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Abstract: Although Weissella cibaria and W. confusa are essential food-fermenting bacteria, they are
also opportunistic pathogens. Despite these species being commercially crucial, their taxonomy
is still based on inaccurate identification methods. In this study, we present a novel approach
for identifying two important Weissella species, W. cibaria and W. confusa, by combining matrix-
assisted laser desorption/ionization and time-of-flight mass spectrometer (MALDI-TOF MS) data
using machine-learning techniques. After on- and off-plate protein extraction, we observed that
the BioTyper database misidentified or could not differentiate Weissella species. Although Weissella
species exhibited very similar protein profiles, these species can be differentiated on the basis of the
results of a statistical analysis. To classify W. cibaria, W. confusa, and non-target Weissella species,
machine learning was used for 167 spectra, which led to the listing of potential species-specific mass-
to-charge (m/z) loci. Machine-learning techniques including artificial neural networks, principal
component analysis combined with the K-nearest neighbor, support vector machine (SVM), and
random forest were used. The model that applied the Radial Basis Function kernel algorithm in
SVM achieved classification accuracy of 1.0 for training and test sets. The combination of MALDI-
TOF MS and machine learning can efficiently classify closely-related species, enabling accurate
microbial identification.
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1. Introduction

Weissella is a genus of lactic acid bacteria that inhabit various sources, such as milk,
feces, meat, and vegetables, and currently includes 19 species [1]. Of these, Weissella
cibaria and W. confusa are the dominant species in fresh vegetables and play crucial roles
in the fermentation of foods. Studies on W. cibaria and W. confusa have mainly referred
to exopolysaccharide (EPS) production. EPS production using starter culture is generally
preferred in the dairy industry, as it improves bread texture and shelf life in sourdough
fermentation [2]. Many researchers have recently determined the health-promoting effects
of W. cibaria and W. confusa by investigating their probiotic properties [3,4]. W. cibaria
inhibits Fusobacterium nucleatum, which causes periodontal disease in the oral cavity [4],
and reduces oxidative stress-induced disorders [5]. W. confusa exhibited high cholesterol
elimination, antioxidant activity, and antibacterial activity [3,6]. Despite these favorable
characteristics, W. confusa causes human infections; although the clinical significance of
this species is unclear, it mainly causes infections in individuals who are immunocompro-
mised [2]. Thus, this species is usually considered a rare cause of nonfatal human infections
and a contaminant. The aforementioned two species are inherently resistant to vancomycin
like other Weissella species. However, some W. confusa strains have recently been reported
to cause abscesses, bacteremia, and infective endocarditis [7,8].
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Several methods have been developed for Weissella identification, such as polymerase
chain reaction (PCR) assays, sequencing, and matrix-assisted laser desorption/ionization
time-of-flight mass spectrometer (MALDI-TOF MS) [9–11]. Of these, MALDI-TOF MS
has been used in many clinical laboratories for bacterial identification. This method is
efficient and convenient for microbial detection, can be performed in minutes with a
single colony, and costs only a few US dollars [12]. MALDI-TOF MS can rapidly identify
bacteria by generating protein-fingerprint signatures from bacteria cells and comparing
them to fingerprints in databases of reference spectra [13]. Therefore, successful bacterial
identification using MALDI-TOF MS relies primarily on a database containing the spectra of
known organisms [14]. However, commercial databases are unreliable because of a lack of
accurate discrimination among closely related species or subspecies, such as W. cibaria and
W. confusa. Moreover, experimental factors, such as sample preparation, cell lysis method,
and instrument performance can affect the quality and reproducibility of MALDI-TOF MS
fingerprints [15]. Strains indistinguishable using commercial databases have recently been
accurately identified by selecting specific peaks or by machine learning of protein mass
spectra obtained through MALDI-TOF MS [16,17].

Recently, machine learning techniques have been increasingly used for microbial
identification. Microbial identification is dominated by the application of artificial neural
networks (ANN), which involve the use of data resulting from various analytical tech-
niques, such as surface-enhanced Raman spectroscopy, genetic fingerprinting, and infrared
spectroscopy [15,18,19]. Most machine-learning studies have focused on the classification
of antibiotic-resistant bacteria or the differentiation of pathogenic bacterial species having
clinical impact. However, such studies did not include identification schemes for lactic
acid bacterial species within a specific taxon. Given the advantages of machine-learning
techniques, these techniques could contribute considerably to the microbial taxonomy
field [15]. Machine-learning techniques learn from the data and make the most of the
information contained in the data. Additionally, recent machine-learning techniques have
been utilized to maximize the use of information contained within MALDI-TOF MS, with
the ultimate goal of improving species identification [20]. Machine learning can smoothly
handle multidimensional data and offer a solution when standard analytical methods fail.
Moreover, numerous algorithms have been implemented in various open-source software
programs (https://github.com/, 2 July 2023); therefore, any scientist can freely use them.

