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Abstract: Global barley production is threatened by plant pathogens, especially the rusts. In this
study we used a targeted genotype-by-sequencing (GBS) assisted GWAS approach to identify rust
resistance alleles in a collection of 287 genetically distinct diverse barley landraces and historical
cultivars available in the Australian Grains Genebank (AGG) and originally sourced from Eastern
Europe. The accessions were challenged with seven US-derived cereal rust pathogen races including
Puccinia hordei (Ph-leaf rust) race 17VA12C, P. coronata var. hordei (Pch-crown rust) race 91NE9305 and
five pathogenically diverse races of P. striiformis f. sp. hordei (Psh-stripe rust) (PSH-33, PSH-48, PSH-54,
PSH-72 and PSH-100) and phenotyped quantitatively at the seedling stage. Novel resistance factors
were identified on chromosomes 1H, 2H, 4H and 5H in response to Pch, whereas a race-specific QTL
on 7HS was identified that was effective only to Psh isolates PSH-72 and PSH-100. A major effect
QTL on chromosome 5HL conferred resistance to all Psh races including PSH-72, which is virulent on
all 12 stripe rust differential tester lines. The same major effect QTL was also identified in response
to leaf rust (17VA12C) suggesting this locus contains several pathogen specific rust resistance genes
or the same gene is responsible for both leaf rust and stripe rust resistance. Twelve accessions were
highly resistant to both leaf and stripe rust diseases and also carried the 5HL QTL. We subsequently
surveyed the physical region at the 5HL locus for across the barley pan genome variation in the
presence of known resistance gene candidates and identified a rich source of high confidence protein
kinase and antifungal genes in the QTL region.

Keywords: genotyping-by-sequencing (GBS); barley rust diseases; genome-wide association
study (GWAS)

1. Introduction

Wholegrain cereals are a rich source of carbohydrates, proteins, vitamins, minerals and
phytochemicals, providing both general nourishment and immunological benefits against
diseases such as high cholesterol and cancer [1]. Barley is the world’s fourth most important
cereal, used primarily in malt production for alcoholic beverages and as grain feed for
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livestock and human food. As the effects of climate change become more prevalent, the
importance of barley is likely to increase due to its ability to yield in marginal environments.
Of concern, though, are foliar diseases that reduce yield, grain quality and profitability [2].
Barley is affected by four distinct rust diseases: stripe rust (Puccinia striiformis f. sp. hordei;
Psh), leaf rust (P. hordei; Ph), stem rust (P. graminis f. sp. tritici; Pgt) and crown rust
(P. coronata var. hordei; Pch). Whilst resistance to leaf rust [3] and stem rust [4,5] is widely
available and well characterised for barley, fewer stripe rust resistance loci have been
formally characterized [6–8], and resistance to crown rust in barley is poorly understood,
with only one mapped resistance locus HvPc1 on chromosome 3H [9].

Cereal breeding has historically been influenced by changing political constraints
and the gene flow of germplasm, largely mirroring human movement over time. Mining
germplasm collections or gene pools for traits of interest and introducing them into crop
breeding programs is far from novel but is an effective approach to diversify disease
resistance alleles in breeding systems. Fundamental to this activity are the tens of thousands
of crop accessions maintained in global gene banks along with passport data (a basic
description of the accession such as accession name, genus, country of origin, acquisition
date, etc.). Due to the historical movement of cereal germplasm within and between
Western countries (Europe, USA, UK and Australia) it is hypothesized that the barley gene
pool from Eastern Europe has been largely under-utilised for disease resistance breeding.

Resistance breeding is often constrained by the narrow genetic base in modern adapted
crop varieties and the lack of allelic diversity present in traditional biparental crosses.
The genome-wide association study (GWAS) approach overcomes several limitations of
traditional gene mapping by (i) providing higher genetic mapping resolution by exploit-
ing historical recombination in populations with appropriate linkage disequilibrium and
(ii) enabling the mining of diverse germplasm collections for rare allelic variants associated
with phenotypic variation. Previously developed advancements in genomic technologies
such as genotyping-by-sequencing (GBS) now permit increased marker numbers and af-
fords enhanced precision and power in quantitative genetic approaches such as GWAS
and genomic selection [10]. In this study we assembled a diverse collection of 318 barley
accessions from the Australian Grains Genebank (AGG) that were originally sourced from
countries spanning Eastern Europe (“Eastern European Barleys”; EEBs). GBS analysis
enabled the identification of >30 K single nucleotide polymorphism (SNP) markers and
further resolved the 318 EEBs to 287 non-redundant genetically distinct accessions. Using
GWAS we identified several genomic regions contributing novel resistance to barley infect-
ing cereal rust pathogen isolates that are potentially suitable for introgression into modern
high-yielding barley cultivars.

