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Abstract: Copper (Cu)-based antimicrobial compounds (CBACs) have been widely used to control
phytopathogens for nearly fourteen decades. Since the first commercialized Bordeaux mixture was
introduced, CBACs have been gradually developed from highly to slightly soluble reagents and from
inorganic to synthetic organic, with nanomaterials being a recent development. Traditionally, slightly
soluble CBACs form a physical film on the surface of plant tissues, separating the micro-organisms
from the host, then release divalent or monovalent copper ions (Cu2+ or Cu+) to construct a secondary
layer of protection which inhibits the growth of pathogens. Recent progress has demonstrated that
the release of a low concentration of Cu2+ may elicit immune responses in plants. This supports a
triple-tiered protection role of CBACs: break contact, inhibit microorganisms, and stimulate host
immunity. This spatial defense system, which is integrated both inside and outside the plant cell,
provides long-lasting and broad-spectrum protection, even against emergent copper-resistant strains.
Here, we review recent findings and highlight the perspectives underlying mitigation strategies for
the sustainable utilization of CBACs.

Keywords: copper ions; antimicrobial compound; elicitor; defense response; heavy metal; plant
immunity

1. Introduction

Agriculture is the most important basic industry globally, as it plays an important
role in supporting the demand for food and raw materials in other industries. However,
with the global population projected to reach 9.7 billion by 2050, the demand for food by
humans has also been increasing [1,2]. However, annual increases in production yield for
the vast majority of crops have been steadily declining [3–5]. In order to meet the growing
needs of humanity and industry, certain measures must be urgently taken to increase
food production. Although breeding high-yield varieties is an effective strategy, the yield
losses caused by crop diseases have been estimated as 11–30% [6], and the losses of fruits,
vegetables, and grains caused by pests and diseases may reach as high as 78%, 54%, and
32% without fungicides [7]. Therefore, finding effective ways to prevent and control plant
disease is expected to be useful in improving food production.

Copper ions are used as broad-spectrum protectant fungicides in agricultural systems
to control a series of plant diseases. They appear in some forms of copper-based antimicro-
bial compounds (CBACs), which have been commercially used for nearly 14 decades [8].
With broad-spectrum antimicrobial activity, CBACs can control a wide range of plant dis-
eases, such as grape downy mildew [9], citrus black spot [10], fire blight of pome fruits [11],
walnut blight [12,13], potato late blight [14], stone fruit canker [15], coffee berry disease [16],
olive leaf spot [17], and powdery mildew of many other crops [18–20]. At present, not
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considering metal contaminants, CBACs are still at the forefront as the main pesticides sold
in Europe [8,21].

In this review, we focus on recent advances regarding the function of copper ions
in CBACs, emphasizing the historical development and activation of plant immunity,
which helps in understanding the physics and molecular mechanisms of copper-mediated
protection to promote the sustainable future use of CBACs.

2. Development of Copper-Based Antimicrobial Compounds

The control of plant diseases through the use of copper agents has a long history.
In fact, the earliest known record of bluestone (copper sulfate) being used to kill smut
spores on wheat grains was in France [22] when, in 1807, Prevost began to use bluestone to
disinfect grain seeds [22]. In 1838, the Boucherie of France found that adding 1 part copper
sulfate (CuSO4) to 100 parts water could effectively protect wood [23]. After that, CBACs
consisting of CuSO4 were widely used to control grapevine downy mildew (Table 1),
establishing the rudiments of CBACs.

In 1873, Dreisch added a lime water bath after the application of bluestone, thus
improving Prevost’s method of treating wheat grain seeds [22]. In 1883, the beneficial effect
of mixing lime with CuSO4 was proven [24], and in 1885, the French botanist Pierre-Marie-
Alexis Millardet published his famous discovery that CuSO4 and lime mixed could protect
grapes from downy mildew [24]. This mixture became known as the Bordeaux mixture and
was the first commercial fungicide made of CBACs [24]. From 1887 to 1890, extensive tests
using the Bordeaux mixture were conducted at several experimental agricultural stations,
and it was shown to be effective in controlling various diseases, including potato late blight
and many other leaf spots and blights [24,25]. As an excellent fungicide and bactericide,
the Bordeaux mixture has been widely used for the past thirteen decades all over the world
(see Table 1), representing the first generation of inorganic copper fungicides.

