is the outcome of competition between the
PcG and TrxG proteins [6,14–16].

A number of the PRE DNA-binding proteins, named PcG recruiters, which are impli-
cated in the PRE repressive activity, have been identified [14–16]. However, genome-wide
studies have shown that the binding of the PcG recruiters, as well as PcG core proteins, is
not restricted to the H3K27me3 domains [19–25]. In particular, they can be recruited to the
promoters of active genes and to the enhancers [20,23,24] and in a number of cases they
were shown to be implicated in their activities. In accordance with these studies, recent
analysis of the interactomes of the PcG recruiters demonstrate that each of them has a
unique set of protein partners, which in addition to the PcG repressors, include components
of the Trithorax complexes, as well as proteins of the basic transcriptional machinery, e.g.,
constituents of the promoter pausing, the Mediator complex, and the architectural proteins.

In this review, we will summarize the known data on the participation of the PcG
recruiters in the PRE repressive functions, as well as outside of the H3K27me3 domains,
and will focus on the partners of the PRE DNA-binding proteins implicated in distinct
regulatory activities.

2. PcG and TrxG Proteins

The majority of the known PcG proteins are organized into multisubunit complexes
which are targeted to the chromatin and which mediate the repression of transcription [4,26].
The main PcG complexes include the Polycomb repressive complex 2 (PRC2) and the
Polycomb repressive complex 1 (PRC1) (Figure 1).

The PRC2 contains the Enhancer of zeste (E(z)), Suppressor of zeste 12 (Su(z)12),
Extra sex combs (Esc), and the Chromatin assembly factor 1 (Caf1) subunits [27,28]. The
SET domain of the E(z) protein possesses a methyltransferase activity and catalyzes the
H3K27me3 histone modification [27,28] that is specific for the chromatin regions repressed
by the PcG proteins [29,30].

The Polycomb repressive complex 1 (PRC1) contains Polycomb (Pc), Polyhomeotic
(Ph), Sex combs extra (Sce, also known as dRing), and Posterior sex combs (Psc) sub-
units [31–33]. The Sce is an E3 ubiquitin-protein ligase that catalyzes the H2AK118ub
modification [34]. Polyhomeotic (Ph) is encoded by two paralogous genes: ph-p and ph-d,
giving rise to almost identical proteins. The Psc protein can be replaced in the complex
by its homolog, the Su(z)2 protein [35]. The core of PRC1 can compact chromatin, inhibit
nucleosome remodeling, and repress transcription [31,33,36–38]; the main role in these
processes belongs to Psc and Su(z)2 [35–38]. The Pc protein of the PRC1 interacts with the
H3K27me3 histone modification via chromodomain [39,40].

In addition to the core subunits, a number of minor proteins could be co-purified with
the PRC1 and PRC2. One such PcG protein that co-purifies with both the PRC1 and PRC2
is the Sex comb on midleg (Scm) [32,33,41]. Scm can directly interact with Ph [42,43] but is
recruited to chromatin independently of the PRC1 or PRC2 [44,45].

The TrxG proteins include subunits of different complexes involved in the activation
of transcription (Figure 1). In particular, the TrxG proteins include the ATP-dependent
remodelers of the SWI/SNF family complexes, Trx, Trr, and CBP proteins [2,5,46].

Drosophila has two complexes that belong to the SWI/SNF remodeler family—PBAP
and BAP. The catalytic subunit of both complexes is the Brahma (Brm) ATPase [47,48]. Using
ATP, chromatin remodelers change the structure, assembly, and arrangement of histones
on the DNA, contributing to the decompactization of chromatin and to the recruitment
of the activator complexes [49]. In addition to Brm, PBAP and BAP have six common
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subunits—Bap55, Mor, Snr1, Bap60, Bap111, and Act5C. The unique subunits of the PBAP
complex are Polybromo (PB), Bap170, and SAYP, while the BAP complex has Osa [47,48].
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Figure 1. Functional activities of the Drosophila PcG and TrxG proteins. The E(z) subunit of the PRC2 
complex catalyzes the H3K27me3-specific histone modifications in the PcG repressed domains. The 
PRC1 compacts the chromatin and its subunit Sce creates the H2AK118 ubiquitin modification. The 
Pc subunit of the PRC1 can interact with the H3K27me3 chromatin modification. The TrxG proteins, 
Trr and Trx, catalyze the H3K4me1/2 histone modifications and are subunits of the COMPASS-like 
complexes. The CBP is an acetyltransferase and it performs the H3K27ac histone modification. The 
BAP and PBAP complexes are the ATP-dependent chromatin remodelers belonging to the SWI/SNF 
family. The H3K27ac modification and SWI/SNF decompact the chromatin. 
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and BAP. The catalytic subunit of both complexes is the Brahma (Brm) ATPase [47,48]. 
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cruitment of the activator complexes [49]. In addition to Brm, PBAP and BAP have six 
common subunits—Bap55, Mor, Snr1, Bap60, Bap111, and Act5C. The unique subunits of 
the PBAP complex are Polybromo (PB), Bap170, and SAYP, while the BAP complex has 
Osa [47,48]. 

