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Abstract: Hepatitis B infection caused by the hepatitis B virus is a life-threatening cause of liver
fibrosis, cirrhosis, and hepatocellular carcinoma. Researchers have produced multiple in vivo models
for hepatitis B virus (HBV) and, currently, there are no specific laboratory animal models available to
study HBV pathogenesis or immune response; nonetheless, their limitations prevent them from being
used to study HBV pathogenesis, immune response, or therapeutic methods because HBV can only
infect humans and chimpanzees. The current study is the first of its kind to identify a suitable chemi-
cally induced liver cirrhosis/HCC model that parallels HBV pathophysiology. Initially, data from the
peer-reviewed literature and the GeneCards database were compiled to identify the genes that HBV
and seven drugs (acetaminophen, isoniazid, alcohol, D-galactosamine, lipopolysaccharide, thioac-
etamide, and rifampicin) regulate. Functional enrichment analysis was performed in the STRING
server. The network HBV/Chemical, genes, and pathways were constructed by Cytoscape 3.6.1.
About 1546 genes were modulated by HBV, of which 25.2% and 17.6% of the genes were common
for alcohol and lipopolysaccharide-induced hepatitis. In accordance with the enrichment analysis,
HBV activates the signaling pathways for apoptosis, cell cycle, PI3K-Akt, TNF, JAK-STAT, MAPK,
chemokines, NF-kappa B, and TGF-beta. In addition, alcohol and lipopolysaccharide significantly
activated these pathways more than other chemicals, with higher gene counts and lower FDR scores.
In conclusion, alcohol-induced hepatitis could be a suitable model to study chronic HBV infection
and lipopolysaccharide-induced hepatitis for an acute inflammatory response to HBV.

Keywords: alcohol; hepatitis B; hepatocellular carcinoma; lipopolysaccharide; network pharmacology;
rodent model

1. Introduction

Hepatitis B virus (HBV) is a member of the family Hepadnaviridae, possessing a 3.2 kb
short genome with largely double-stranded DNA [1]. The human sodium taurocholate
co-transporting polypeptide (NTCP) receptor and the viral envelope protein (HBsAg) inter-
act in a remarkably species-specific manner to allow HBV to enter human hepatocytes [2].
Several liver diseases, including cirrhosis, hepatocellular carcinoma, and liver fibrosis, can
develop in those with chronic HBV infection [2]. Despite significant advancements in the
diagnosis, prevention, and treatment of chronic hepatitis B (CHB), over 296 million individ-
uals worldwide still have the HBV infection and account for an estimated 820,000 deaths,
mostly by cirrhosis and hepatocellular carcinoma (HCC) [3]. Injections of interferon and
oral nucleoside analogs are used to treat persistent HBV infection [4]. Currently, HIV and
HBV polymerase reverse transcriptase inhibitors are licensed treatments for HBV, and only
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30–40% of individuals with chronic HBV (CHB) react to interferon therapy [4]. The World
Health Organization (WHO) recommends entecavir and tenofovir for the treatment of
CHB [3].