As excess free Cu2+ is toxic to plants, lime can help to reduce the concentration of free
Cu2+ and cover the surface of plant tissues more effectively and stably. The ratio between
CuSO4 and lime has been continuously improved in the development of CBACs. In the
beginning, Millardet’s 8:8:100 formula involved mixing 8 pounds of CuSO4, 8 pounds of
hydrated lime, and 100 gallons of water; however, the concentration of free copper ions
was still too high to be used on young and copper-sensitive plants. To use the Bordeaux
mixture on copper-sensitive plants, the relative amount of hydrated lime was increased
in the formula (to a ratio of 4:4:100) to fix the Cu2+. To reduce the amount of CuSO4 and
hydrated lime, a ratio of 2:6:100 was also used for spraying copper-sensitive seedlings [26].

Since the development of the Bordeaux mixture, second- and third-generation inor-
ganic copper fungicides have gradually taken over in the management of plant diseases,
such as copper oxychloride, copper oxide, and copper hydroxide [8,27]. These inorganic
copper fungicides follow the principles of progressing from high to low concentrations and
from soluble to insoluble from generation to generation. To cope with the disadvantages
of inorganic copper fungicides, including complex preparation processes, instability, and
difficulty combining them with other fungicides, two other types—synthetic organic copper
and natural organic copper—have been developed [28]. Compared with inorganic CBACs,
organic copper fungicides such as Cueva copper abietate and thiodiazole–copper have low
copper content and greater stability, resulting in less environmental pollution and phyto-
toxicity (Table 1). With technological advancement, advanced nanotechnology has been
introduced into the production of CBACs. Some papers have reported that, although the
concentration of copper is low in nanoparticles (NPs), they are still effective in controlling
diseases in tomatoes, pepper, rice, and many other plants and have reduced impacts on
the environment due to their easy uptake into plant cells [29–33]. Copper nanoparticles
are more efficient than conventional CBACs in preventing fungal-induced diseases [34].
For example, relevant studies have shown that Cu–chitosan NPs exhibit higher antifungal
activity, due to both the chitosan and copper ions. On one hand, the chitosan component of
the NPs can induce plant-defense-related enzymes, leading to an increase in plant antifun-
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gal activity. On the other hand, fungi have a tendency to produce different levels of acids
during their infection of plants. The resulting acidic pH induces the protonation of chitosan
amino groups, resulting in the release of free copper ions from the chitosan nanostructures.
These enter fungal cells and induce the synthesis of highly reactive hydroxyl radicals,
which destroy biological molecules [35]. Conventional nanoparticle synthesis routes using
chemical and physical methods, such as chemical reduction, hydrothermal, and sol–gel,
methods are considered harmful to the environment, due to the use of toxic chemical
products, and are also costly. In response, many aqueous extracts from plants such as
Portulaca oleracea and Piper nigrum have recently been used to biosynthesize promising,
safe, cheap, and eco-friendly Cu-NPs [21,36,37]. Moreover, recent studies have shown
that copper nanoparticles in combination with conventional fungicides can provide an
environmentally safe and sustainable resistance management strategy through reducing
the use of fungicides [38].

Table 1. Various types of CBACs with advantages and disadvantages.

Type Name Active Constituent Advantages Disadvantages

Inorganic copper
fungicides

Copper sulphate CuSO4 Anti-microbial [8] Phytotoxicity,
Short-lasting [8]

Copper oxychloride 3Cu(OH)2CuCl2
Anti-microbial,

Stable [27] Short-lasting [39]

Copper oxide CuO Low toxicity, Stable,
Anti-microbial [8] Low efficiency

Copper hydroxide Cu(OH)2
Low toxicity, Stable,
Anti-microbial [27] Phytotoxicity [40]