2. Results
2.1. Population Structure

The EEB accessions were sourced based on origin from 16 different counties in Eastern
Europe (Figure 1; Supplementary Table S1). Most accessions (98) were collected from Russia
or the former Soviet Union, followed by Czech Republic (32), Greece (25) and Hungary (25).
A total of 31,805 SNP markers that were polymorphic across the entire EEB panel was used
to identify duplicated accessions, which resulted in the identification of 287 genetically
distinct non-redundant EEBs. An LD decay (LD ≤ 0.2) based on and average distance of
1 SNP every ~3,655,271 bp was the basis of selecting 1073 SNP markers for population struc-
ture analysis (Figure 2A). Population structure analysis performed on the non-redundant
EEBs using 1073 SNPs selected from the LD decay analysis estimated the membership
fractions to range 2 to 10 (Figure 2B). Structure analysis showed the 287 accessions could
be clustered into three distinct populations based on the most significant Evanno’s ∆k of
3 [population 1 (39.02%), population 2 (46.35%) and population 3 (14.63%)]. Member-
ship fractions were used to classify the populations as either pure or admixed genotypes,
which revealed that >65% of the total members for each population were pure [population
1 (65.18%), population 2 (75.19%) and population 3 (69.05%)] (Figure 2C).
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Figure 2. Linkage disequilibrium (LD) and population structure analyses of the 287 Eastern European
Barley (EEBs) accessions (A) Genome-wide average LD decay over physical distance. Pair-wise
single-nucleotide polyLD (r2) values based on the physical positions from the Morex reference
genome assembly (v1) [11] were plotted as a function of mapping distance (bp) between markers.
The red colour curve represents the LD decay across the whole genome. The thick horizontal blue
line represents the population-specific critical r2 value (0.2) above which LD may be due to linkage,
(B) Population structure of a panel of 287 genetically distinct EEB accessions based on 1073 molecular
markers (K = 3), (C) Admixture model of structure of ∆K for EEB populations, (D) Two-dimensional
PCA biplot, (E) A neighbour-joining (NJ) phylogenetic tree of the 287 barley accessions, here, red,
green and blue colours indicate the barley genotypes derived from Population I, 2 and 3, respectively.
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Principal Component Analysis (PCA) using genotypic data for the 287 non-redundant
EEBs showed that PC1 and PC2 explained 8.1% and 5% of the total variation, respectively,
as depicted in the 2D PCA plot in Figure 2D. The clustering for the kinship matrix was
broadly correlated with the clustering in the NJ phylogenetic tree despite a degree of
admixture suggesting that the 287 EEB accessions clustered into three sub-populations,
corroborating the Structure analysis (Figure 2E). Genetic distance among the populations
was calculated, and the largest distance was between populations 2 and 3 (0.2) followed
by populations 1 and 2 (0.19). The fixation index FST was used to measure the population
differentiation among the 287 EEBs due to genetic structure. As expected, greater differ-
ences were observed between the three populations relative to the diversity of individuals
within populations [FST population values: population 1 (0.42), population 2 (0.58) and
population 3 (0.44)] with an average of alpha 0.11 representing the significant differences
among the population structure. Average distances (expected heterozygosity) between
individuals within the same population were calculated and the average genetic distance
(net nucleotide distance) between populations 1 and 2 was 0.19, populations 2 and 3 was
0.2 and populations 1 and 3 was 0.14.