Several HBV cell culture-based systems, such as HepG2T14, HepG2.2.15, Q7 HBV-21,
HepG2-4A5, and HepAD38, have been created and have been employed for cultivating
the virus to conduct in vitro HBV inhibitor screening and investigate the control of viral
replication [5]. In vivo models, however, have been and will continue to be essential for
understanding the mechanisms underlying HBV pathogenesis, HBV-induced immune
responses, and the testing of new antiviral therapeutic regimens [5]. Numerous in vivo
models, such as those using chimpanzees, tupaiids, woodchucks, ducks, and woolly mon-
keys, have been produced since the “Australian antigen” was discovered. However, these
animals are not routinely utilized as experimental hosts due to ethical and cost concerns [6].
Additionally, with the lack of small animal models that reproduce human-like HBV in-
fections, it becomes extremely difficult to understand possible HBV disease mechanisms
and develop efficient treatments [7]. Although an HBV mouse model may be suitable, this
approach has several drawbacks. The 1.3-HBV transgenic mouse model, which has 1.3-HBV
incorporated into the murine genome, is immune to HBV, does not cause liver damage, and
does not produce cccDNA [8]. To maintain cells for six months, hydrodynamic injection
(HDI)-based replication-competent HBV transgenic mice with HBV replicons, such as 1.2-
or 1.3-HBV or HBV circle genomes, are hydrodynamically injected into mice. With the right
vector, they can cause liver fibrosis and are expressed in 10–25% of murine hepatocytes
post-inoculation. HBV genotype affects viral persistence [8]. Adeno-HBV transgenic mice
were developed by injecting adenovirus vectors containing the HBV genome [9]. These
mice become immunologically tolerant to HBV due to an altered T cell profile (an advan-
tage for immunotolerant studies) and the absence of detectable cccDNA [10]. Apart from
the above-mentioned models, various chemical-induced models (alcohol, acetaminophen,
lipopolysaccharides, isoniazid, etc.) are also utilized to evaluate the hepatoprotective
potential of compounds [11,12]. These chemically induced models alter multiple genes and
pathways (PI3K-Akt, TNF, JAK-STAT, MAPK, Chemokine, NF-kappa B, TGF-beta signaling
pathways, Apoptosis, and Cell cycle) and result in the development of hepatitis [13], which
may be similar to that of HBV-induced hepatitis. Therefore, the goal of the current study
was to combine gene set enrichment and network pharmacology analyses to pinpoint the
chemical-induced hepatitis model that most closely resembles the pathophysiology of HBV;
the current study’s workflow is presented (Figure 1).
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2. Results
2.1. Identification of HBV-Associated and Chemically Induced Hepatitis Genes

Based on the literature review, 42 genes (from 36 articles) were obtained which were
modulated in HBV-induced hepatitis. Similarly, from the GeneCards database, 1538 genes
were obtained with a relevance score greater than 20. Among the 1538 genes, interferon-γ
(IFN-γ) had the highest relevance score of 166.85, while KHK (Ketohexokinase) had the
lowest relevance score of 20.00. Likewise, the genes obtained based upon the literature
review were 66 genes for alcohol (from 65 articles), 38 genes for acetaminophen (from
11 articles), 30 genes for isoniazid (from 10 articles), 31 genes for D-galactosamine (from
14 articles), 44 genes for lipopolysaccharide (from 39 articles), 33 genes for rifampicin
(from 26 articles), and 33 genes for thioacetamide (from 23 articles) were obtained and,
similarly, were 407, 128,48, 52, 260, 24, 31 from the GeneCards database, respectively.
From the list of genes for alcohol-induced hepatitis articles, alcohol dehydrogenase 1b
(ADH1B), β-polypeptide had the highest relevance score of 98.78, and Serpin Family C
member 1 (SERPINC1) had the lowest relevance score of 20.03. Interestingly TNF had the
highest relevance scores of 75.06, 77.71, 69.39, 95.44, 51.13 for acetaminophen, isoniazid,
D-galactosamine, lipopolysaccharide, and rifampicin-induced hepatitis, respectively, and
for thioacetamide, IL6 had the highest relevance score of 55.21. UGT1A4, CYP2A6, CSF2,
INRS, GSTM1, and BMP6 had the lowest relevance score of 20.08, 20.03, 20.47, 20.02, 20.0,
and 20.02, respectively. The list of genes/protein molecules regulated by the HBV and each
chemical-induced hepatitis which is obtained from a peer review of the literature (along
with references [14–233]) and the GeneCards database are summarized in Supplementary
Tables S1–S8.