Organic copper
fungicides

Oxine–copper C18H12CuN2O2

Low toxicity,
Anti-microbial,

Long-lasting [41]
Drug resistance,
Environmental

pollution,
PhytotoxicityThiodiazole–copper C4H4N6S4Cu Low toxicity, Stable,

Anti-microbe [42]

Copper abietate C40H58CuO4
Low toxicity, Stable,

Anti-microbial

Copper-based
nanoparticles

CuS nanoparticles Cu and S Slow-release, Stable,
Low toxicity,

High-efficiency [43]

Drug resistance,
Phytotoxicity

[44]
CuO nanoparticles CuO

CuAlO2 nanoparticles Cu and Al

3. Construction of a Physical Barrier by Covering Plants with Slightly Soluble CBACs

A long historical practice is the application of CBACs as slightly soluble protective
reagents, which cover the surface of plant tissues before diseases emerge and form a film to
prevent direct contact between pathogens and plants. Moreover, they are absorbed into the
tissue surface, making them difficult to be washed away by rain and dew, thus maintaining
a long-term residual effect. In 1882, Millardet proposed that the actual treatment of mold
with a mixture of CuSO4 and lime should not aim to kill the parasites in the leaves but,
instead, should aim to prevent their development by covering the surface of leaves with
various substances [45]. In the Bordeaux mixture, the generated calcium sulfate is thought
to be necessary for tightly adhering the CBACs to the leaves. In other microsoluble CBACs,
specific chemical additives facilitate this attachment [8,46]. In addition to separating the
host plant from pathogens, the microsoluble film has two additional benefits: On one hand,
the forms of CBACs that mainly coat the plant surface are soluble but complexed, thus
only allowing a few free copper ions to be released and control plant diseases [47]. In
fact, the concentration of copper ions on a leaf depends on the equilibrium established
with complex and soluble copper forms [48]. This prevents the release of an excessive
amount of Cu2+, which would lead to plant phytotoxicity. On the other hand, the slow and
continuous release of Cu2+ on the tissue surface provides long-term prevention for plants;
however, this kind of protection is not stable. Long-term rainwater scouring can break
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through the film of the Bordeaux mixture, reducing the protective effect and efficacy and
allowing invasion by pathogens. Moreover, the weak acid substances secreted by plants
and micro-organisms can also generate an acidic environment, leading to the inappropriate
high-frequency release of Cu2+, which may have a negative phytotoxic effect [49]. High
concentrations of Cu2+ can create visible corky damage on the surface of young fruit,
reducing the aesthetic value of the fruits and compromising their marketability [8].

To reduce the environmental pollution and phytotoxicity caused by excess Cu2+, it
is particularly important to develop novel CBACs. In fact, the release rate of Cu2+ affects
the availability and persistence of conventional CBACs, such as the Bordeaux mixture.
The rapid release of Cu2+ can have a good effect in terms of disease management, but the
pesticide effect will be short and the security poor. Due to the large particle size and water
solubility, CBACs can only form discontinuous deposits on the surface of plants, allowing
for only partial blocking of direct contact between pathogenic microorganisms and the
plants. In contrast, thicker deposits can increase the risk of excessive release of copper
ions, causing plant toxicity [8]. Therefore, developing organic copper agents to reduce
the excessive release of active copper ions and/or reducing the particle size of CBACs to
promote the formation of a continuous film on plant surfaces are effective strategies to
prevent bacterial and fungal spore invasion. Microscopically, oxine–copper is composed
of copper ions and oxine rings: two oxine rings tightly grip the copper ions, which can
gradually and safely release free copper ions [41]. The small size of these particles leads to
a high surface-area-to-volume ratio, meaning more uniform coverage and better protection.
Additionally, smaller particles are more tightly adsorbed on the plant surface and are more
tolerant to rain wash than larger particles, giving longer effective protection. Studies using
SEM have shown that foliar application of MoS2-CuNPs allowed for the formation of a
protective film and increased the density of trichomes on the surface of rice leaves, thus
preventing infection by Xanthomonas oryzae pv. oryzae cells [50]. Furthermore, NiO:Cu thin
films observed by SEM presented antifungal activity against Aspergillus niger (which affects
various fruits) and Macrophomina phaseolina (which is a soil-borne fungus responsible for
root and lower stem infections in several plants) [51]. In addition to the smaller particle
size, the diversity of forms of CBACs and their additives is another method to ensure even
spraying, promoting adherence and stronger fixation on plant tissues. At present, various
forms of CBACs, including aqueous solutions, wettable powders, and suspending agents,
are broadly utilized. These have good efficacy but often a poor retention period, being
greatly affected by rain wash. Some researchers have developed mineral oil emulsions
for CBACs. The addition of mineral oil to fungicide spray mixtures is a frequently used
strategy for the control of citrus black spot and potato pests [52,53], as mineral oil can
significantly improve the diffusion, adhesion, and retention of copper ions; increase the
deposition amount of effective components; and improve the ability to resist rain wash
after mixing with CBACs [54]. Overall, it should be emphasized that mineral oil can highly
improve the prevention effect of CBACs.