2.2. Phenotypic Rust Response under Controlled Greenhouse Conditions

The 287 EEB lines were assessed phenotypically at the seedling stage using a 1–9 scale
in independent experiments with five pathogenically diverse Psh races (PSH-33, PSH-48,
PSH-54, PSH-72 and PSH-100) at USDA-ARS and Washington State University (WSU) in
Pullman, Washington and one race each of Ph (17VA12C) and Pch (91NE9305) at the Cereal
Disease Laboratory of USDA-ARS at St. Paul, Minnesota. The phenotypic distribution
frequencies for all nine exotic rust traits are shown in (Supplementary Figure S1). Most
traits skewed towards susceptibility and in general revealed the presence of a limited
number of rust resistant accessions. The virulence/avirulence spectra of each of the
Psh races was assessed using 12 well-characterized barley stripe rust differential stock
genotypes (Table 1). The phenotypic response results revealed that increased susceptibility
in the EEBs to the Psh races tested was correlated with increased virulence on the 12 barley
stripe rust differentials. For example, 88% of the EEBs were susceptible to the most virulent
race PSH-72 (mean IT 7.9), whereas 55% were susceptible to avirulent race PSH-48 (mean
IT 6.4), likely suggesting that resistance genes present in the differential lines were also
present in specific EEB accessions. Pearson’s correlation coefficient data determined that
the phenotypic response datasets for avirulent races PSH-33 and PSH-48 differing only for
virulence on Abed Binder 12 were highly correlated (0.76) (Figure 3). These avirulent Psh
races were less correlated (0.5–0.6) with the phenotypic response data of the other three
more virulent races (PSH-54, PSH-100 and PSH-72) which were highly correlated with each
other (0.73–0.76) (Figure 3). Four lines were highly resistant (HR 0–3), five moderately
resistant (MR 4–6) and 16 lines were either MR or HR to all races, suggesting the presence
of both broadly effective and race-specific resistance components. EEB accessions from
Greece, Russia, the Czech Republic and the Former Soviet Union were the most resistant to
PSH-72, suggesting that they contained largely uncharacterized resistance given that this
pathogen race was virulent on all the genes in the differential set.

Table 1. Virulence (V)/Avirulence (A) spectra of five races of Puccinia striiformis f. sp. hordei on
12 barley stripe rust differential lines.

Races Topper Heils
Franken Emir Astrix Hiproly Varunda Adeb

Binder Trumpf Mazurka Bigo I5 Bancroft

PSH-33 V A A A A A V A A A A A
PSH-48 V A A A A A A A A A A A
PSH-54 V A A A A A V V A A A V
PSH-72 V V V V V V V V V V V V
PSH-100 V A A A V V V V A V A V
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Figure 3. Pearson’s correlation coefficients comparing the phenotypic pair-wise correlations between
seven rust traits assessed in the Eastern European Barley accessions. Significance for the Pearson’s
Correlation was assessed at p < 0.05 (*) and p < 0.001 (***).

Phenotypic evaluations of the 287 EEB accessions to other rusts were performed at
the Cereal Disease Laboratory, St. Paul, MN, USA. Replicated infection type (IT scale 0–4)
response data were recorded at the seedling stage using the barley crown rust (P. coronata
var hordei- race 91NE9305) and barley leaf rust (P. hordei race 17VA12C) pathogen isolates.
All EEB lines assessed were either susceptible (88%) or moderately susceptible (10%) to
barley crown rust race 91NE9305. Only six lines (2%) were highly resistant, accounting for
the poor correlation (0.04–0.15) between 91NE9305 and other rust traits with the exception
of moderate correlation (0.22) with PSH-54 (Figure 3). In contrast, unexpectedly, resistance
to P. hordei was significantly correlated (p < 0.001) with all five PSH races relative to crown
rust. Sixteen EEB accessions, mainly from the Czech Republic/Slovakia (7), Russia/Soviet
Union (6) and Greece (3) were resistant to leaf and either most or all stripe rust isolates
used in this study, suggesting a possible correlation in the underlying genetic control of
these traits.
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2.3. Marker–Trait Associations

A total of 14 significant marker–trait associations (MTAs) were detected [−log10
(p-value) > 5.8], which represented nine different QTL regions for five rust resistance traits
across all seven chromosomes (with the exception of 6H) as displayed using Manhattan
plots and Quantile–Quantile (Q-Q) plots (Table 2; Figure 4). For barley stripe rust, significant
MTAs were identified for three (PSH-54, PSH-72 and PSH-100) out of five PSH races tested.
The same highly significant QTL on chromosome 5HL was identified and effective to
all three Psh isolates, whereas a second QTL on chromosome 7HS was significant in
response PSH-72 and PSH-100 but under the significance threshold for PSH-54. Race-
specific singleton QTLs were identified on chromosomes 2H and 3H in response to race
PSH-100 but not PSH-54.

