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Abstract: Injuries of the central (CNS) and peripheral nervous system (PNS) are a serious problem
of the modern healthcare system. The situation is complicated by the lack of clinically effective
neuroprotective drugs that can protect damaged neurons and glial cells from death. In addition,
people who have undergone neurotrauma often develop mental disorders and neurodegenerative
diseases that worsen the quality of life up to severe disability and death. Hydrogen sulfide (H2S) is
a gaseous signaling molecule that performs various cellular functions in normal and pathological
conditions. However, the role of H2S in neurotrauma and mental disorders remains unexplored and
sometimes controversial. In this large-scale review study, we examined the various biological effects
of H2S associated with survival and cell death in trauma to the brain, spinal cord, and PNS, and the
signaling mechanisms underlying the pathogenesis of mental illnesses, such as cognitive impairment,
encephalopathy, depression and anxiety disorders, epilepsy and chronic pain. We also studied the role
of H2S in the pathogenesis of neurodegenerative diseases: Alzheimer’s disease (AD) and Parkinson’s
disease (PD). In addition, we reviewed the current state of the art study of H2S donors as neuropro-
tectors and the possibility of their therapeutic uses in medicine. Our study showed that H2S has great
neuroprotective potential. H2S reduces oxidative stress, lipid peroxidation, and neuroinflammation;
inhibits processes associated with apoptosis, autophagy, ferroptosis and pyroptosis; prevents the
destruction of the blood-brain barrier; increases the expression of neurotrophic factors; and models
the activity of Ca2+ channels in neurotrauma. In addition, H2S activates neuroprotective signaling
pathways in psychiatric and neurodegenerative diseases. However, high levels of H2S can cause
cytotoxic effects. Thus, the development of H2S-associated neuroprotectors seems to be especially
relevant. However, so far, all H2S modulators are at the stage of preclinical trials. Nevertheless, many
of them show a high neuroprotective effect in various animal models of neurotrauma and related
disorders. Despite the fact that our review is very extensive and detailed, it is well structured right
down to the conclusions, which will allow researchers to quickly find the proper information they
are interested in.

Keywords: hydrogen sulfide; neurotrauma; apoptosis; autophagy; ferroptosis; pyroptosis;
neuron; glial cells; cognitive impairment; encephalopathy; depression; anxiety disorders; epilepsy;
neurodegenerative diseases

1. Introduction

Neurotrauma is one of the leading causes of disability and death worldwide. It takes
third position after cardiovascular and oncological diseases. Moreover, due to neurotrauma,
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the highest mortality and proportion of disability is observed among the young population.
This situation is complicated due to the lack of effective clinical neuroprotective drugs that
can protect neurons and glial cells from traumatic injury [1,2]. In addition, the heterogeneity
of neurotrauma creates additional difficulties in their study and difficulties in developing
and selecting a competent treatment strategy [3]. In addition, CNS and PNS injuries often
lead to various mental disorders [4–8] and neurodegenerative diseases [9–13], which are
accompanied by increased cell death of the nervous tissue [14–19]. It is worth noting
that nerve cells are very sensitive to various influences, including microwave radiation,
which can cause neurodegenerative diseases [20]. This confirms the presence of complex
intermolecular interactions in the nervous tissue. To solve these problems, it is necessary
to search for promising molecular targets and study the intracellular signaling processes
associated with them [21].

Gasotransmitters are important signaling gaseous molecules that perform various
functions in the body under normal and pathological conditions [22]. They play an im-
portant role in the processes of cell survival and death [23]. Although many signaling
mechanisms of cytoprotection and cytotoxicity of these messengers are poorly understood
and often contradictory, the S-gasotransmitter H2S remains of great interest to researchers,
especially in conditions of traumatic damage to the nervous system [24–26], and mental [27]
and neurodegenerative diseases [28].

H2S is produced endogenously in many tissues and is involved in various cellular pro-
cesses: neurotransmission, apoptosis, inflammation, oxidative stress, angiogenesis, etc. [22].
Many scientific data indicate that H2S can act both as a neuroprotective agent and as a
factor responsible for neurodegeneration [25,29–31]. Its role in neurotrauma is also am-
biguous: some researchers point to its pronounced neuroprotective effect [29,32–36], while
others associate it with cell death [37–40]. Of particular interest are the H2S-dependent
signaling mechanisms of survival and death of nerve cells in mental disorders [4] and
neurodegenerative diseases [41], which often develop with neurotrauma [4–13].