The Trithorax (Trx) and Trithorax-related (Trr) proteins are histone methyltransfer-
ases that catalyze the H3K4me1/2 modification characteristic for the active chromatin re-
gions [50–52] and they are subunits of the COMPASS-like complexes [2,53]. 

The CBP protein, encoded by the nejire gene, is an acetyltransferase that performs 
histone modifications at a subset of histone positions, including the H3K27ac 

Figure 1. Functional activities of the Drosophila PcG and TrxG proteins. The E(z) subunit of the PRC2
complex catalyzes the H3K27me3-specific histone modifications in the PcG repressed domains. The
PRC1 compacts the chromatin and its subunit Sce creates the H2AK118 ubiquitin modification. The
Pc subunit of the PRC1 can interact with the H3K27me3 chromatin modification. The TrxG proteins,
Trr and Trx, catalyze the H3K4me1/2 histone modifications and are subunits of the COMPASS-like
complexes. The CBP is an acetyltransferase and it performs the H3K27ac histone modification. The
BAP and PBAP complexes are the ATP-dependent chromatin remodelers belonging to the SWI/SNF
family. The H3K27ac modification and SWI/SNF decompact the chromatin.

The Trithorax (Trx) and Trithorax-related (Trr) proteins are histone methyltransferases
that catalyze the H3K4me1/2 modification characteristic for the active chromatin re-
gions [50–52] and they are subunits of the COMPASS-like complexes [2,53].

The CBP protein, encoded by the nejire gene, is an acetyltransferase that performs
histone modifications at a subset of histone positions, including the H3K27ac modification,
a hallmark of the active chromatin [54]. Histone acetylation reduces the strength of the
nucleosome–DNA interaction and leads to a decompactization of the chromatin [55].

In Drosophila, Trx, Trr, and CBP, as well as the H3K4me1/2 and H3K27ac modifications,
are co-localized on the active enhancers and at the regions of PcG protein recruitment
outside of the H3K27me3 domains [50–52,54].
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3. PcG Recruiters

PREs can be located at different distances from the target genes, both in the imme-
diate vicinity of the transcription start site and at a distance of thousands of base pairs.
Structurally, they are DNA fragments of several hundred base pairs in length. Like other
regulatory elements, they are DNA regions with a reduced density of nucleosomes and
are hypersensitive to DNase I. PREs contain binding sites for the PcG recruiters. The sites
for the PcG recruiters in each particular PRE can be present in different combinations, in
different numbers and positions relative to each other.

The currently characterized PcG recruiters are Pleiohomeotic (Pho) [56,57] and its
close homolog Pleiohomeotic-like (Phol) [58], Combgap (Cg) [59], Sp1 factor for pairing-
sensitive silencing (Spps) [60], Crooked legs (Crol) [61], GAGA-factor (GAF, also known as
Trl) [62,63], Pipsqueak (Psq) [64,65], Zeste (Z) [32,66], Dorsal switch protein 1 (Dsp1) [67],
Grainyhead (Grh, also known as NTF-1) [68], and Alcohol dehydrogenase transcription
factor 1 (Adf1, also known as Nalyot) [69] (Figure 2).
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Six of the eleven enumerated proteins, Pho, Phol, Combgap, Spps, Crol, and GAF, 
belong to the class of the С2H2-type Zinc finger (С2H2-type ZnFs) proteins (Figure 2). Pho 
and Phol have four С2H2-type ZnF motifs, which are 80% identical and interact with the 
sequences having a GCCAT core in PREs [57,58,70] and are genome-wide [71–74]. 

Figure 2. Structure of the PcG recruiter proteins. The C2H2-type Zinc finger DNA-binding motifs
(ZnF) are shown in yellow, the Psq HTH motifs in blue, Myb/SANT-like in purple, HMG in magenta,
Grh/CP2 in orange, MADF in red. The BTB and BESS protein–protein interacting domains are shown
in green.