In addition, adjuvants are the key factors for improving the stability and efficacy of
CBACs. During the processing and application of pesticides, surfactants can help them
to distribute over, adhere to, and penetrate the surfaces of plants, directly or indirectly
improving the effective pesticide usage rate. Agricultural organosilicon adjuvants, such
as Silwet L-77 or siloxane, are often used as adjuvants for CBACs for the control of citrus
canker due to their good wettability, ductility, and permeability. When mixed with CBACs,
adjuvants can improve the ductility and adsorption properties of copper agents on the
leaves, increasing the tolerance to rain acidification and plant disease resistance [46]. Alter-
natively, bamboo vinegar—which contains organic acids, ketones, and alcohols—is a good
solubilizer, co-solvent, and penetrant. Researchers have boiled bamboo vinegar and CuSO4
to form a preparation which can enhance the control effect of CuSO4 on tobacco brown
spot disease and black shank disease, as well as improving its inhibition of the growth
of green algae, while the copper ion concentration remains unchanged [55]. Additionally,
ethoxy-modified polysiloxane, polyoxyethylene monolau-rate β pine terpene polymer,



Int. J. Mol. Sci. 2023, 24, 10893 5 of 16

ammonium salt, and other adjuvants play supporting roles to CBACs, helping them to
attach to plant tissues more evenly and stably [46]. However, recent studies have also
revealed that Cu2+ released from CuSO4 and nanomaterials is rapidly absorbed into the
leaf cuticle [56]. Interestingly, copper-based nanoparticles can pass quickly through the
cuticle, while CuSO4 can stay longer in the leaf cuticle, which appears to strengthen the
alternative physical barrier [56].

4. The Second Tier of Protection and Copper-Resistant Strains

Generally, copper is a necessary metal ion for bacterial growth and development,
and bacteria uptake Cu2+ into the cytoplasm through copper uptake transporters such as
CcoA and YcnJ-like proteins [57–60]. Then, the copper reductase cbb3-type cytochrome
c oxidase (cbb3-Cox) assembly factor CcoG is present on the cell membrane, where the
incoming Cu2+ is assembled into the cysteine conservative motif of CcoG and converted
into Cu+ through transferring electrons to the [4Fe-4S] cluster (Figure 1a). Furthermore, Cu+

binds to the active center of enzymes to maintain its vital role in bacteria [61,62]. However,
excess free copper ions also lead to toxic or antimicrobial activity in bacteria, forming
the second-tier protection of CBACs. The antimicrobial activity of CBACs can be further
divided into two parts: first, deposited CBACs can react with water and oxygen to produce
OH−, causing bacterial cell membranes to suffer from oxidative damage, leading to protein
denaturation and increased membrane permeability. This damage to cell membranes
further results in the leaking out of some bacterial essential nutrients and proteins. In
addition, excessive Cu2+ or Cu+ entering the cytoplasm will cause bacterial oxidative
stress and even cell death. Under an anoxic environment, Cu+ replaces iron in the iron–
sulfur clusters of dehydratases, resulting in the degradation of those crucial enzymes.
Furthermore, the released iron may subsequently initiate the Fenton/Haber–Weiss reaction,
while the transformation between Cu+ and Cu2+ leads to a Fenton-like reaction, all of which
generate OH− and ROS, consequently causing lipid peroxidation, protein oxidation, and
nucleic acid damage [63–66].