Here, we evaluated the ability to discriminate among W. cibaria, W. confusa, and
nontarget Weissella species for the first time, by combining MALDI-TOF MS and machine
learning techniques. By performing species identification based on similarity searches
against the commercial library, the performance of the MALDI-TOF MS database was
assessed. The ANN, principal component analysis combined with the K-nearest neighbor
(PCA-KNN), and support vector machine (SVM) algorithms were used for classifying
W. cibaria, W. confusa, and non-target species.

2. Results
2.1. Molecular Identification

Specific primers for detecting W. cibaria, W. confusa, and non-target Weissella strains
were previously designed through pangenome analysis [9] and used to identify the isolates.
Each primer produced an amplification plot for each strain. Of the 125 strains, 44, 46, and
35 strains were identified as W. cibaria, W. confusa, and non-target strains, respectively.

2.2. Analysis of Mass Spectra with BioTyper Database

In total, 44 W. cibaria strains, 46 W. confusa strains, and 35 non-target strains were tested.
The BioTyper database (version 2022) included 12 Weissella species, including W. cibaria
and W. confusa, each with four and six spectra, respectively. Consequently, W. cibaria strains
were accurately identified after analysis using BioTyper 3.0 software. High average scores
of 2.25 and 2.29 were obtained using the direct transfer-formic and ethanol-formic acid
extraction protocols, respectively (Table S1). Using the aforementioned protocols, W. confusa
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strains were also identified with high average scores of 2.00 and 2.02, respectively. However,
only five W. confusa strains were accurately identified (Supplementary Table S1). Ten strains
having scores between 1.74 and 2.10 were initially identified as W. confusa. However,
upon the second match, they were identified as W. cibaria, with scores between 1.71 and
2.02. Similarly, 21 strains having scores between 1.74 and 2.13 were initially matched as
W. cibaria. However, upon the second match, they were identified as W. confusa with scores
between 1.72 and 2.12. Ten W. confusa strains were misidentified as W. cibaria, with scores
between 1.74 and 2.12. When the species could not be accurately identified in the database,
additional peak analysis was required for reidentification.

2.3. Clustering Analysis of Mass Spectra

The mass spectra of W. cibaria and W. confusa showed similar patterns (Figure 1). The
mass spectra of each strain for non-target Weissella species are shown in Supplementary
Figure S1. We verified whether the mass spectra of MALDI-TOF MS could differentiate
among W. cibaria, W. confusa, and non-target strains at a statistical level. After all mass
spectrometry data were preprocessed, we first analyzed the differences in peak spectra
among W. cibaria, W. confusa, and non-target strains. Clustering and PCA revealed a
difference between some spectra of the three groups. Hierarchical clustering classified the
spectra into two groups (Figure 2): one cluster included W. confusa and W. cibaria, and the
other cluster included non-target species. In addition, PCA revealed clearly distinguishable
clusters on the basis of the unique peptide fingerprint or main spectra library (MSP) of the
two species (Figure 3). These results further show that MALDI-TOF MS can effectively
differentiate among W. cibaria, W. confusa, and non-target species.
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Figure 1. Mass spectra of W. cibaria KCTC 3746 and W. confusa KCTC 3499; m/z, mass-to-charge ratio;
a.u., arbitrary units.