Six of the eleven enumerated proteins, Pho, Phol, Combgap, Spps, Crol, and GAF,
belong to the class of the C2H2-type Zinc finger (C2H2-type ZnFs) proteins (Figure 2).
Pho and Phol have four C2H2-type ZnF motifs, which are 80% identical and interact with
the sequences having a GCCAT core in PREs [57,58,70] and are genome-wide [71–74].
Combgap contains 11 C2H2-type ZnFs motifs and interacts with (GT)n [59]. Spps has three
C2H2-type ZnF motifs and belongs to the Sp1/KLF family. Like all the members of this
family, Spps interacts with the RRGGYG sequences (R = A or G, Y = C or T) [75]. Crol
contains 18 C2H2-type ZnF motifs and binds to poly(G)-rich sequences [61]. GAF contains
a single ZnF at the central part of the protein that binds to the (GA)n [76]. In addition, the
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N-terminus of GAF has a conserved Bric a brac, Tramtrack, Broad-complex/Poxvirus, Zinc
finger (BTB/POZ) domain, which is involved in self-oligomerization and heterologous
protein–protein interactions.

Each of the other five PcG recruiters has DNA-binding domains of distinct types
(Figure 2). Psq contains four HTH DNA-binding domains at the C-terminus. While the Psq
DNA-binding domain type is different from that of GAF, it was also shown to recognize the
(GA)n sequences [19,77,78]. Another similarity with GAF is the presence of the BTB/POZ
domain at the N-terminus of Psq.

Zeste contains the Myb/SANT-like DNA-binding domain that binds YGAGYG [19,79,80].
Dsp1 contains two High mobility group (HMG) motifs. Initially, Dsp1 was reported

to bind to the GAAAA sequence in the Fab7PRE in transgenic constructs [67]. However,
the genome-wide Dsp1 binding site was identified as (GA)n [74]. It has been reported that
the HMG proteins are able to bind DNA with no sequence specificity [81–83], suggesting
that Dsp1 can mimic the overall Ph peak consensus, which was shown to be (GA)n as well.
Interestingly, the most enriched ChIP-seq motifs for Spps and Zeste were also identified
as (GA)n rich [19,20], indicating that the regions of their binding highly overlap with the
(GA)n-rich sequences.

Grainy head (Grh) contains the Grh/CP2 DNA-binding domain that was first shown to
bind to YNAACYGGTYYTGCGG in vitro [84]; a similar AACYNGTTT core was identified
by a genome-wide study [85]. Adh transcription factor 1 (Adf1) contains an MADF DNA-
binding domain at the N-terminus that binds ACGBCGRC (B = T, C, or G) [19]. In addition,
Adf1 has a C-terminal BESS domain involved in self-dimerization and protein–protein
interactions [86].

4. Role of PcG Recruiters in PcG Repression

The pho mutants die at the pharate adult stage and have sex combs on the second
and third legs, demonstrating a classic homeotic PcG phenotype [87,88]. Accordingly,
mutations of the pho gene lead to a derepression of the Hox genes [57,58,89]. pho mutations
affect the ability of the transgenic PRE to repress reporter genes and so do mutations
of its binding sites in the PRE [3,15,16]. However, Pho sites alone fail to make up a
functional PRE [70,90] and, thus, require other proteins. For example, phol mutation does
not have homeotic phenotype, but it enhances the pho mutation [58]. In addition, while the
recruitment of the Pc (PRC1), E(z), and Su(z)12 (PRC2) to the bxdPRE is sensitive to the Pho
knockdown by RNAi in Drosophila cells where Phol is absent, the double pho/phol mutations
are required for the loss of Pc binding at the bxdPRE at the larval stage where both proteins
are expressed [91]. Accordingly, both the Pho and Phol proteins are required for the binding
of Pc, Psc, Scm, and E(z) to several sites on the larval polytene chromosomes [58].

The dsp1 mutants have a mixed PcG/TrxG phenotype, indicating that Dsp1 is most
likely involved in both repression and activation of transcription [92]. Mutations of other
PcG recruiters do not have a PcG homeotic phenotype, but the majority of them were
shown to enhance mutations in the PcG core genes or pho, leading to more severe homeotic
phenotypes. For example, the Trl [63,64,70], Psq [64,65], and Adf1 [69] mutations enhance
PcG mutants, and the grh [68] mutation enhances PcG and pho mutants. The cg (encoding
Combgap) [59] and Spps [60] mutations were shown not to affect the homeotic phenotype
of pho mutants but enhance lethality.