Bacteria also depend on two systems to overcome excess copper: copper homeostasis
and copper resistance protein (cop). As shown in Figure 1, in order to maintain the cytoplas-
mic copper concentration, bacteria have developed three strategies: First (I), the chaperone
protein CopZ loads Cu+ and transfers it to P1B-type Cu-exporting ATPase CcoI and P-type
ATPase family CopA, which respond to the efflux of excessive Cu+ [58,67–71]. Second (II),
metallothionein (MT) is a super-family of cysteine-rich small proteins which bind Cu+ (as
well as other heavy metal ions) through metal–sulfur bonds in order to neutralize their
toxicity [72–75]. Third (III), excess Cu+ is bound with the elevated cytosolic copper storage
protein (Ccsp), which consists of a homotetramer assembly capable of binding Cu+ with
the help of a CopZ-like copper chaperone [76].

Over-use of CBACs has resulted in long-term exposure of plant pathogenic bacteria
to high concentrations of copper ions, resulting in the selection of copper-resistant strains,
such as Xanthomonas, Pseudomonas, and Erwinia spp. [77–83], which have direct and indirect
impacts on agricultural production [84,85]. Through the isolation and identification of
copper-resistant strains from copper-rich soil, more than 95% of the copper-resistant isolates
were identified as Gram-negative bacteria [86]. Unlike Gram-positive bacteria, Gram-
negative bacteria have an outer membrane, a periplasmic space, and an inner membrane
which endow them with a special structural basis for copper resistance. To date, most
copper-resistant strains have developed from horizontal transfer of the cop system or pco
system in response to excessive copper, with representative examples being Pseudomonas
syringae pv. tomato (Pst) and Escherichia coli, respectively [87].
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The cop system is a conserved copper-resistant system in P. syringae pv. tomato, which is
encoded by an operon containing up to six genes (copABCDRS) on the plasmid pPT23D [87].
CopA is a periplasmic protein that contains methionine, histidine, and aspartic-acid-rich
motifs. Each CopA protein can combine up to eleven copper ions [88,89]. This high
binding capacity restricts excess copper from entering the bacterial cytoplasm. As an outer
membrane protein, CopB also contains repetitive amino acid sequences (Asp-His-X2-Met-
X2-Met). Although there is no direct evidence that CopB can combine with copper [90–92],
it may be assumed that the role of CopB is to fix extracellular copper ions. CopC is a
periplasmic chaperone protein that contains two copper ion binding sites for binding either
Cu+ or Cu2+. It has been proposed that CopC transfers Cu+ to different interactors, such
as CopA, CopB, CopD, and CopS, in order to balance the Cu+ concentration in cells [92].
On one hand, CopD, the interaction protein of CopC, is a plasma membrane protein
that transports essential CopC-delivered copper through the inner membrane into the
cytoplasm [89,90]. On the other hand, CopC interacts with CopA and CopB to deliver the
carried Cu+ for fixing, which can reduce the associated toxicity [90]. The CopS located on
the plasma membrane serves as a copper sensor, which may interact with CopA or CopC
to transmit copper signals to CopR, thus continuously regulating the expression of the cop
operon activated by CopR [91]. To summarize the copper resistance mechanism of Pst, the
cop operon located on plasmid pPT23D can chelate excessive copper ions through a group
of proteins, particularly CopA and CopB. The copper resistance mechanism in E. coli is the
pco system containing pcoABCD, which is located on the plasmid pRJ1004 and corresponds
to the cop operon in Pst [93–96]. To date, all identified copper-resistant Pseudomonas strains
have homologs of the cop operon in their chromosomes [97]; for example, Cupriavidus
metallidurans CH34 contains the complete copABCDRS [98,99], while X. citri pv. citri contains
only copABCD [100]. Some Xanthomonas copper-resistant strains only contain copLAB,
conferring resistance to copper ions [101–103]. The mechanisms of copper-resistant fungi
have been reviewed in [104], which were generally indicated to enhance Cu+ exporting
and homeostasis. Yarrowia lipolytica is an inherently copper-resistant yeast in which Cu2+

significantly promotes the yeast-to-hypha transition, allowing for the better survival of
hyphae than yeast-form cells in the presence of CuSO4 [105].