2.4. Characteristics of Mass Spectra

The species-specific mass-spectral loci that could classify the two species were explored.
After the analysis, a matrix diagram was created on the basis of the presence or absence of
mass peaks of different strains at a certain locus and their degree of difference (p < 0.001).
Figure 4 presents the top 46 mass-spectral loci according to the difference between W. cibaria
and W. confusa. Despite the spectra of the two Weissella species being similar, specific
biomarkers were defined, allowing species-level discrimination. The spectral profiles of
W. cibaria strains exhibited a specific peak at 6631.79 m/z (present in all strains except
one) and a characteristic peak at 5352.49 m/z, which was present in 38 of the 44 strains
analyzed. In contrast, the W. confusa species exhibited a specific and reproducible mass peak
at 9682.98 m/z, which was present in all strains except for one. In addition, a characteristic
peak at 3672.89 m/z was observed in 40 of the 46 strains analyzed. These results suggest
that a combination of biomarkers can be used to distinguish between the two species. The
peaks observed in bacteria through MALDI-TOF MS analysis are typically associated with
ribosomal proteins, suggesting that these peaks may correspond to ribosomal proteins [21].
Nonetheless, as is consistent with prior studies, the precise identification of individual
peaks remains unconfirmed [22–24].
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strains. The mass-spectral loci according to the difference (p < 0.001) between W. cibaria and W. confusa
are listed on the right side of the matrix.

2.5. Results of the Machine Learning Classification Model

MALDI-TOF MS analysis of 125 Weissella strains generated 500 protein fingerprints.
These protein fingerprints (n = 500) contained 31,723 spectra, out of which 167 mass spec-
tra were selected for quality control, smoothing, baseline correction, intensity calibration,
spectra alignment, peak detection, and peak binning processes using the MALDIquant
open-source package. Machine-learning models including ANN, PCA-KNN, and SVM
were employed to discriminate among the two species and non-target samples. Results
were obtained for training and test sets. Before the machine-learning models were de-
veloped, a correlation analysis was performed using the 167 m/z data. This analysis
identified four bands with positive correlation of 0.60 or higher and approximately five
bands with a negative correlation of −0.70 or higher. These bands can be used as indicators
of classification feasibility (Figure 5).
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For ANN, which was the first machine-learning algorithm, the training and test set
accuracies were 0.997 and 0.978, respectively, which indicated that the three classes were
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generally well classified (Table 1). For PCA-KNN, PCA was used to reduce 167 dimensions,
and the graph of the variance ratio of the principal components was examined. When
six loadings were used, the variance ratio exceeded the 95% threshold, and data for these
six components were used for developing the KNN (5) classification model. The results
exhibited training- and test-set accuracies of 0.954 and 0.941, respectively. For Random
Forest, the training- and test-set accuracies were 0.987 and 0.975, respectively.

Table 1. Classification accuracy of the training set and test set of the machine learning algorithm used
to classify the three groups.

Machine Learning Models Training Set Accuracy Test Set Accuracy

ANN 0.997 0.978
PCA-KNN 0.954 0.941

SVM-sigmoid 0.973 0.904
SVM-RBF 1 1

Random Forest 0.987 0.975

The SVM used two soft kernels, namely, sigmoid and Radial Basis Function (RBF).
When the sigmoid function was used, the training- and test-set accuracies were 0.973 and
0.904, respectively. In the RBF-based SVM model, the classification results were 1.0 for the
training and test sets, thereby exhibiting the best results in differentiating the three groups
(W. cibaria, W. confusa, and non-target). Moreover, the SVM–RBF algorithm consistently
produced the same results when the three groups were classified in pairs. All three pairs,
namely classifying W. cibaria and W. confusa, W. cibaria and non-target, and W. confusa and
non-target, achieved a classification accuracy of 1.0. The developed models have been
further supplemented with an analysis of Receiver Operating Characteristic (ROC) and
Area Under the ROC Curve (AUC), as documented in Supplementary Figures S2–S6.

3. Discussion

MALDI-TOF MS is commonly used for bacterial identification in clinical microbiol-
ogy laboratories. It relies on the detection of housekeeping and ribosomal proteins. This
technique has been used for many decades and offers several advantages, such as being
easy to use, fast, high throughput, cost effective, and reliable [25–27]. In our previous
study, we used MALDI-TOF MS for identifying Weissella species and demonstrated that
this technique, with an in-house database, can accurately identify Weissella species [10].
Integrating machine learning with MALDI-TOF MS enables highly accurate identification
of closely-related species poorly discriminated in the database. Despite this potential, to our
knowledge, no mass-peak-based machine-learning studies have been conducted for Weis-
sella identification. Thus, this study investigated whether mass spectrometry techniques
combined with machine-learning approaches could allow rapid species identification and
accurate discrimination of closely related Weissella species.