Combgap, Spps, Crol, GAF, Psq, Zeste, Dsp1, and Grh were confirmed to be important
for the functioning of transgenic PREs either by genetic tests and/or by mutations of
their binding sites ([61] and reviewed in [15]). For example, crol knockout and mutation
of the Crol binding site decrease the silencing caused by transgenic evePRE and affect
recruitment of Ph and Combgap [61]. Trl mutations decrease the silencing caused by the
Fab7PRE [62]. Dsp1 binding to Fab7PRE was shown to be sensitive to dsp1 mutation on
larval polytene chromosomes, and the Dsp1 G(A)n site affected recruitment of PRC1 (Ph)
and PRC2 (E(z)) [67].
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5. Interactions between PcG Recruiters and PcG Core Complexes

In immunoprecipitation experiments, Pho was shown to interact with the Scm-related
gene containing four malignant brain tumor (MBT) domains protein (Sfmbt) [93] (Figure 3).
Structural analysis revealed that the spacer region of Pho forms a tight complex with the
four MBT domains of Sfmbt [93]. Sfmbt is a PcG member, since mutations in the Sfmbt gene
lead to misexpression of the Hox genes [94]. Since both Pho and Sfmbt are recruited to
PREs, this protein pair was assigned to a separate complex named Pho repressive complex
(PhoRC). Both Pho and Sfmbt have been shown to have a number of physical contacts
with the PcG proteins (Figure 3). Pho co-immunoprecipitates with the components of the
PRC1 and PRC2 [95–97] and interacts directly with Ph and Pc [98] (PRC1) and E(z) and
Esc [91] (PRC2). In turn, Sfmbt interacts with the Scm protein in the direct and indirect
assays [95,99].
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In addition to Pho, the Phol protein also interacts with Sfmbt. However, it was shown 
that Pho and Phol interact with Sfmbt in a mutually exclusive manner [94]. A quantitative 
analysis of the Phol complex in vivo has not yet been carried out, but Phol has been shown 
to interact with the Esc subunit of PRC2 in a pull-down assay [91]. 

For Spps, contacts with the PRC1 and PRC2 core subunits have not been described, 
but it is able to directly interact with the Scm protein [100]. 
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Figure 3. The physical partners of the PcG recruiters. The PcG recruiters (shown in gray) interact
with each other and with the proteins implicated in several functionally distinct regulatory activities:
the PcG proteins, the proteins implicated in promoter pausing, the architectural proteins, Mediator,
the SWI/SNF chromatin remodelers, and TFIID. The following interactions are shown between
the PcG recruiters and different proteins: the solid blue lines—direct partners; the dotted black
lines—interactions established by indirect methods. The interactions within the group of PcG
recruiters: the solid orange lines—direct partners; the dotted green lines—interactions established by
indirect methods.

In addition to Pho, the Phol protein also interacts with Sfmbt. However, it was shown
that Pho and Phol interact with Sfmbt in a mutually exclusive manner [94]. A quantitative
analysis of the Phol complex in vivo has not yet been carried out, but Phol has been shown
to interact with the Esc subunit of PRC2 in a pull-down assay [91].

For Spps, contacts with the PRC1 and PRC2 core subunits have not been described,
but it is able to directly interact with the Scm protein [100].

Of the other PcG recruiters, Combgap [59], Crol [61], GAF [96], Psq [101], Zeste [32],
Grh [97], and Adf1 [69] were co-purified with the PRC1 subunits. Of these, Zeste and Grh
interact directly with Ph [102] and Sce [103], respectively. In addition to PRC1, GAF can be
co-purified with PRC2 [96,104], but no direct contacts with the PRC1 and PRC2 have been
found for GAF. Our recent IP/LC–MS analysis showed that, at least in S2 cells, Combgap
and Zeste show a stronger association with PRC1 than Psq and Adf1 [19].
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6. Connections between PcG Recruiters and TrxG Proteins

Several observations indicate that Dsp1, GAF, Zeste, and Pho/Phol PcG recruiters
have TrxG-related activities. As mentioned above, dsp1 mutants have a mixed PcG/TrxG
phenotype [92] and, in particular, resemble and enhance the Ubx loss-of-function phenotype.
Enhancement of the Ubx phenotype is also observed in genetic experiments with the Trl
gene. In addition, hypomorphic Trl alleles have loss-of-function transformations in segment
A6 [105]. Zeste was shown to be necessary for the PRE-mediated inheritance of the active
chromatin state of a small Fab7PRE fragment [106] and plays an activating role in the case
of the bxdPRE element [107]. In the case of the Fab7PRE, Zeste sites were required for
recruitment of the SWI/SNF TrxG Brm protein to the transgene [106]. In addition, Pho and
Phol are required for the maintenance of both the repressed and active state of evePRE [108].