Some pathogens could alternatively develop new weapons to overcome their copper
sensitivity. Xanthomonas oryzae PXO99A is more sensitive to copper than other wild strains
caused by the copA mutation [106]. It seems not to back mutate for a copper-resistant
strategy but to develop a novel TAL effector of PthXo1 to upregulate the expression of OsS-
WEET11/Xa13 in rice [107], which interacts with plant copper-uptake complex components
of OsCOPT1 and OsCOPT5 to reduce the copper concentration in vascular tissue [108].
Moreover, the upregulated OsSWEET11 protein has additional susceptible functions as the
sucrose efflux from the phloem parenchyma cells for bacterial proliferation [109]. Consis-
tent with the conclusion, PXO99A introduced into the copAB could restore copper resistance
but fail to overcome the xa13-mediated resistance [106].
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Figure 1. Two strategies used to manipulate the excessive copper in Gram-negative bacteria. (a) Three
strategies for copper homeostasis: (I) the chaperone protein CopZ loads Cu+ and transfers it to P1B-
type Cu-exporting ATPase CcoI and P-type ATPase family CopA, which respond to the efflux of
excessive Cu+; (II) each metallothionein (MT) protein binds seven Cu+ ions to neutralize the toxicity;
and (III) copper storage protein binds excessive Cu+. (b) Cop systems to resist copper. P. syringae pv.
tomato strains encode an operon of copABCDRS containing up to six genes on the plasmid pPT23D.
The periplasmic protein CopA combines eleven copper ions to restrict the excess copper in the
cytoplasm. The outer membrane protein copB may play a role in fixing extracellular copper ions,
as does CopA. The periplasmic chaperone protein CopC contains two copper ion binding sites,
for binding either Cu+ or Cu2+. CopC delivers Cu+ to different interactors—such as CopA, CopB,
CopD, and CopS—either for uptake or to fix Cu+ to balance the concentration in cells. The plasma
membrane protein CopS acts as a copper sensor. It may interact with CopA or CopC to transmit
copper signals to CopR, thus continuously regulating the expression of cop operon activated by
copR (modified by references [87] and [91]). The picture was drawn using the MedPeer software
(https://user.medpeer.cn/ (2 February 2023)).
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5. Enhanced Plant Resistance to Pathogens and Activation of Defense-like Responses

At present, the application of copper preparations is the only way to control many
plant diseases. However, an over-reliance on and over-use of CBACs have resulted in the
evolution of many Cu-resistant strains, reducing their effectiveness in controlling plant
diseases [110,111]. Developing new types of CBACs or mixing them with other fungicides
provides an effective way to control plant diseases caused by copper-resistant strains.
Copper used with EBDCs (Ethylene bis-dithiocarbamates) can provide control of bacterial
speck and spot diseases, even when copper-tolerant populations are present [112–114].
Recent studies have demonstrated that advanced copper composites and nano-magnesium
oxide materials are effective against copper-tolerant Xanthomonas spp., increasing the
control of bacterial spot in tomato under field conditions [115–117]. Furthermore, although
the emergence of copper-resistant strains has rapidly increased, CBACs are still effective
in controlling some of the diseases caused by those pathogens [118], implying that the
protection imparted by CBACs does not only rely on their antimicrobial activity and the
formation of a physical film. Previous reports have demonstrated that copper stress could
also activate a series of defense-like responses in plants. In alfalfa (Medicago sativa), the
mitogen-activated protein kinases (MAPKs) SIMK and SAMK are involved in the response
to pathogen-associated stimulation. Excessive copper specifically activates the MAPK
SIMKK, which can activate SIMK and SAMK in Medicago sativa [119]. Additionally, excess
copper activated MAPK2, MAPK3, and MAPK4 in rice roots [120–122]. ROS burst is
one of the earliest events in plants under heavy metal stress, as the ROS act as signaling
molecules that regulate the plant’s response to abiotic and biotic stresses [123–125]. Excess
copper promotes ROS synthesis through Fenton and Haber–Weiss reactions [126]. Copper-
elevated ROS accumulation has already been identified in Arabidopsis thaliana [127], Pisum
sativum L. [128], Medicago sativa [129], and Oryza sativa L. [130]. Previous reports have
demonstrated that copper stress enhanced plant resistance to pathogens through copper-
binding proteins. In cotton, the blue copper-binding protein GhUMC1 has been shown to
be involved in resistance to Verticillium dahlia through regulating the jasmonic acid signaling
pathway and lignin metabolism [131]. In barley, Mla and Rom1 negatively regulate miR398,
which elevates the transcription level of SOD1 and enhances resistance against powdery
mildew [132], indicating the important role of the miR398–SOD module in regulating
plant resistance against pathogens. Interestingly, the foliar application of two copper
nanomaterials enhanced resistance to Fusarium oxysporum f. sp. lycopersici, a pathogen
that causes the root fungal disease Fusarium wilt, as well as enhancing phenylalanine
ammonia-lyase (PAL) and peroxidase (POD) activities in tomato roots [30,56].