Thus, the purpose of this review is a comprehensive analysis of the current data on the
role of H2S in the survival and death of neurons and glial cells in neurotrauma and related
mental disorders and neurodegenerative diseases. This large-scale review study is a natural
continuation of a recently published review in which we summarized scientific research
on the role of gasotransmitters in apoptotic cell death in cardiovascular, renal, rheumatic,
neurodegenerative diseases and mental disorders [42]. As a result, we decided to focus our
attention on H2S as a potential cytoprotective signaling molecule. In this global review,
the role of H2S-dependent signaling mechanisms in the survival and death of neurons and
glial cells in injuries of the brain, spinal cord and PNS is comprehensively considered in
detail and the signaling pathways underlying the pathogen of neurodegenerative diseases
and mental disorders associated with neurotrauma are studied.

2. Materials and Methods

This large review study was performed in accordance with the Preferred Report-
ing Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews
(PRISMA-ScR) [43]. The Technical Expert Group (TEG) consisted of 7 highly qualified
specialists, including 3 molecular biologists (S.R., C.N., M.R.) and 4 clinical and psychiatric
physicians (A.S., A.T., I.V., M.G.).

TEG sought to investigate the role of H2S in cell death in neurotrauma and related
neurodegenerative and psychiatric illnesses. TEG searched for studies, assessed their
reliability, and conceptualized and synthesized the findings.

2.1. Finding Sources

TEG searched for sources in PubMed (Public MedLine, managed by the National Cen-
ter of Biotechnology Information (NCBI) of the National Library of Medicine in Bethesda
(Bethesda, MD, USA)), as well as in Web of Science, and Scopus. Our strategy search did
not include restrictions on publication date, language and free full-text access in order to
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obtain the maximum coverage for the given parameters, namely keywords. In addition,
to improve search efficiency, synonyms and terms associated with keywords and their
phrases were used. We used logical operators such as “AND”, “OR” next to the keywords
to create a logical string that allows us to refine our search and find the most relevant
sources (Table 1). Additionally, we could use the logical operator “NOT” [44].

Table 1. Sourcing strategy for each database, further information can be found in Supplementary Materials.

Database Search Strategy

PubMed

(hydrogen sulfide OR gasotransmitters OR
cystathionine-β-synthase OR cystathionine-γ-lyase OR
3-mercaptopyruvate sulfurtransferase OR hydrogen sulfide
donors) AND (neurotrauma OR traumatic brain injury OR spinal
cord injury OR peripheral nerve injury OR axotomy OR apoptosis
OR autophagy OR ferroptosis OR pyroptosis OR cell death OR
axon OR dendrites OR dendritic spines OR cognitive impairment
OR depression OR anxiety disorders OR epilepsy OR
encephalopathy OR chronic pain OR oxidative stress OR
inflammation OR neuroinflammation OR brain OR spinal cord
OR neurotrophic factors OR cytokines OR neurodegeneration OR
Alzheimer’s disease OR Parkinson’s disease OR protein folding)

Scopus

TITLE-ABS-KEY (“hydrogen sulfide” OR “gasotransmitters”)
AND TITLE-ABS-KEY (“brain” OR “spinal cord” OR “nerves”
OR “neurotrophic factors” OR “mental disorders” OR
“neurodegenerative diseases”)

Web of Science

TOPIC (*hydrogen sulfide* OR *gasotransmitters*) AND TOPIC
(*neurotrauma* OR *apoptosis* OR *autophagy* OR *pyroptosis*
OR *ferroptosis* OR *axon* OR *dendrites* OR *donors* OR
*mental disorders* OR *neurodegenerative diseases*)

*—search by the root of the word; “”—exact keyword; ()—grouping of keywords; “AND”—both words;
“OR”—either the first or second word.

2.2. Study Quality Assessment

At this stage, three authors (M.R., A.T., A.S.) independently checked the titles/abstracts
of the sources that were obtained from the databases. In the case where one author
recognized an article suitable for inclusion in a system analysis, the other authors an-
alyzed it in detail. In addition, this process was controlled, and the first author (S.R.)
acted as an independent arbiter. In case of a disagreement between the authors, the final
decision on the inclusion or exclusion of an article was made by the first (S.R.) or the
last author (M.G.).