A number of PcG recruiters were shown to interact with the TrxG SWI/SNF ATP-
chromatin remodelers. GAF was shown to co-purify both with BAP and PBAP [104,109].
Pho [98], Psq [19], and, less efficiently, Combgap [19] and Zeste [110] were shown to
precipitate with the BAP complex (Figure 3). In our IP/LP-MS experiments, Psq interacted
with the BAP proteins much more efficiently than with the PcG proteins, that were present
only at background levels [19]. Also, Pho was shown to directly bind to Brm [98], and Zeste
with Mor and Osa [110].

In addition, PcG recruiters were shown to co-purify with several other TrxG
proteins [19,111]. In particular, Zeste and Psq efficiently precipitated the Fs(1)h TrxG
protein [19], which was previously shown to co-purify with PRC1 and to be correlated
with Pc and the H3K27ac modification genome-wide [21]. Fs(1)h also co-purified Pho and
GAF proteins [21]. Importantly, Fs(1)h recognizes the same site as Zeste and, thus, has a
potential to be directly bound to the PRE elements.

7. PcG Recruiters Are Localized Outside of H3K27me3 Domains Genome-Wide

The functional and physical connections of the PcG recruiters with the TrxG pro-
teins indicate their importance for the PRE activating state and, potentially, a more global
role in the activation of transcription. Accordingly, current data suggest that the bind-
ing of PcG core proteins, as well as PcG recruiters, is not restricted to the H3K27me3
domains [19–24,61]. There are also indications that PcG recruiters are important for the
PcG recruitment outside of the H3K27me3 domains. In particular, it was confirmed for
Spps, Pho [20], Combgap [20,59], and Crol [61] recruiters with respect to the Ph protein.

If we evaluate the level of overlap of the PcG recruiters with the PcG proteins, then
about 80% of the Pho, Combgap [59], and Crol peaks [61] will overlap with Ph at the 3rd
instar larval imaginal discs and brains and this will constitute over 60% of the Ph sites
(Figure 4A). In Drosophila S2 cells, approximately 80% of Combgap, Psq, and Zeste overlap
with Ph. In the case of Adf1, the overlap with Ph is about 50% [19] (Figure 4A).

However, if we consider the overlap relative to the PREs (PcG core proteins and the
H3K27me3 histone modification), then the intersection for Pho [61], Combgap [19,61], Spps,
Crol [61], Psq, Zeste, and Adf1 [19] will be about 7 to 20% (Figure 4B).

Accordingly, over 80% of peaks for PRC1 (Ph, Psc) and PRC2 (E(z)) fall outside of
the H3K27me3 domains as well [20] (Figure 4C). For Pc, the percent of peaks outside of
H3K27me3 was estimated to be about 65% [20] (Figure 4C). The average Ph [23] and E(z) [20]
binding levels are lower outside of the H3K27me3 domains. The E(z) was suggested to be
inactive due to the presence of active chromatin marks [20]. However, additional studies
are required to understand what can block E(z) H3K27me enzymatic activity.
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Figure 4. The genome-wide overlap between PcG recruiters and PcG proteins. (A) The percentages
of overlap between PcG recruiters and Ph (PRC1) protein. The total number of binding peaks for two
selected proteins are shown for each line. The PcG recruiter peaks that do not overlap with Ph are
colored in yellow, the PcG recruiter peaks that do overlap with Ph are colored in red, the Ph peaks that
are not co-bound by PcG recruiter are shown in blue. The percentages of overlapping peaks for each
protein are indicated in the parentheses. (B) Overlap between PcG recruiters and PRE. The PcG recruiter
peaks that do not overlap with PRE are colored in yellow, the PcG recruiter peaks that overlap with PRE
are colored in red, the PRE peaks that are not co-bound by PcG recruiter are colored in green. (C) The
percentage of the PcG core proteins’ binding sites located in the H3K27me3 domains.
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8. PcG Recruiters at Active Promoters and Enhancers

Going back in history, GAF [112–114], Grh [84,115], Zeste [79,116], and Adf1 [117] were
initially discovered as the promoter-bound activators of transcription. In particular, GAF,
Grh, and Zeste together positively regulate the transcription of the Ubx gene [84,118,119].
Subsequent studies have shown that all currently known PcG recruiters can bind to the
actively transcribed promoters [20,61,69,71,74,85,120]. A number of the PcG recruiters
were confirmed to bind to the predicted enhancers (Combgap, Zeste, Psq, Adf1, GAF, and
Grh) [19,85,121]. Grh [85] and Zeste [122,123] were confirmed to be functionally required
for enhancer activity in a number of cases. Likewise, PRC1 has also been shown to be
recruited to the promoters of active genes and to potential enhancers [23,24].