In this study, to evaluate the potential of MALDI-TOF MS for differentiating among
W. cibaria, W. confusa, and non-target strains, the correlation between the two species and
mass spectra was analyzed. The commercial database did not accurately distinguish the
two species; hence, developing machine-learning models for accurate identification and
discrimination is necessary. Based on the mass spectra and concordance of the reference
strain in the database, MALDI-TOF MS generates a report of the ten closest matches for
each isolate [28], with matches arranged in the descending order of scores. MALDI-TOF
MS results are usually interpreted according to the manufacturer’s recommendations, and
these criteria are mostly sufficient for routine use in microbiology laboratories. However,
interpreting the results is difficult, especially when different species belonging to the
same genus having high scores are noted among the top ten best matches in the MALDI-
TOF MS list [28,29]. Khot et al. (2012) proposed the 10% log-difference approach to
address the problem of inconsistent results in the database [30]. This approach has been
widely applied to strains having scores of ≥1.7, and consequently, 31 strains did not
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pass the cut-off. Further analysis based on single-colony identification identified these
strains as different species (W. cibaria or W. confusa) with similar scores. In addition, our
analysis revealed that ten strains were misidentified, which highlighted the challenge
of distinguishing W. cibaria from W. confusa in the commercial database. These findings
are consistent with those of previous studies that have also identified limitations with
commercial databases [16,31,32]. Phylogenetically closely-related species often have similar
protein fingerprinting, which makes it difficult to accurately discriminate between these
species using commercial databases.

We analyzed 500 different spectra for Weissella strains, using PCA clustering and
dendrogram techniques to classify them according to their protein fingerprinting. Our
results, generated using MALDI-TOF MS fingerprinting, revealed that W. cibaria and
W. confusa could be distinguished. Interestingly, the biomarker analysis revealed different
loci of mass spectral peaks with p < 0.001. Among these loci, mass peaks at 6631.79, 5352.49,
9682.98, and 3672.89 m/z exhibited absolute specificity and may be potential biomarkers
for distinguishing these two species. These findings highlight the ability of mass peaks to
accurately identify W. cibaria and W. confusa among the Weissella species.

We employed machine-learning techniques to overcome the limitations of mass spectra
analysis. Machine-learning algorithms can extract unique information from mass spec-
tra, thus enabling more accurate analysis. Previous machine-learning studies conducted
using MALDI-TOF MS data have detected antibiotic-resistant microorganisms [33]. To
fully exploit the information in mass spectra obtained through MALDI-TOF MS, many
researchers have implemented the machine-learning algorithm to simplify antimicrobial
resistance determination [34,35]. Machine-learning methods can identify statistical depen-
dencies in data and can consider nonlinear and interactive effects among features [20].
Therefore, these methods can reveal novel or unknown information present in MALDI-TOF
MS that has been proven to be useful for antibiotic-resistance profiling in several stud-
ies [20]. Wang et al. (2022) used an SVM algorithm to differentiate carbapenem-resistant
Klebsiella pneumoniae from carbapenem-sensitive strains based on the features obtained from
MALDI-TOF MS [36]. SVM and the random-forest algorithm have been applied to the mass
spectra of methicillin-resistant Staphylococcus aureus and beta-lactam-resistant Bacteroides
fragilis for discriminating strains and for phenotypic prediction [37,38]. Compared with
phenotypic-resistance profiling, their models have prediction accuracies of approximately
100% and significantly reduced the time required to initiate targeted antibiotic treatment.
This study revealed that the information in MALDI-TOF MS can also aid in identifying
and differentiating species, especially phylogenetically closely-related species. However,
the disadvantage of this study is that only a small sample size was used to develop the
machine learning model. Therefore, in future studies, it should be applied to larger samples
associated with the characteristic peaks.

4. Materials and Methods
4.1. Isolation and Identification of W. cibaria and W. confusa

The type strains of W. cibaria, W. confusa, and non-target Weissella species were ob-
tained from the Korean Collection for Type Culture (KCTC, Jeonju, Korea) and the Korean
Agricultural Culture Collection (KACC, Jeonju, Korea) (Table 2). To isolate the strains from
the samples, 19 food samples (kimchi, n = 11; jeotgal, n = 2, sikhae, n = 4, tempe = 2) were
purchased from local markets. Each of these (25 g) was homogenized with 225 mL of 0.85%
NaCl solution. The aliquots of the homogenized samples were serially diluted, and 0.1 mL
of the diluted sample was spread on deMan, Rogosa, and Sharpe (MRS, MB cell, Seoul,
Korea) agar plates, followed by incubation for 48 h at 30 ◦C. The colonies cultured on the
plates were picked and streaked on fresh MRS agar (MB cell, Seoul, Korea), and aliquoted
in 30% glycerol for storage at −80 ◦C. For the identification of the isolates, genomic DNA
from W. cibaria, W. confusa, and non-target isolates was extracted using the DNeasy Blood
and Tissue kit (Qiagen, Hilden, Germany) in accordance with the manufacturer’s instruc-
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tions. Real-time PCR analysis was performed using a 7500 real-time PCR system (Applied
Biosystems, Foster City, CA, USA) with specific primers listed in Table 3.