Table 2. Summary of the rust resistance QTL for five traits at the seedling stage identified in the
Eastern European Barley accessions.

Trait Marker Chr Pos (bp) * Allele QTL Interval Flanking Markers −log10(p-Value) Effect on Trait

17VA12C
HvGBSv2-7726 2H 77796488 A 585594328 HvGBSv2-7726 7.63 −4.41
HvGBSv2-9587 4H 558532757 C 558532757 HvGBSv2-9587 7.8 −2.64
HvGBSv2-10463 5H 530696479 C 530058811–571321539 HvGBSv2-4369–HvGBSv2-4479 25.95 4.62

PSH-54 HvGBSv2-4385 5H 535795731 C 530058811–566858977 HvGBSv2-4369–HvGBSv2-10559 9.79 4.51

PSH-72
HvGBSv2-8315 3H 291597999 C 291597999 HvGBSv2-8315 6.26 1.93
HvGBSv2-10469 5H 532621998 A 530696479–532621998 HvGBSv2-10463–HvGBSv2-10469 7.16 −2.24
HvGBSv2-5420 7H 74751061 A 74751061 HvGBSv2-5420 9.25 −4.36

PSH-100
HvGBSv2-1099 2H 169669002 A 169669002 HvGBSv2-1099 6.38 7.33

HvGBSv2-10469 5H 532621998 A 532621998 HvGBSv2-10469 6.88 −2.45
HvGBSv2-5420 7H 74751061 A 74751061 HvGBSv2-5420 8.05 −4.36

91NE9305

HvGBSv2-520 1H 400297507 C 400297507 HvGBSv2-520 6.96 −2.02
HvGBSv2-926 2H 47089419 C 47089419-55575144 HvGBSv2-926–HvGBSv2-928 5.9 2.35
HvGBSv2-3492 4H 556987599 A 556987599 HvGBSv2-3492 5.84 −2.86

HvGBSv2-10146 5H 348514954 C 387529130-393006859 HvGBSv2-10143–HvGBSv2-4058 6.28 2.72

* Position is based on the Morex v3 genome assembly described by Mascher et al. [12].
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Figure 4. Manhattan plots of the SNPs (n = 28,780). The horizontal lines indicate the threshold value
at −log10(p-value) = 5.76. Plots displayed across the seven barley chromosomes indicate the SNPs
associated with resistance to five out of the seven rust traits assessed on the Eastern European Barley
accessions. Quantile–quantile plots are displayed on the right of each Manhattan plot.

Three QTL were identified in response to leaf rust race 17VA12C. The peak marker for
the most significant QTL identified in response to 17VA12C [−log10(p-value) = 25.95] and
was located on chromosome 5HL within a 5 Mb distance to the peak markers identified
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for broadly effective 5HL QTL for resistance to Psh races PSH-54, PSH-72 and PSH-100
(Table 2). Of the remaining QTL, two were identified on chromosome 3H and the other
on chromosomes 4HS, 5HS and 6HL. Two other minor effect QTL were also identified on
the long arms of chromosome 2H and 4H respectively. Two clearly significant resistance
QTL were identified in response to Pch race 91NE9305 on the long arms of chromosomes
1H and 5H, in addition to two minor effect QTLs identified on 2HS and 4HL. Interestingly,
the same peak marker was identified for the 4HL QTL in response to both Ph and Pch
races, suggesting that the same gene may contribute resistance to both rust diseases. To
further validate the main QTLs identified in this study we created box plots and performed
a two-tailed t-test to observe the effect of alternative SNP marker alleles on rust phenotypic
response. For the major 5HL QTL we identified a highly significant effect (p < 0.001)
between alternative marker alleles on the mean phenotypic response to Ph race 17VA12C
and all three Psh races (PSH-54, PSH-72 and PSH-100) (Figure 5).
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Figure 5. Boxplots showing the median phenotype of Eastern European lines for the most significant
SNP marker allele associated with either resistance or susceptibility to the respective rust traits that
were identified using GWAS. Statistical significance was measured using a two-tailed t-test where
statistical significance is denoted as p < 0.05 (*) and p < 0.001 (***).