For several PcG recruiters, the estimated overlap was quantified. GAF binds to 20%
of active promoters [120] and binds to 53% of HOT elements predicted to function as
enhancers [121]. In the S2 cells, in the range of 19 to 41%, Combgap, Zeste, Psq, and Adf1
overlap with the promoters having H3K4me3 and, thus, are suggested to be active [19]. In
addition, 8 to 13% of Combgap, Zeste, Psq, and Adf1 overlap with potential active enhancer
regions [19] defined by the H3K27ac peaks that are bound by CBP and localized outside
of TSS. A high degree of overlap with the predicted active enhancers is shown for Psq in
Kc167 cells, where it was shown to overlap with the active histone modifications, CBP, and
also with GAF and Pc [78].

In agreement with the functional overlap of the PcG recruiters with enhancers and
promoters, the interactomes of the PcG recruiters contain many proteins implicated in the
activities of these regulatory elements.

8.1. PcG Recruiters and Their Promoter Partners

The Pol II together with the general transcription factors (GTFs: TFIIA, TFIIB, TFIID
(composed of TBP and more than 10 TAFs), TFIIE, TFIIF, and TFIIH) are recruited to
the promoters and they are assembled into the preinitiation complex (PIC). A successful
formation of the PIC leads to a rapid initiation of transcription. Pol II pauses after it
produces an RNA of 20–60 nucleotides in length. Current data suggest that the pausing
of Pol II at the early elongation is an obligate part of the transcription cycle; a step that is
universally encountered by Pol II for the majority of even highly expressed genes. The
promoter pausing is primarily mediated by an action of the NELF and DSIF complexes that
stabilize Pol II at the pause region [124,125]. In addition, the M1BP DNA-binding factor,
the RNA polymerase II-associated factor 1 complex (PAF1C), and TFIID were shown to be
implicated in the promoter pausing [126].

Of the PcG recruiters, GAF is well known to be implicated in pausing for a large subset
of genes, most of which are developmentally regulated [111,120,127–131]. In total, GAF
associates with about 20% of the Pol II-bound promoters and correlates with the highest
levels of paused Pol II [120,128]. Of the promoter-associated proteins, GAF was shown to
interact directly and in co-IP with Taf3 [132,133] and Taf4 [104,133] subunits of the TFIID
complex [132] (Figure 3).

In a pull-down assay, Grh interacted with Taf2 and Taf6 TFIID subunits [134]
(Figure 3). In IP/LC-MS, Combgap efficiently co-purified with a number of the TFIID
subunits (Figure 3), including Taf4, Taf7, Taf8, and Taf9 [19]. In addition, Combgap shows
stable association with the NELF complex (Figure 3) and M1BP. We have recently shown
that over 80% of Combgap overlaps with the NELF-A and NELF-B subunits, genome-wide.
Moreover, Combgap is required for an effective NELF recruitment to two genes, CG4562
and Pp2B-14D, which are actively transcribed, as well as to the Poxm gene, which is under
the H3K27me3 repression [19].

Pho can directly interact with the Spt5 subunit of DSIF [135,136] (Figure 3) and shows
about 70% overlap with Spt5 and NELF, genome-wide [136].

It was shown that, except for promoters, NELF [19,137] and DSIF (Spt5) [23,138] are
bound to the PREs/enhancers. Moreover, the spt5 and nelf-A mutants enhance the PcG
phenotype observed in pho mutant flies, suggesting an involvement of pausing factors in
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the PcG silencing [136]. Thus, both the PcG recruiters and the pausing proteins have a
potential to be co-regulators of promoters and PREs/enhancers.

Not surprisingly, PRC1 is connected to promoter functioning as well. It was demon-
strated that depletion of the PRC1 subunits by RNAi alters both phosphorylation of RNAP
II and recruitment of the Spt5 subunit of the DSIF complex to the active genes [23] and
decreases gene transcription [24].