Table 2. Strain information used in this study.

Bacterial Strains Origins

Reference strains
W. cibaria KCTC 1 12,413 -
W. confusa KCTC 3109 -
W. ceti KACC 2 18,534 -
W. cryptocerc KACC 18,423 -
W. distrammennae KACC 16,890 -
W. halotolerans KACC 11,843 -
W. hellenica KACC 11,842 -
W. koreensis KACC 11,853 -
W. minor KCTC 3604 -
W. paramesenteroides KCTC 3531 -
W. soli KCTC 3789 -
W. thailandensis KCTC 3751 -
W. uvarum KACC 18,587 -
W. viridescens KCTC 3504 -

Isolates (n 3)
W. cibaria (43) Kimchi, sikhae, jeotgal
W. confusa (45) Kimchi, jeotgal, tempe
W. hellenica (4) Kimchi
W. koreensis (12) Kimchi
W. paramesenteroides (7) Tempe

1 KCTC, the Korean Collection for Type Cultures, 2 KACC, the Korean Agricultural Culture Collection, 3 Number
of isolates.

Table 3. Specific primer information used in this study.

Target Primer Sequence (5′-3′) Size (bp) References

W. cibaria CI-F TGA ATC GTA CCT GAA GGA GC 99 [9]
CI-R TGA TAC TTT GCA AAC AGG CG

W. confusa CO-F GTG CCG TAC TTC CAT GAC TT 177 [9]
CO-R GAC ATA CTT AAT GCC ATG TTC TGA C

4.2. MALDI-TOF MS Analysis
4.2.1. Protein Extraction

Proteins from W. cibaria, W. confusa, and non-target strains were extracted using the
direct transfer-formic and ethanol-formic acid extraction protocol [39]. For the direct
transfer-formic acid method, the fresh colony was smeared on a 96-position MALDI-TOF
target plate (Bruker Daltonics, Bremen, Germany) in two replicates using a toothpick,
overlaid with 1 µL of 70% formic acid, and then air dried at room temperature. Then,
1 µL of the HCCA matrix solution (α-cyano-4-hydroxycinnamic acid, Bruker Daltonics)
dissolved in 50% acetonitrile, 2.5% trifluoroacetic acid, and 47.5% water was added to each
of the spots and allowed to air dry. The on-plate protein extraction method was repeated
twice to obtain spectra.

For the ethanol-formic acid-extraction procedure, a loopful of fresh bacterial culture
(1 µL loopful of each isolate) was suspended in 300 µL of sterile pure water to which 900 µL
of ethanol was added. The bacterial suspension was centrifuged at high speed (17,000× g)
for 5 min; the supernatant was removed to completely discard the residual ethanol and
recentrifuged. The resulting pellet was resuspended in 30 µL of 70% formic acid to which
an equal volume of acetonitrile was added. After centrifugation at 17,000× g for 5 min,
1 µL of each supernatant was transferred to the 96-position MALDI-TOF target plate in two
replicates, allowed to air dry, and then overlaid with 1 µL of the matrix solution. The spots



Int. J. Mol. Sci. 2023, 24, 11009 9 of 14

were crystallized by air drying and then introduced into the instrument for MALDI-TOF
MS analysis. The off-plate protein extraction method was repeated twice to obtain spectra.

4.2.2. MALDI-TOF MS Analysis

The acquisition of mass spectra was performed using the Microflex LT mass spectrom-
eter (Bruker Daltonics) operating in the automatic positive ion linear mode as the average
of 240 laser shots. The spectra were collected over a mass range of 2000 and 20,000 Da
using voltages of 20.00 kV (ion source 1), 18.70 kV (ion source 2), 9.15 kV (lens), and 1645 V
(linear detector). The mass peak generated from each isolate was analyzed using BioTyper
3.0 software with reference database version 2022 (4274 species). The bacterial test stan-
dard (Bruker Daltonics) was used for calibration in accordance with the manufacturer’s
instructions. The results were expressed using the criteria suggested by the manufacturer:
scores of ≥2.0 indicate identification at the species level, scores of ≥1.7 but <2.0 indicate
identification at the genus level, and scores <1.7 indicate unreliable identification.