2.2. Analysis of Genes Involved in Hepatic Toxicity

In HBV-induced hepatitis, 2% (31) were common in both the literature review and
the GeneCards database, while for acetaminophen, isoniazid, alcohol, D-galactosamine,
lipopolysaccharide, thioacetamide, and rifampicin the common genes between the literature
review and the GeneCards database were found to be 9.2% (14), 5.6% (4), 8.8% (33), 15.3%
(11), 9% (25), 10.5% (6), and 5.6% (3), respectively. Figure 2 represents the common genes
between the literature review and GeneCards.
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Further, the common genes present in HBV and acetaminophen, isoniazid, alcohol,
D-galactosamine, lipopolysaccharide, thioacetamide, and rifampicin-induced hepatitis
were found to be 9% (140), 3.7% (57), 25.2% (399), 3.8% (59), 17.6% (273), 3.4% (52) and
3.2% (50) respectively. Among them, HBV genes with alcohol genes had the highest simi-
larity i.e., 25.2% whereas lipopolysaccharides had the second highest similarity i.e., 17.6%.
Figure 3 represents the common genes between HBV and chemical-induced hepatitis.
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2.3. Functional Enrichment Analysis to Assess the Hepatotoxicity

Initially, HBV, acetaminophen, isoniazid, alcohol, D-galactosamine, lipopolysaccha-
ride, thioacetamide, and rifampicin were identified to modulate 1546, 152, 72, 434, 72, 278,
57, and 54 genes, respectively. The enrichment analysis of these individual sets of the
gene revealed 217, 185, 184, 200, 185, 202, 167, and 172 molecular pathways, respectively.
Supplementary Tables S9–S16 represent the molecular pathways modulated by HBV and
chemicals.

In the HBV-induced hepatitis model, out of 217 pathways modulated, nine pathways—
namely, PI3K-Akt, TNF, JAK-STAT, MAPK, Chemokine, NF-kappa B, TGF-beta signaling
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pathways, Apoptosis, and Cell cycle—were prioritized to compare with chemically-induced
hepatitis, as these pathways were significantly associated with the progression of hepatocel-
lular carcinoma induced by HBV (refer KEGG ID: hsa05161). Among them, the PI3K-Akt
signaling pathway scored the lowest FDR of 1.39E−33 and the highest gene count of 57,
whereas TNF, JAK-STAT, MAPK, Chemokine, NF-kappa B, TGF-beta signaling pathways,
Apoptosis, and Cell cycle scored the lowest FDR of 1.56E−27, 1.38E−22, 5.4E−20, 7.77E−13,
6.49E−12, 7.26E−27, 4.34E−09, respectively, and gene counts of 34, 33, 38, 24, 18, 11, 35, and
16, respectively. Figure 4 represents the network of HBV-modulated genes and pathways.
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Figure 4. Network representation of HBV-modulated genes and pathways.

Among chemical-induced, lipopolysaccharide-induced hepatitis had the highest sim-
ilarity compared to HBV-induced, whereas alcohol-induced hepatitis was found to be
the second highest similarity with HBV. Table 1 represents the pathways modulated by
HBV and selected chemicals. Lipopolysaccharide was found to modulate 202 molecular
pathways, in which the PI3K-Akt signaling pathway scored the lowest FDR of 2.46E−41
and the highest gene count of 58, whereas TNF, JAK-STAT, MAPK, Chemokine, NF-kappa
B, TGF-β signaling pathways, apoptosis, and cell cycle scored the lowest FDR of 4.49E−46,
1.48E−35, 5.8E−30, 3.71E−21, 4.11E−38, 0.000000036, 2.35E−38, and 7.55E−08 and gene
counts of 45, 41, 44, 30, 38, 12, 41, and 13, respectively. Figure 5 represents the network of
lipopolysaccharide-modulated genes and pathways.
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Table 1. Functional enrichment analysis of genes modulated by HBV and selected chemicals.