2.4. Investigating Genomic Regions Carrying Markers with Association to Multiple Pathogens

A locus carrying SNPs associated with more than one pathogen was identified in close
proximity. One marker associated with Ph isolate 17VA12C and two markers associated
with resistance to Psh isolates PSH-100, PSH-72 or PSH-54, respectively, were detected
within 5 Mb on chromosome 5H (Figure 6, Table 2). The close proximity of race-specific
genes could indicate an interesting resistance gene cluster on the long arm of chromosome
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5H. To investigate this region further, sequence for the corresponding regions including 5Mb
of flanking sequence was extracted from the Morex v3 [12]) reference genome assembly
and corresponding regions in the 19 accessions of the barley pan-genome [13]. Initial
analysis of the sequence showed that marker order, sequence length and overall gene
content between the 20 accessions was comparable (Supplemental Figure S2). We firstly
focused on annotating members of the major category of race-specific resistance genes by
performing a sequence motif search for NBS-LRR resistance for the respective regions in
the 20 barley genomes. A single NLR about 2 Mbp upstream of the PSH-54 associated
marker HvGBSv2-4385 was detected in most of the accessions. A cluster of NLRs was
identified 470 kb downstream of marker HvGBSv2-10463 associated with resistance to
Ph (Figure 6). The results indicate that multi-pathogen resistance is likely controlled by
separate individual resistance genes.
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Figure 6. Schematical drawing of markers associated with leaf rust (cyan), stripe rust (purple) and
5H. Genomic coordinates for markers and detected NLR genes are given based on MorexV3 reference
genome [12]. Predicted NLRs are based on automatic motif search using the NLR annotator [14] for
the 20 accessions of the barley pan-genome are illustrated as directional arrows, where complete
NLRs are highlighted in green, complete pseudogenes as orange and partial NLRs as red arrows.

3. Materials and Methods
3.1. Plant Materials

To identify resistance at the seedling stage, 318 diverse barley accessions were ini-
tially selected based on their Eastern Europe origin, and the seeds were provided by the
Australian Grains Genebank (AGG, Horsham, VIC, Australia). In summary, the Eastern
European Barley Collection (EEB n = 318) was further assessed for genetic redundancy
(summarized in later section) resulting in 287 genetically unique accessions comprising
both cultivated barley accessions, including landraces, historical cultivars, breeding lines
and 145 with unknown origin (Refer to Supplemental Table S1 for passport data). Purifi-
cation of each of the EEB accession sourced from the AGG was performed by growing
only one seed from each purified seed increase. Seed derived in this way was used for rust
testing and DNA extraction.
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3.2. Pathogen Isolates

The panel was assessed with seven isolates of several barley infecting cereal rust
pathogens from the USA. Five US races of the barley stripe rust pathogen P. striiformis f.
sp. hordei (PSH-33, PSH-48, PSH-54, PSH-72 and PSH-100) were selected for phenotypic
assessment of the EEB accessions. These Psh races were selected due to their prevalence
in the USA and their wide virulence spectra across the 12 barley stripe rust differential
tester genotypes (Table 1). The inoculum of all Psh isolates used in this study was increased
on seedling susceptible barley lines Steptoe or Topper. The EEB accessions were also
assessed with single-pustule-derived races of P. coronata var hordei (91NE9305) and P. hordei
[(17VA12C) with virulence/avirulence formulae (Rph1, Rph2, Rph4, Rph5, Rph6, Rph7, Rph9,
Rph10, Rph11, Rph13, Rph19/Rph3, Rph12, Rph14, Rph15)], which were provided by Dr
Matthew Rouse (USDA-ARS) with the aim of identifying and mapping resistance to each
of these barley rust pathogen isolates.

3.3. Inoculation and Phenotypic Assessment of Rust Resistance

For the assessment of resistance to Psh in the greenhouse at the seedling stage,
5–7 seedlings per plant genotype were inoculated for each race test and scored on an
ordinal scale of 1–9 as previously described [7,8]. A uniform dry inoculation was applied
to seedlings at the two-leaf stage using a mixture of fresh urediniospores and talc [15].
Once inoculated, the seedlings were placed in a dew chamber (18–24 h) followed by a
temperature-controlled greenhouse on a diurnal cycle. Infection on the EEBs and the
12 Psh differential barley lines were assessed phenotypically 18 days following inoculation.
For resistance to Psh, three phenotypic classes were used to classify the EEB tester lines
including highly resistant (0–3), moderately resistant (4–6) and susceptible (7–9).