The studies that were included in our systematic review had to meet the following
criteria: (1) transparency of the results obtained; (2) competent statistical data analysis;
(3) representative sample; competent choice of materials and methods for research;
(4) correct interpretation of the data.

2.3. Conceptualization and Synthesis of the Received Data

The data obtained were subjected to detailed analysis by the entire TEG group. The
obtained data were conceptualized and synthesized in the form of textual and graphic
representation. The final evaluation of the results obtained was carried out by the first
author (S.R.).

3. Classification and Molecular Mechanisms of Neurotrauma

Neurotrauma is damage to various structures of the CNS and PNS caused by
external forces. It includes isolated and combined traumatic brain injury (TBI); iso-
lated and combined spinal cord injury (SCI); and multiple limb injury with isolated
or combined damage to bones, ligaments, blood vessels, and peripheral nerves [45].
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Currently, it is known that neurotrauma can lead to various mental and neurodegen-
erative diseases. This can be based on both molecular mechanisms and direct me-
chanical damage to anatomically important structures of the CNS and PNS. However,
before elucidating this issue in more detail, we will consider, in general, the classi-
fication of neurotrauma and the main molecular mechanisms that accompany this
pathological condition.

TBI and SCI in young and middle-aged men is ahead of cardiovascular and oncological
diseases. Along with this, injuries of the PNS are a major public health problem [1,2,46].
With mechanical damage in the nervous tissue, various pathological processes develop,
leading to the death of neurons. The treatment of these neuropathological processes is
a major public health problem worldwide. However, effective clinical neuroprotective
drugs have not yet been found. Their search requires deep and comprehensive stud-
ies of the molecular mechanisms of neurodegeneration and neuroprotection in these
pathological processes [2].

TBI is a type of damage where the skull suffers from mechanical effects, as well
as intracranial formations—the brain, meninges, blood vessels, cranial nerves. TBI is a
heterogeneous pathological condition [25,47–49]. The destruction of nervous tissue in TBI
is due to primary and secondary mechanisms of brain damage. Primary damage is caused
by the direct impact of mechanical energy on the substance of the brain. In the area of
primary brain damage, necrosis of brain tissue, death of neurons and glial cells, axonal
ruptures and vascular thrombosis occur [25,47–50]. As a result, a focus is formed, protected
by a penumbra—a zone of moderate ischemia. Cell death in the penumbra region leads to
the expansion of the zone of the necrotic focus of TBI [51,52].

Secondary brain damage develops in response to primary mechanical damage, which
triggers a cascade of molecular cellular events: oxidative phosphorylation in the mito-
chondria is disrupted, intracellular Ca2+ concentration increases, free oxygen radicals and
vasoactive metabolites of arachidonic acid are released, the mechanisms of the comple-
ment cascade and lipid peroxidation are activated, and so on [53]. A sharp activation of
the metabolic processes in neurons leads to ATP pool depletion and a disruption of the
functions of Ca2+ channels. As a result, there is an increase in the permeability of the cell
membranes to Ca2+ ions and the release of Ca2+ from intracellular depots, which leads to
the depolarization of neurons and the release of glutamate, which activates N-methyl-D-
aspartic acid (NMDA) receptors (NMDARs). Intracellular overload of Ca2+ occurs, which
triggers a whole cascade of reactions associated with the activation of phospholipases,
proteases and nucleases, the lysis of structural proteins, the expression of pro-apoptotic
genes, the release of cell death factors from mitochondria, hyper synthesis of nitric ox-
ide, and oxidative stress [54,55]. Hence, leading to the apoptotic death of neurons and
glial cells [47].

Another major traumatic injury to the central nervous system is SCI. This is char-
acterized by compression, or partial or complete rupture of the spinal cord. This group
of neurotraumas is characterized by high disability and mortality and is practically un-
treatable. [56,57]. Spinal cord injury can be characterized by the destruction of several,
many, or all of the nerve fibers that pass through the injury site. Recovery after this type of
neurotrauma is complicated by the extremely weak regenerative capabilities of the spinal
cord and is usually possible only with mild damage; with slight death of nerve cells and
slight destruction of spinal nerve fibers [58]. This type of injury is accompanied by primary
and secondary injuries similar to TBI [59].