8.2. PcG Recruiters and Mediator Complex

Mediator is a large co-activator complex consisting of about 30 subunits, named
MED1–MED31, Cdk8, and cyclin C [139]. Mediator associates with enhancers and active
promoters and a depletion of Mediator subunits reduces transcription of the enhancer-
controlled genes [140–143].

Adf1 stands apart from other PcG recruiters in the way that it highly efficiently co-
purifies with the Mediator complex (Figure 3). Moreover, over 55% of the Adf1 peaks
overlap with the MED1 and MED30 Mediator subunits genome-wide [19]. This suggests
that Adf1 might be involved in the recruitment of Mediator to the chromatin. Intriguingly,
while not as efficient as Adf1, Fs(1)h [21] and, less so, Psq [19] were also shown to co-purify
a number of Mediator subunits.

8.3. PcG Recruiters and Architectural Proteins

The architectural (also known as insulator or boundary) proteins interact with the
regulatory elements—boundaries that can limit enhancer–promoter interactions and block
the spread of the heterochromatin [144,145]. They are also required for the separation of
the genomic domains into TADs and for the formation of the 3D chromatin structure [146].

Of the PcG recruiters, GAF was experimentally confirmed to be required for the
boundary activity of particular insulators [111,144]. GAF can co-purify with a number of
architectural proteins (Figure 3), including Mod(mdg4)2.2, CP190, Chro, and Su(Hw) [104];
of these, GAF directly interacts with Mod(mdg4)2.2 [147–149]. However, genome-wide
it does not show an extended overlap with the architectural proteins [150], suggesting
that it might function differently from the other architectural proteins. Accordingly, GAF
was shown to be implicated in the activity of tethering elements required for proper
enhancer–promoter and promoter–promoter interactions of the developmentally regulated
genes [151–153].

It was shown that 22–54% of the Combgap, Zeste, Psq, and Adf1 genome peaks overlap
with the architectural protein CP190 in S2 cells [19]. In addition, for Psq, a high degree
of overlap with CP190, Mod(mdg4)2.2, and Su(Hw) was shown in Kc167 cells [78]. In
regard to physical interactions, Combgap was shown to precipitate different architectural
proteins, including CP190, Chro, Mod(mdg4), Ibf1, Su(Hw), BEAF-32, and Ibf2 [19]. Psq
can precipitate Ibf1, BEAF-32, Clamp [19], and Mod(mdg4) [78]. Adf1 purifies Mod(mdg4),
Ibf1, BEAF-32, and Clamp [19]. Zeste failed to efficiently precipitate the boundary proteins
in our recent study, but was previously shown to precipitate with Su(Hw) and Mod(mdg4)
and to interact directly with Mod(mdg4) [154] (Figure 3).

While there is a huge overlap of Combgap, Zeste, Psq, and Adf1 with the bound-
ary proteins genome-wide, it should be noted that CP190 frequently overlaps with pro-
moters [150,155], and, moreover, boundaries are frequently found in close proximity to
PREs [62,156–158] and can stimulate the PRE repressive activity [159]. Thus, the genome-
wide functional consequences of the overlap with CP190 require more studies. In a recent
study, Combgap sites were shown to be enriched at the Su(Hw)-indirect peaks [160], sug-
gesting that, at least in some cases, the overlap can be a result of a non-direct recruitment
to the regulatory elements. It will be important to estimate in the future the intensity of the
peaks that overlap between the PcG recruiters and boundaries.
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9. Interactions between PcG Recruiters and Model of Combinatorial Recruitment

The study of the interactomes of the PcG recruiters revealed that they have many
contacts with each other. The strongest of the known contacts in the co-IP experiments
are observed between Crol and Combgap/Pho [61]; between Combgap and Adf1/GAF;
between Zeste and Psq/Dsp1 [19]; between Psq and GAF [19,104,111] (Figure 3). Moreover,
direct interactions have been shown for the following pairs: Pho directly interacts with
Spps [19], GAF [100], and Grh [68]; Combgap with Crol [61] and Adf1 [19]; GAF with
Psq [147,161]; Psq with Dsp1 [19]. Except for the heterologous interactions, Pho, Spps,
Combgap [19], GAF [147,162], Psq [147], Zeste [19,163], Grh [115], and Adf1 [19,164]
displayed self-interactions. This suggests that they can display a higher affinity for the
DNA fragments containing several closely placed binding sites that they recognize.