The barley leaf rust differentials [3] were included as controls for both the leaf and
crown rust experiments. Seedling infection types were scored on a 0–4 scale as de-
scribed in [3] for barley leaf and crown rust. Assays for barley seedling response to
P. coronata var hordei were performed like those for P. hordei except plants were maintained
at 20–22 ◦C after inoculation through disease assessment [5,16]. The seedling infection
type data were linearized to a 0–9 scale according to Gao et al. [17], however the linearized
data were not transformed. The data from the two replications of each race were averaged.
Barley leaf rust and barley crown rust were scored 10–11 days after inoculation. Two
replications of the EEB panel were evaluated for response to each rust pathogen isolate in
separate experiments with no randomisation.

3.4. Genomic DNA Isolation and Quantification

A healthy portion of fresh youngest leaves from two-week old plants from each of
the 318 EEB accessions were collected and desiccated for 5–7 days. DNA extraction was
performed following the modified CTAB method described by Fulton et al. [18]. The
DNA pellets obtained using this protocol were allowed to dissolve in TE buffer and were
stored at 4 ◦C in a refrigerator. The following day, RNase A treatment was performed
(10 µg/mL) followed by incubation at 37 ◦C for 30 min. The quality of the extracted DNA
samples was checked using an 0.8% agarose gel using and quantified using a Thermo
ScientificNanoDropTM1000 Spectrophotometer (Thermo Fisher Scientific, Lenexa, KS, USA).

3.5. Genotyping of Barley Genotypes

A targeted GBS (tGBS) assay designed against 11,851 loci evenly distributed across
the barley genome was deployed by Agriculture Victoria was used to genotype the
318 accessions in the EEB panel, to perform population structure analysis and GWAS
for rust resistance traits at the seedling stage. Sample reads from the tGBS assay were
used to generate genotype calls for all polymorphic loci. First, the sample read data are
used to build an allele-specific reference. Next, allelism among the allele-specific reference
sequences was determined from their alignment to the Morex reference genome assembly
v1 [11]. Variant genotype calls were reported as homozygous ‘0′ or ‘2′, or heterozygous ‘1′,
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where ‘0′ referred to the REF variant and 2 referred to the ALT variant. Missing data were
represented by ‘U’.

3.6. Identifying Genetically Redundant Accessions

Variant calling with tGBS data of 318 barley genotypes was carried out essentially as
described by Milner et al. [9]. Reads were trimmed with cutadapt [19] and mapped to the
MorexV3 reference genome sequence assembly [12] with BWA-MEM [20]. Mapping records
were converted to Binary Sequence Alignment/Map (BAM) format with Samtools [21]
and sorted with Novosort (http://www.novocraft.com/products/novosort/ (accessed on
30 April 2022)). Variant calling was carried out with bcftools [22]. A custom script was
used for variant filtration (https://bitbucket.org/ipk_dg_public/vcf_filtering (accessed
on 30 April 2022)). The final variant matrix contained bi-allelic SNPs with less than 10%
missing data and less than 1% heterozygous calls per site. An identity-by-state (IBS) matrix
was calculated with PLINK [23] and imported into the R statistical environment [24] (R
Core Team 2022). Clusters of duplicated accessions were found by identifying connected
components in the graph induced by the IBS matrix using igraph [25]. Two accessions were
considered duplicates if they had present genotypes that call at least 1000 common SNP
sites, and these genotype calls were identical in at least 99.8% of cases.

3.7. Imputation

For input into imputation, the genotypic data for the SNP/INDEL calls meeting
were set as samples with a 25% call rate, markers with a 40% call rate and 1% mi-
nor allele frequency (MAF). Eight samples were excluded from imputation due to call
rate < 25%. Missing marker data were imputed using LinkImpute [26], which imputes
missing genotype data with 90% accuracy based on a k-nearest neighbor genotype impu-
tation method that is designed for unordered markers. A total of 31,805 markers were
selected for further analysis.

3.8. Population Structure Analysis

Population structure was accounted for using STRUCTURE and Principal Component
Analysis (PCA). From 31,805 SNP markers, a subset of 1073 SNP markers were selected
based on LD decay analysis and used for population structure analysis. The software
STRUCTURE v2.3.4 [27] was used to estimate the population structure of the non-redundant
EEB accessions (n = 287) to create a population structure matrix (Q) to be used as a covari-
ate. To determine the optimal number of sub-populations, an admixture ancestry model
was used with a burn-in of 1,000,000 followed by 1,000,000 Monte Carlo Markov Chain
(MCMC) replications for k = 1 to k = 10 with five iterations. STRUCTURE HARVESTER [28]
was used to identify the optimal number of sub-populations using the ∆k method [29].
An individual was deemed to be part of a population if the membership probability
was >0.8 [30]. Individuals that did not achieve a value of 0.8 were deemed to have admix-
ture ancestry.