Hepatitis Model HBV Acetaminophen Isoniazid Alcohol D-galactosamine Lipopolysaccharide Thioacetamide Rifampicin

KEGG ID Pathway
Description GC FDR GC FDR GC FDR GC FDR GC FDR GC FDR GC FDR GC FDR

hsa05161 Hepatitis B 42 6.6E−32 21 3.46E−19 19 7.91E−22 30 8.48E−29 28 8.90E−36 66 1.14E−68 18 1.17E−21 18 3.57E−22

hsa04151
PI3K-Akt
signaling
pathway

57 1.39E−33 23 2.02E−15 14 1.02E−10 31 2.87E−21 20 3.35E−17 58 2.46E−41 16 5.34E−14 16 1.78E−14

hsa04668 TNF signaling
pathway 34 1.56E−27 9 2.56E−07 7 5.89E−07 23 5.92E−23 14 2.21E−16 45 4.49E−46 9 3.49E−10 11 2.34E−13

hsa04210 Apoptosis 35 7.26E−27 10 8.51E−08 9 5.93E−09 25 3.77E−24 15 6.20E−17 41 2.35E−38 9 1.16E−09 13 1.89E−15

hsa05225 Hepatocellular
carcinoma 36 1.35E−25 16 2.12E−13 14 8.53E−15 20 1.56E−16 18 4.48E−20 30 8.42E−23 12 6.46E−13 12 2.65E−13

hsa04630
JAK-STAT
signaling
pathway

33 1.38E−22 12 4.22E−09 8 3.73E−07 18 2.93E−14 12 8.40E−12 41 1.48E−35 12 6.46E−13 9 3.01E−09

hsa04010 MAPK signaling
pathway 38 5.4E−20 16 4.47E−10 12 1.80E−09 24 4.07E−16 19 2.32E−17 44 5.8E−30 12 2.56E−10 16 1.74E−15

hsa04062
Chemokine

signaling
pathway

24 7.77E−13 8 7.08E−05 4 0.0072 15 3.3E−10 11 7.06E−10 30 3.71E−21 8 2.68E−07 6 3.44E−05

hsa04064
NF-kappa B

signaling
pathway

18 6.49E−12 7 1.39E−05 4 0.00094 13 3.10E−11 8 2.50E−08 38 4.11E−38 3 0.0075 6 1.54E−06

hsa04110 Cell cycle 16 4.34E−09 5 0.0023 5 0.0063 6 2.06E−05 13 7.55E−08 3 0.0115 5 5.74E−05

hsa04350
TGF-beta
signaling
pathway

11 0.00000324 ND 3 0.0075 7 3.36E−05 ND 12 0.000000036 3 0.00041 4 0.0045

ND, Not Detected; GC, Gene Count, reprents the number of set of genes within the pathway of individual model; FDR, False Discovery Rate, discribes the significance of each pathway.
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Similar to HBV-induced hepatitis, alcohol-induced hepatitis shared the second-highest
degree of similarity. Alcohol was found to modulate 200 molecular pathways, in which
the PI3K-Akt signaling pathway scored the lowest FDR of 2.87E−21 and the highest gene
count of 31, whereas TNF, JAK-STAT, MAPK, Chemokine, NF-kB, TGF-beta signaling path-
ways, Apoptosis, and Cell cycle scored the lowest FDR of 5.92E−23, 2.93E−14, 4.07E−16,
3.25E−10, 3.10E−11, 3.36E−05, 3.77E−24, 0.0063 and gene counts of 23, 18, 24, 15, 13, 7, 25,
5, respectively. Figure 6 represents the network of alcohol-modulated genes and pathways.
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3. Discussion

Animal models are widely used to study the pathophysiology of chronic hepatitis B
and to develop new drugs or treatment methods [234]. HBV can only infect humans and
chimpanzees [235]. However, due to ethical and practical concerns, chimpanzees are not
commonly utilized in HBV research [235]. Additionally, efforts have been conducted to
spread HBV to smaller non-human primates. The tree shrew is the only rodent other than
a primate that has been found to be susceptible to HBV infection, but the in vivo system
still needs major improvement [7,236]. As a result of the absence of viral entry, cccDNA
synthesis, and viral dissemination, mice with the HBV genome transfected, transduced, or
transgenic can only support HBV replication, leaving the HBV life cycle unfinished. When
human liver cells that maintain HBV infection are transplanted into immuno-deficient
mice, the animals show apparent immunodeficiency, and their maintenance systems are
very sophisticated [237]. As a result, the majority of gains in HBV research have been
made utilizing mice models of HBV replication or infection, or models of HBV-related
hepadnaviral infection [236–238].