In accordance with the interactions between the PcG recruiters, for some of them,
Pho, Combgap, Spps, Crol, Psq, Zeste, and Adf1, a significant genome-wide overlap was
reported [19,20,59,61]. At the 3rd instar larval imaginal discs and brains, about 80% of
Pho peaks co-localize with Combgap [20,59] and Crol [61], and this corresponds to ~50%
of Combgap and Crol peaks (Figure 5). Crol displays 80% overlap with Combgap [61].
In addition, over 70% of the Spps sites overlap with Combgap, Pho, and Crol, and this
corresponds to ~20–40% of Combgap, Pho, or Crol peaks [20,61]. In Drosophila S2 cells, 88%
of Psq peaks overlap with Combgap, while the majority of Zeste peaks overlapped with
Combgap (90%) and Psq (88%) [19]. The overlap of PcG recruiter with Adf1 is lower, but
still exceeds 50% in the case of Combgap and Zeste sites. It should be noted that, overall,
the binding profiles of the PRE DNA-binding proteins are unique and each of the tested
proteins has its own unique binding peaks [19,20,59] and if we calculate simultaneous
overlap between a larger number of recruiters together, they would show a lower frequency.
For example, simultaneous overlap for Combgap, Zeste, Psq, and Adf1 proteins identifies
1168 regions which correspond to 15% of Combgap, 24% of Adf1, 27% of Psq, and 56% of
Zeste peaks [19].

In addition, it should be noted that the extent of overlap can be different within and
outside of the H3K27me3 domains. For Spps–Pho, it was reported to be lower outside of
the H3K27me3 domains—about 90% and 70% of Spps peaks overlap with Pho, inside and
outside of the H3K27me3 domains, respectively [20]. Another study suggested a better
overlap of Grh with GAF at Grh-repressed loci [85]. In any case, the total extent of the
mutual overlap between the PcG recruiters is substantially high, which allows the proposal
that at many loci inside and outside of the H3K27me3 domains they can function together.

Several observations support a co-operative activity of the PcG recruiters. It was
shown that Pho protein binding to a chromatinized PRE in vitro requires the assistance
of GAF or Zeste proteins [165]. In another in vitro study, Pho and Grh facilitated each
other’s binding to the naked DNA [68]. In vivo, Spps was shown to be important for the
Pho recruitment at subsets of sites genome-wide, independent of the H3K27me3 state [20].
Similar, Crol is important for Combgap binding at several sites in and out of H3K27me3
domains [61].

In addition to the co-operation, the activities of the PcG recruiters were proposed to
be redundant and partially compensate for each other [15,20].

In connection with the potential network that can be formed by multiple interactions
between the PRE DNA-binding proteins, their functional co-operation, and redundancy,
we have proposed a model according to which the combination of the PRE DNA-binding
factors at the PRE forms a “platform” that provides for an efficient recruitment of the core
PcG/TrxG complexes [15]. We propose that this model can be relevant not only at the PREs,
but also outside of the H3K27me3 domains as well.
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Figure 5. The genome-wide overlap between PcG recruiters. The total numbers of binding peaks
for two selected PcG recruiters are shown for each line. The PcG recruiter 1 peaks (indicated on the
left) that do not overlap with PcG recruiter 2 (indicated on the right) are colored in yellow, the PcG
recruiters’ peaks that overlap with each other are colored in red, and the PcG recruiter 2 peaks that
do not overlap with PcG recruiter 1 are colored in blue. For the Pho overlap with Combgap, the data
derived from two different studies are presented: 1—[20]; 2—[59]. The other designations are as in
Figure 4.

10. Conclusions

The current data suggest that the PcG recruiters, as well as PcG core proteins, bind to
regions inside and outside of the H3K27me3 domains and participate in both the repression
and activation of genes. Although much progress has been made toward an understanding
of the role of the PcG recruiters in assembly of the PcG protein complexes genome-wide,
many questions remain to be elucidated.

Multiple interactions between the PcG recruiters were identified and they show an
extensive overlap with each other and with the PRC1 genome-wide. However, the currently
described interactomes of the PcG recruiters, GAF, Combgap, Zeste, Psq, and Adf1, differ
substantially from each other. This might suggest that each protein can attract a unique
set of transcription factors to the DNA, and the presence of a binding site for a particular
DNA-binding protein could subtly modulate the resulting activity of the DNA regulatory
element. This can probably apply to both PREs and the other types of regulatory elements.
The characterization of the interactomes of other PcG recruiters may provide a better
understanding of the role of each of them in the genome-wide transcriptional regulation.
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