4.3. Data Preprocessing for Machine Learning
4.3.1. Data Set

All spectra data were classified into three groups for analysis, namely, “W. cibaria
(n = 176)”, “W. confusa (n = 184)”, and “non-target (n = 140)” according to information
about the strains. The data sets of “W. cibaria” and “W. confusa” were employed to explore the
potential for the discrimination of W. cibaria and W. confusa; the datasets of “non-target” and
“W. cibaria” were used to explore the potential for W. cibaria identification. The datasets of
“non-target” and “W. confusa” were used to explore the potential for W. confusa identification.

4.3.2. Data Preprocessing

The quality control and preprocessing of mass spectra were performed using the open-
source MALDIquant module of the R software package version 4.3.1 created by statisticians
Ross Ihaka and Robert Gentleman (Vienna, Austria). The mass spectra obtained using the
MALDI-TOF MS instrument were exported as BrukerFlex files. These raw spectra were
preprocessed using the R package “MALDIquant” module [40]. As a quality control, the
raw spectra were tested to ensure that they contained the same number of data points
and were not empty. The variance stabilization of raw spectra was performed using
the square root transformation method. The mass spectra intensity was smoothed using
“Savitzky–Golay–Filter” method with a halfWindowSize of 20. The SNIP algorithm was
used for baseline correction and removal. Then, the intensity values were normalized using
the Total-Ion-Current-Calibration method to allow a comparison of the peak intensities
across the spectrum. Finally, the mass spectra were aligned by calibrating the mass values
and aligning the spectra with the “alignSpectra” function. Before peak detection, the
“averageMassSpectra” method was used to create a mean spectrum to average the technical
replicates. Peak detection was then performed using the “MAD” method with a signal-to-
noise ratio of 2. After the alignment process, the peak positions were quite similar but not
identical. Therefore, binning was used to make the similar peak-position values identical
(tolerance = 0.002). Finally, the peaks were filtered to retain as many features as possible
and to remove false-positive peaks. The resulting data set was then scaled to a feature
matrix for machine learning analysis.

4.3.3. Proteomic Analysis

For proteomic analysis, the raw spectra preprocessed using MALDIquant were ana-
lyzed using Mass-Up: an open-source platform for analyzing MALDI data using machine
learning and statistical techniques [41]. The mass spectra were transformed into mzML files
(m/z-intensity lists), which enabled the implementation of a routine for the treatment of
raw data. The mzML files were then imported into the statistical software Mass-Up version
1.0.14 created by López-Fernández et al. (Vigo, Spain) for the analysis of spectra data [41].
The quality control on the peak lists was performed using the MALDIquant method with
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a tolerance value of 0.002 ppm. Peak matching was performed using the MALDIquant
method for intra- and inter-sample matching, considering a percentage of the presence
of 50. Hierarchical clustering analysis and PCA were performed to evaluate the ability
to discriminate between the two strains using mass spectra. A phyloproteomic tress was
constructed using the “clustering analysis” function and default parameters. PCA was
performed with the maximum number of components of −1 and a variance converted of
0.95. The biomarkers for the discrimination of the two species were identified using the
“biomarker display” function as the mass peaks displaying the best p and q values.

4.4. Machine Learning Models for Classification

A machine-learning-based classification method was used to classify W. cibaria, W.
confusa, and non-target strains. The classification method used machine-learning algorithms
to analyze the spectral data obtained from MALDI-TOF MS. Specifically, it analyzed the
intensity of 167 spectral peaks for each of the 500 samples. Four representative models were
used for the machine-learning classification of this data. The x-input for each sample used
in the training process included a sequence of 167 continuous data points. The samples
were split randomly into 75% for training and 25% for testing.