6. Eliciting Plant Immunity to Strengthen the Third-Tier Barrier

The above observations—that is, that CBACs can manage copper-resistant strains
and excessive copper can trigger defense-like responses in addition to being toxic to
plants [118–130]—indicate that copper may directly trigger plant immunity. Indeed,
Liu et al. found that a concentration of 10 nM CuSO4 was sufficient to enhance the
resistance of Arabidopsis plants against Pst DC3000 [133]. In addition, spraying potato
with CuSO4 (100 nM) enhanced resistance to late blight [134]; however, in in vitro co-
culture experiments, these concentrations of CuSO4 had no inhibitory effect on microbial
growth [133,134]. Moreover, they found that copper ions triggered a series of immune
responses, including ethylene (ET) and salicylic acid (SA) biosynthesis pathways, ROS
burst, Ca2+ signaling, MAPK activation, callose deposition, and up-regulation of the expres-
sion of pathogenesis-related (PR) genes [133], which are similar to the responses induced
by flg22, a conserved short peptide of flagellin from Pst DC3000 [135,136]. In contrast
with flg22-triggered immunity, Cu2+ treatment rapidly activated the synthesis of ET by
specifically inducing the expression of AtACS8 dependent on the CuRE cis-element in the
promoter region [137]. Downstream of the ET signaling pathway, Cu2+-mediated callose
deposition required both AtMYB51 and AtMYB122, while it mainly required AtMYB51
for flg22 in Arabidopsis [138]. A nuclear copper chaperone CCP containing the classical
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copper-binding site may interact with and recruit the transcription factor TGA2 to induce
the expression of PR1 and enhance the resistance to Pst DC3000 [139]. In potato (Solanum
tuberosum), Cu2+ activated ET biosynthesis to induce resistance to potato late blight, as
well as inhibiting the biosynthesis of abscisic acid (ABA) by activating the transcription
factor StEIN3 (ethylene insensitive 3), thus directly repressing the expression of StNCED1
(9-cis-epoxycarotenoid dioxygenase) and the ABA biosynthesis gene StABA1 by targeting
their promoters [134]. Yao et al. have recently found that copper ion transporters and
copper ion binding proteins, such as HMA5, were significantly induced and played a broad-
spectrum role in virus–rice interactions. Most of the copper ions entered rice cells from the
intercellular space, increasing the copper ion content in the leaves. Copper-orchestrated
virus resistance was promoted through inhibiting the accumulation of the SPL9 protein,
thus reducing the expression of SPL9 target gene miR528 and enhancing the transcription
level of ascorbate oxidase (AO) and ROS levels [140]. On the other hand, copper ions could
directly activate the AO enzyme activity to enhance viral resistance in rice [140]. Without
a doubt, a low concentration of copper ions can trigger plant immune responses, thus
participating in the construction of a third-tier barrier to protect plants against pathogens.
Similarly, the induction of plant immunity was observed when using Cu2O-NPs to control
cucumber root rot disease [141]. However, over thirteen decades, a considerable number
of studies have shown that CBACs cannot effectively control the plant diseases caused by
copper-resistant strains compared with copper-sensitive strains [142,143]. Inappropriate
timing of applications, with respect to wounding and infection events, is an alternative
explanation; that the activated PTI-like immunity may not be able to control all pathogens is
also an alternative explanation. However, such results suggest that more research is needed
to fully explain the specific mechanisms by which copper ions regulate plant immune
responses, as well as the need for further research on whether copper can trigger immune
responses in different kinds of plants.