3.9. Linkage Disequilibrium

The SNPs linkage disequilibrium (LD) estimates were determined for pairs of loci
using the software package Tassel 5.0 [31] using SNPs of known marker positions only.
A squared allele-frequency correlation (r2) [32] was calculated for each intra chromoso-
mal combination. The distribution and extent of LD were visualized by plotting intra-
chromosomal r2 values against the genetic distance in cM for all inter-chromosomal marker
pairs using nonlinear regression as described in [33] and implemented in R statistics of
version 4.2.2 [24] (R Core Team 2022).

3.10. Detection of Significant SNP Markers Using GWAS

The SNP markers were further filtered using thresholds for minor allele frequency
(MAF) of 0.01, missing value rate of 0.20 and heterozygosity of 0.20. The final filtered

http://www.novocraft.com/products/novosort/
https://bitbucket.org/ipk_dg_public/vcf_filtering
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set of 28,780 SNPs was used for GWAS on the non-redundant EEB accessions (n = 287).
There were 3427, 4495, 4957, 3293, 4897, 3798 and 3903 SNPs on chromosomes 1H to 7H,
respectively. Based on the population structural analysis, a mixed linear model (MLM) was
used to investigate best-fit models to search for SNP associations with the traits. The MLM
model was selected as it considers population structure (Q) and relative kinship (K) effects
and shows the best approximation of the expected cumulative distribution of p-values
and is therefore more effective in controlling false positives. The population structure
matrix (Q matrix) and the kinship matrix depicted using TASSEL 5.0 [31] was used for the
model and GWAS analysis was performed for each trait using the phenotypic mean values.
The standard Bonferroni-corrected threshold of α = 0.05 was used as the significance
cutoff. The suggested p-value was computed as 0.05/n (n = 28,780), with the p-value of
1.70 × 10−6 [−log10(p-value) < 5.76] used as the final significance cut-off in the association
analysis. Manhattan plots were constructed with the chromosome position on the X-axis
against –log(p-value) of all SNPs, and quantile–quantile (QQ) plots of observed p-values
were constructed against expected p-values using R Statistics of version 4.2.2 [24] (R Core
Team 2022). The distribution of the QQ plot was considered to select the best model
for each trait. The optimum model for each variable was determined as the one with
the QQ plot with a smaller deviation from the normal distribution. The markers that
significantly associated phenotypic traits were assigned to a QTL. The peak and flanking
marker positions were converted from their bp position provided in Morex V1 [11] to
Morex V3 [12].

3.11. Pan-Genomic Evaluation of Candidate Loci

Sequences surrounding SNP markers with the strongest associations (peak markers
from Table 2) were used for BLAST to identify coordinates within the 20 accessions of the
barley pan-genome [13]. The identified regions were extracted from pseudomolecules by
using SAMtools version 1.12 [22] including a 5 MB downstream and upstream sequence.
An NLR prediction and annotation was performed as previously described (https://github.
com/steuernb/NLR-Annotator (accessed on 30 March 2023) using default parameters [14].
The gene descriptions were extracted from the gene projection of the barley pan-genome [13]
and used for keyword searches of gene classes.

4. Discussion

Sourcing genetic resistance requires rigorous phenotypic testing of diverse accessions
spanning different gene pools. Due to both historical and current changes in global polit-
ical relations access to diverse accessions from some geographic regions such as Eastern
Europe is challenging. In this study we used a GWAS-based mapping approach to mine
a collection of diverse landraces and historical cultivars originally derived from Eastern
Europe available through the Australian Grains Genebank for resistance to several barley
infecting rust pathogen races from the US.