The first machine-learning model used an artificial neural network with a structure
consisting of two hidden layers. Each hidden layer comprised 200 and 125 neural network
layers, respectively, and the ReLU function was used as the activation function. A softmax
function was used to activate the output layer in this work, as per a common procedure
when using a neural network to classify multiple classes. This method has led to these
networks being labeled as ‘back propagation neural networks’ (BPNNs). While there exist
unsupervised versions of artificial neural networks, the more frequently used approach
involves the use of supervised settings for classification tasks with these networks. The
number of classes was designated as L, and the total input of each unit k = (1, . . . , K)
in the output layer L was depicted as u(L)

k = WLz(L−1) + b(L) based on the output of the
immediate lower layer l = L− 1. The output of the nth unit in the output layer was then
obtained using Equation (1): the sum of the so-determined outputs (y) is always 1.

yk ≡ z(L)
k =

exp
(

u(L)
k

)
∑K

j=1 exp
(

u(L)
j

) . (1)

Training was performed using the Adam optimization function, and the model ac-
curacy was evaluated after 50 epochs. The second machine-learning algorithm used
PCA-KNN. The dimensionality of the 167 spectra was reduced through PCA, and only
the influential features were selected to train the classification model. KNN is a popular
supervised-learning technique owing to its simplicity and intuitiveness. By analyzing the
neighboring data points, the KNN classifies a certain data point into a category with the
highest number of similar data points. In this study, the value of K was determined based on
the number of reduced dimensions obtained through PCA. The third classification-learning
model used an SVM. SVMs are a type of supervised-learning algorithm that determines
the optimal maximum margin hyperplane to distinguish between different classes within a
higher-dimensional representation of the data instances. Essentially, a hyperplane refers to
a plane that is one dimension less than the space it occupies. The SVM optimization process
identifies the hyperplane that maximizes the distance or ‘gap’ between the plane and the
instances. The conversion of data into this higher-dimensional space is facilitated by kernel
functions, with the radial basis function kernel and the polynomial kernel being commonly
utilized. Random Forest is a popular algorithm for machine learning employed in various
fields, including the classification of spectral data. This methodology provides a robust
mechanism for handling a vast number of predictors, many of which potentially could be
irrelevant, rendering it particularly appropriate for spectral data where each spectral band
can be considered a predictor. Due to these strengths, the Random Forest algorithm was
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chosen as the machine learning model for this study. Figure 6 depicts the schematic of these
four models.
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Figure 6. Overview of the four machine-learning models applied in this study; (A) artificial neural
network structure with softmax function classifier applied; (B) PC-KNN with principal component
analysis and nearest neighbor method applied; (C) SVM using sigmoid and RBF kernel; (D) Random
Forest for classification model.

In addition to the accuracy analysis of the machine-learning models developed, the
ROC curve analysis was conducted to compare the performance of the models. The ROC
curve is a graphical plot that illustrates the diagnostic ability of a binary-classifier system,
as its discrimination threshold is varied. The ROC curve is created by plotting the True
Positive Rate (TPR) against the False Positive Rate (FPR) at various threshold settings. The
TPR, also known as sensitivity, is a measurement of the proportion of actual positives that
are correctly identified. Conversely, the FPR, or 1-specificity, measures the proportion of
actual negatives that are incorrectly identified as positives. The AUC quantifies the overall
ability of the model to distinguish between positive and negative classes. It provides a
single scalar value that ranges from 0.5 to 1, where 0.5 signifies a model no better than
random guessing, and 1 represents a perfect classifier. The larger the AUC, the better the
model is at distinguishing between the positive and negative classes.

5. Conclusions

In conclusion, we, for the first time, demonstrated that MALDI-TOF MS combined
with machine learning can discriminate among W. cibaria, W. confusa, and non-target strains.
Furthermore, the model established using the SVM–RBF algorithm exhibited high reliability
(accuracy of 1.0) in distinguishing among W. cibaria, W. confusa, and non-target strains.
The fact that specific mass-to-charge (m/z) data obtained from protein fingerprints can act
as potential mass speaks for reliably identifying W. cibaria and W. confusa. This approach
can be implemented in food microbiology laboratories or clinical diagnostics industries
to enable rapid, accurate, and cost-effective identification of Weissella species, thereby
supplementing time consuming and costly conventional biochemical tests and sequencing
methods. In addition, this approach can accurately distinguish Weissella species that are
indistinguishable using the current MALDI-TOF MS database. It is envisioned that in the
future, a machine-learning model integrated with mass spectra data will be employed for
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the classification of microbial species. This innovative combination of techniques holds
great potential for advancing the field of microbial identification.
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