7. Summary and Future Prospects

As a metal ion, copper is the main component of commercial CBACs. At present, the
mechanisms of CBACs can be summarized into two- or three-tiered protection (Figure 2),
detailed as follows. First, the slightly soluble CBACs form a dense protective film on the
plant surface, which acts as a physical barrier to prevent contact between the invasive
pathogenic microorganisms and the host; second, the released ionic copper destroys the
cell membrane of the pathogenic bacteria, leading to the leakage of nutrients, denaturation
of various proteins, and inactivation of enzymes, thereby killing the microorganisms;
and third, copper ions can also stimulate plant immune responses to further strengthen
the immunity of the host plant. Such a three-tiered protection provides a perfect design
for broad spatial disease resistance, supporting the application of CBACs for more than
thirteen decades.

However, with increases in rain acidification and copper-resistant strains, it is neces-
sary to constantly innovate relevant methods and technologies in order to optimize the
application of CBACs. Based on our knowledge, prospective studies can be carried out
at the following three levels. First, combinations of systemic fungicides and/or plant
stimulants need to be broadly investigated. For example, thiodiazole mixed with copper
to produce commercial thiodiazole–copper can recover the pathogen inhibition activity
while reducing the usage of ionic copper [42]. Various plant stimulants have been widely
used in agricultural production, some of which have been shown to possess novel bioactiv-
ities [49,144]; however, they normally have lower efficacy in reducing disease incidence
and severity compared to CBACs [144]. Therefore, the combination of such stimulants with
CBACs is worth investigating in future research.
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Second, the long-term and excessive use of CBACs has caused the deposition of copper
in the soil and environmental pollution [21,144]. Therefore, in order to ensure the safe use
of CBACs for another 13 decades (or even longer), it is imperative to further reduce their
usage, together with their tolerance to scouring by rain. As an advanced fungicide, Cu-NPs
have smaller particle size and higher surface-area-to-volume ratio, and they can pass more
quickly through the cuticle than traditional CBACs [56]. Therefore, Cu-NPs have attracted
extensive attention in agricultural applications. Scientific researchers have revealed the
positive effective roles of Cu-NPs in controlling diseases, reducing toxicity, promoting
growth, and increasing ion content in rice seeds [29–32,145]. In addition, with technological
improvement and development, the cost of Cu-NPs and plant-based CuO-NPs can be
expected to gradually decrease [21,36,145], laying the foundation for the long-term use
of CBACs. Along with the innovation of advanced production technologies, traditional
CBACs are improving in a more stable, low-toxicity, and environmentally friendly manner.
Scientists may develop novel adjuvants to increase the ductility, adhesion, and permeability
of CBACs, allowing for a reduction in the content of ionic copper in the CBACs. In
general, reducing the cost of Cu-NPs and novel additives may help CBACs to achieve
better development and applications in the future.

Finally, although copper-triggered plant immunity has been reported, the signal
transduction pathway(s) associated with such induced resistance remains unclear. Further
detailed studies on the specific mechanisms underlying copper-triggered plant immunity
should be conducted in order to better utilize CBACs, including the development of
pesticide application techniques and the cultivation of ideal crop varieties that are more
rapidly and strongly responsive to ionic copper than current versions. In general, once the
above three problems are effectively solved, CBACs can be expected to serve humanity’s
agricultural purposes for another thirteen decades.
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