For consistency across the diverse pathogen races used we focused on phenotyping
infection response at the seedling plant growth stage. The EEB accessions displayed a
wide range of phenotypic responses to the seven different barley infecting cereal rust races
spanning three distinct rust diseases of barley (stripe, crown and leaf rust). Most accessions
(88%) were highly susceptible to the crown rust race used in this study. In the only other
comparable study, Jin and Steffenson [34] assessed the response of 548 barley accessions
from diverse geographic origins and found only 1.9% (10 accessions) that carried seedling
resistance to crown rust. The higher frequency of resistance observed in the present study
may be due to differences in virulence or presence of resistance in the respective isolates
used or germplasm collections used for testing. Agrama et al. [9] mapped the first, and to
our knowledge the only, crown rust resistance gene in barley to chromosome 3H, which
was designated Rpc1. GWAS performed using the EEB accessions did not detect any signals
on chromosome 3H, suggesting that Rpc1 was absent, at very low frequency within the

https://github.com/steuernb/NLR-Annotator
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accessions or the isolate used in the study was virulent for Rpc1. However, four QTLs were
identified (on 1HL, 2HS, 4HL and 5HL) that represent uncharacterised resistance alleles.

Although the EEBs were quantitatively assessed in separate experiments for their re-
sponse to five pathogenically distinct Psh races, this was insufficient to efficiently postulate
the presence of known Rps or tentatively designated barley stripe rust resistance genes
within the 12 differential tester lines. Despite this, almost 90% of the EEBs were susceptible
in response to PSH-72 relative to only 55% to the avirulent race PSH-48, suggesting the
presence of previously identified race-specific resistances within this 35% of EEB lines.
The 10% of accessions carrying resistance to PSH-72 represent previously undesignated
or recently identified resistance sources. Furthermore, 16 of these lines carried either MR
of HR infection types to all Psh races tested suggesting the presence of potentially multi-
ple broadly effective resistance sources derived mainly from Russian, Czech and Greek
descent. GWAS analysis revealed the presence of two broadly effective QTL on 5HL and
7HS responsible for resistance to races PSH-72 and PSH-100. The 7HS QTL was previously
identified but barely significant in a previous study mapping seedling resistance to the
same isolate (race PSH-72) and environmental conditions [35]. In our study the 7HS QTL
was highly significant [−log10 (p-value) = 9.25 for PSH-72] which may reflect the frequency
of the resistance in the population. Although not statistically significant based on the minor
peak in the Manhattan plot, the 7HS QTL may also confer resistance to race PSH-54.

In contrast to resistance to the more avirulent PSH races, fewer EEB accessions were
resistant to leaf rust (P. hordei race 17VA12C). Race 17VA12C is avirulent with respect to leaf
rust resistance gene Rph12, suggesting that highly resistant EEB accessions (Infection type
of 1) may carry Rph12. This was further supported by the GWAS results where a highly
significant peak was identified on the distal region on the long arm of chromosome 5H
where Rph12 has previously assigned using morphological markers [36]. The two minor
effect signals on 2HL and 4HL identified in response to Ph race 17VA12C may represent
the previously cloned partial resistance QTL Rphq2 [37] and an uncharacterised resistance
QTL for 4H. The same peak marker for the 4HL QTL was also identified in response to
barley crown rust, possibly suggesting the presence of a pleiotropic locus and conserved
mechanism of resistance to biotrophic pathogens such as pathogenesis defence response
genes. Further co-location of QTL across rust resistance traits was observed for the 5HL
QTL effective to both leaf rust and stripe rust isolates used in this study. This was further
supported by the highly significant Pearson’s coefficient between leaf and stripe rust traits
the same EEB accessions were highly resistant to both leaf rust and stripe rust races carrying
the 5HL QTL. Further examination of the physical interval harbouring the QTL identified
the presence of a rich abundance of genes involved with resistance including receptor
kinases, peroxidases etc. In both cases, multiple NLRs at the locus were identified which
indicate that the pathogenicity effects could be controlled by different genes rather than a
single gene as expected from major genes. Apart from the most renowned class of NBS-LRR
immune receptors, other disease resistance gene classes have been described in the literature.
We extracted genes in the analyzed interval from the Morex V3 genome annotation, where
kinase-related genes and a further six disease-related genes were discovered in addition to
the earlier predicted NBS-LRR genes (supplemental Table S2). This indicates the locus on
5H might resemble a complex of disease resistance candidate genes.

5. Conclusions

In conclusion, this study has determined the presence of several useful rust resistance
alleles within a diverse collection of barley landraces and historic cultivars sourced from
Eastern Europe. Further phenotyping of this collection is planned with necrotrophic pathogens
both in the field and at the seedling stage to identify overlapping multi-pathogen QTLs.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ijms241310860/s1.
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