In line with previous investigations, some of the drugs used to cause hepatitis in rats
are known to cause pathophysiology that is comparable to the pathogenesis of HBV in
people [239–241]. Therefore, the goal of the current study was to use gene set enrichment
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and network pharmacology analysis to find a chemically induced hepatitis model that
is similar to HBV pathogenesis. The study determined that the pathogenesis of HBV
is similar in the alcohol- and LPS-induced hepatitis models. About 42 and 1538 genes
were first gathered for HBV from the literature and GeneCards, respectively, of which
31 genes (2%) were common. In the enrichment analysis, 1546 genes were involved in
217 molecular pathways, in which nine pathways—namely, PI3K-Akt, TNF, JAK-STAT,
MAPK, Chemokine, NF-kappa B, TGF-beta signaling pathways, Apoptosis, and Cell
cycle—were majorly associated with HBV infection (KEGG ID: hsa05161). These pathways
were significantly targeted by both LPS and alcohol (Figure 7 and Table 1).

The PI3K/Akt signaling pathway is associated with a variety of biological pro-
cesses caused by enzymes, including glucose metabolism. Phosphatidylinositol 3-kinase
(PI3K)/protein kinase B (AKT) and mitogen-activated protein kinase (MAPK) signaling are
examples of signal transduction cascades that could be activated by HBV HBx, which is
primarily present in the cytoplasm [242]. Alcohol inhibits the liver’s insulin signaling path-
way, which leads to irregularities in the metabolism of glucose and lipids. This is one of the
key factors contributing to the development of alcoholic liver disease (ALD) [243]. Alcohol
was found to increase apoptotic expression and PI3K/Akt signaling while lowering hepatic
perfusion, hence promoting cirrhosis [244]. Similarly, LPS is also reported to activate the
PI3K/Akt and MAPKs [245]. In this study, HBV, alcohol, and LPS targeted the PI3K-Akt
signaling pathway by modulating 57, 31, and 58 genes and the MAPK signaling pathway
by 38, 24, and 44 genes, respectively. Among them, AKT1, AKT2, MAPK1, MAPK3, NFKB1,
TNF, and BCL2 genes were identified as hub genes within the network. The activation of
these signal pathways may contribute to liver cell malignant transformation.

TNF-α, one of the most important inflammatory cytokines, was first identified as
an anti-tumor cytokine that resulted in tumor necrosis. Inflammation is fundamentally
mediated by TNF-α, which also promotes the growth of cancers. Researchers have found
that compared to healthy liver tissue, HCC expresses TNF-α at substantially higher lev-
els [246]. TNF-α is a potent NF-kB signaling activator; during HBV infection, it increases
HBx intracellular concentration by enhancing its stability and is essential for the onset
and progression of HCC [247], whereas in alcohol-induced hepatitis, alcohol increases
hepatocytes’ susceptibility to TNF-α-induced apoptosis. TNF-α levels were higher in both
chronic drinkers and animal models fed alcohol over an extended period of time. In all
kinds of liver cells, the NF-kB is a key regulator of cellular stress. In the cytoplasm of
dormant cells, the family of NF-kB proteins, including RelA/p65, RelB, c-Rel, and p50,
exist as dimers in a complex with inhibitory kB molecules [248]. Chronic alcohol use is
thought to prime the liver by inducing basal and LPS-stimulated TNF-α and persistent
NF-kB activation [249]. Hepatic macrophages’ expression of pro-inflammatory mediators
is significantly regulated by NF-kB [249]. The activation of TLR4 by circulating LPS on liver
macrophages, which results in NF-B activation and the generation of pro-inflammatory
cytokines, is linked to chronic alcohol-mediated liver damage [250]. In this study, HBV,
alcohol, and LPS targeted the TNF-α signaling pathway by modulating 34, 23, and 45 genes
and the NF-kB signaling pathway by 18, 5, and 13 genes, respectively. The LPS has the
lowest FDR score for TNF and NF-kB signaling pathways, i.e., 4.49E−46 and 4.11E−38,
respectively. While for HBV and alcohol the FDR score for the TNF signaling pathway was
1.56E−27 and 5.92E−23, for the NF-kB signaling pathway it was 6.49E−12 and 3.10E−11,
respectively. This indicates LPS possesses a significant effect on TNF and NF-kB signaling
pathways. TGF-β a crucial cytokine that promotes fibrosis in a variety of chronic liver dis-
orders and HCC. Overactivation of the TGF-β signaling pathway increases cell migration
and invasion. The HBV HBx upregulates TGF-β on HCC progression by downregulating
protein phosphatase magnesium-dependent 1A (PPM1a) [251]. Alcohol and LPS are also
reported to increase the TGF-β and are prevalent in ALD. In this study, HBV, alcohol, and
LPS targeted TGF-β signaling pathways by modulating 11, 7, and 12 genes, respectively.
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Among the HBV proteins, HBx is the one that has been most commonly linked to
the suppression of apoptosis and the stimulation of HCC development. Through the
overexpression of PI3K and the stimulation of Akt phosphorylation, HBx stimulates the
phosphatidylinositol-4,5-bisphosphate 3-kinase-protein kinase B (PI3K-Akt) pathway to
suppress apoptosis. Drp-1 and Parkin are brought to the mitochondria by HBx to promote
mitochondrial fission and mitophagy, which suppresses the intrinsic apoptotic pathway.
Additionally, the activation of Akt inhibits BAD from moving to the mitochondria and
apoptosis from occurring. HBx stimulates the nuclear factor kappa-light-chain-enhancer of
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activated B cells (NF-κB) signaling by degrading IκB. HBV may reduce the activity of the
kinase that activates JNK in the MAPK-JNK pathway [252]. Similarly, chronic alcohol use
reduces the mitochondrial maximum oxygen uptake rate, which in turn makes hepatocytes
more vulnerable to alcohol-induced hypoxia and liver damage [253]. Similar to LPS, which
is a highly pro-inflammatory molecule, endothelial responses to LPS include the production
of cytokines, adhesion molecules, and tissue factors, as well as apoptotic endothelial cell
death [254]. Activation of the NF-B TLR4/PI3K/Akt/GSK-3, cytokine, and other signaling
pathways is how LPS most commonly causes apoptosis. The 35, 25, and 41 genes in the
network were respectively targeted by HBV, alcohol, and LPS in this investigation to induce
apoptosis.

The JAK/STAT signaling system is crucial for several physiological processes, such as
cell division, stem cell maintenance, differentiation, and immune/inflammatory response
control. Additionally, it has been shown that JAK/STAT signaling controls gluconeogenesis
and liver regeneration. Different cytokines and growth factors, including interleukins, inter-
ferons, and members of the EGF family also activate the JAK/STAT pathway by binding to
their respective transmembrane receptors. The current study reports that the HBV, alcohol,
and LPS modulate 33, 18, and 41 genes to modulate the JAK/STAT pathway. It is well
known that chronic alcohol use and LPS decrease ILs and IFN-induced STAT1 activation,
which in turn lowers NK cell function in the liver and speeds up the development of hepatic
fibrosis. STATs activation via ILs and IFN is necessary for hepatic regeneration [250]. How-
ever, investigation has revealed that HBV HBx also controls cellular growth and death in
addition to having a significant impact on the innate immune response and viral replication.
HBX controls the activity of JAK1, JAK2, and TYK2. Cho et al. indicated that HBX may
prevent TYK2 activation, lowering the expression of the IFN- receptor 1 (IFNAR1) and
preventing signal transduction mediated by exogenous IFNs [255]. The HBX-mediated
interaction of SH2 domain-containing 5 (SH2D5) with transketolase (TKT) may activate
STAT3 to increase HCC cell proliferation, and HBx was also reported to drive SH2D5
expression in HCC cells. IL-6 is essential for STAT3 activation. As it is, HBX has been
shown to increase IL-6 expression in hepatoma cells [255]. On the other hand, alcohol and
LPS are also well reported to increase the level of IL-6 and IL-6-facilitated acute inflamma-
tory response in the liver, causing the development of chronic liver injury [256,257]. The
researchers also identified that the liver damage in IL-6 knockout mice after alcohol feeding
may be due to STAT3-independent signaling of IL-6 in hepatocytes. Hence, this confirms
that IL-6 mediated liver damage is due to STAT3 activation [258]. On looking into the
overall outcome of the study, HBV and chemicals cause hepatocellular carcinoma (HCC)
through a multifactorial process and molecular pathways. Animal models of chemically
induced HCC resemble hepatocarcinogenesis of HBV and this research sheds light on the
screening of novel anti-HBV and hepatoprotective molecules using alcohol and LPS as a
chemical-induced hepatitis model.

4. Materials and Methods
4.1. Identification of HBV-Associated and Chemically Induced Hepatitis Genes

A peer review of the literature and GeneCards database were used to collect the
information on genes that are modulated by HBV and the selected chemicals to produce
hepatitis, namely, acetaminophen, isoniazid, alcohol, D-galactosamine, lipopolysaccharide,
thioacetamide, and rifampicin were selected to compare with the HBV-induced hepatitis.
In the GeneCards database, the genes with a relevance score ≥20 were considered for eval-
uation to obtain the most relevant data. Here, we set a relevance score ≥20 cut-off to avoid
the large number of genes that cause errors during enrichment analysis. Further, Venny
2.1 [259] was utilized to identify the common genes between the literature and GeneCards
with HBV and chemically-induced hepatitis. In addition, the Kyoto Encyclopedia of Genes
and Genomes (KEGG) database accession number “hepatitis B: hsa05161” was utilized to
collect the molecular pathway regulated in HBV infection.
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4.2. Gene set Molecular Pathway Enrichment Analysis

The set of genes collected for HBV and chemical-induced hepatitis were submitted to
the STRING database [260]. The set of gene-regulated molecular pathways was retrieved
from the STRING database inbuilt KEGG pathway database [261]. Further, the obtained list
of pathways of HBV-induced hepatitis was matched with pathways collected from “KEGG
ID: hsa05161” and finalized with the matched pathways for HBV-modulated pathways
for further analysis. In a similar manner, the list of pathways for chemically induced
hepatitis and the HBV pathways were compared for similarity based on gene counts and
false discovery rate (FDR) [262,263].

4.3. Network Construction

The network between HBV and chemicals with their targets (involved in hepatitis)
and the regulated pathways were constructed using Cytoscape (https://cytoscape.org/ (ac-
cessed on 20 February 2023)) version 3.6.1 [264]. The constructed network was recognized
as directed and inspected by translating node size and color to low values corresponding
to small sizes and bright colors toward the edge count. In addition, the edge size and color
were mapped to edge betweenness, with low values corresponding to small sizes and low
values equating to bright colors [265,266].

5. Conclusions

The GeneCards database was utilized in the current investigation to collect genes
affected by HBV and several substances thought to induce hepatitis. It also underwent a
thorough peer review process. Out of seven chemically induced hepatitis cases, alcohol-
and LPS-induced hepatitis were found to share similar molecular pathways with HBV-
induced hepatitis, according to gene set enrichment and network pharmacology analysis.
Apoptosis, Cell cycle, PI3K-Akt, TNF, JAK-STAT, MAPK, Chemokine, NF-kappa B, and
TGF-β signaling pathways were the major pathways modulated by HBV, which were also
targeted by alcohol and LPS with significant gene counts and FDR scores, since alcohol is
used to investigate chronic hepatitis and LPS is used to examine acute hepatitis. In contrast
to HBV-induced hepatitis in rodents, alcohol-induced chronic hepatitis may be the option
to study chronic hepatitis in rodents.
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