Furthermore, injuries to the PNS are of great danger, and often lead to a deterioration
in the quality of life up to severe disability or death [60]. Peripheral nerve damage is the
result of the destruction of nerves that extend from the spinal cord and brain to various
parts of the body and are located outside of the CNS [61]. These nerves can be damaged
as a result of various factors, such as trauma, disease, inflammation, etc. Of particular
danger are injuries to peripheral nerves, often accompanied by their complete rupture, that
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is, axotomy (AT), which initiates a complex cascade of signaling and metabolic processes
aimed at the death or survival of the neuron [62,63].

AT is characterized by three main molecular-cellular events: Wallerian degradation of
the severed axon, death of the damaged neuron, or its regeneration with the regrowth of
the axon and the restoration of nerve connections. The peculiarity of PNS neurons is their
ability to regenerate a damaged axon, while CNS neurons degenerate and die as a result
of AT [64]. About 30% of PNS motor and sensory neurons survive AT by restoring nerve
connections. An important factor associated with the survival of nerve cells in AT is the
distance from the site of the axon rupture to the soma. Generally, the larger it is, the higher
the chances of neuron regeneration [65,66].

H2S plays an important role in pathological conditions and may also be involved
in processes associated with inflammation [67,68], oxidative stress synthesis [32,34,69],
apoptosis [39,40], and autophagy [25,50], etc.

4. The Role of Neurotrauma in the Pathogenesis of Mental Disorders

Neurotrauma of various origins can lead to cognitive impairment [4–8], depres-
sion and anxiety disorders [70–72], epilepsy [73–76], encephalopathy [77,78], neurode-
generative disorders [9–13] and chronic pain [79]. Moreover, all these pathological con-
ditions can be accompanied by increased cell death, in particular, apoptosis [14–19],
neuroinflammation [80–83], and oxidative stress [84–87], etc.

4.1. Traumatic Brain Injury

TBI often causes cognitive impairment [4,5], encephalopathy [77,78], depression and
anxiety disorders [70,71], epilepsy [73,74], chronic pain [79], and increases the risk of
developing neurodegenerative diseases [9,10].

For example, TBI can cause cognitive impairment as a result of damage to hippocampal
neurons, which are especially vulnerable to trauma, and changes in the synaptic plasticity
in this area. Impaired neurotransmission induced by activation of Ca2+-dependent phos-
phatases and proteases, loss of dendritic spines, Ca2+-excitotoxicity, increased levels of
apoptosis, autophagy, necroptosis, and NMDAR activation, are also a key factor in the
development of cognitive impairment in TBI [88].

TBI-induced depression may be the result of damage to the frontal lobe, white matter,
amygdala, and disruption of the neuronal network between different areas of the brain [70].
Bruises and swelling of the brain, intracranial hematomas, and changes in the blood-brain
barrier, are concomitant negative factors in TBI, which often lead to epileptic seizures [2].
The dysfunction of downstream inhibitory regulation, loss of neurons in noradrenergic
centers, periaqueductal dysfunction gray substances, and dopamine deficiency often leads
to chronic pain in TBI [89].

TBI can trigger the development of neurodegenerative diseases due to the forma-
tion of neurofibrillary tangle (NFT) and amyloid beta peptide (Aβ) plaques, activation
of Aβ-containing microglia, increased levels of α-synuclein (a-Syn), amyloid-beta pre-
cursor protein (APP), beta-site amyloid precursor protein cleaving enzyme 1 (BACE1),
microtubule-associated protein tau (Tau), apolipoprotein E4 (ApoE4), presenilin-1 (PS1),
and caspase-3 [9,10]. In addition, the deposition of hyper phosphorylated Tau in the depth
of the sulci and a general lesion of the nervous tissue may underlie the pathogenesis of
encephalopathy in TBI [90].

4.2. Spinal Cord Injury

Many studies have shown that SCI is often associated with the development of cog-
nitive impairment [6–8], encephalopathy [91], depression and anxiety disorders [72,92],
epilepsy [75,76], chronic pain [93,94], and neurodegenerative diseases [11,95].

SCI is associated with motor, sensory, and autonomic disturbances below the
level of injury, resulting in severe mental and physical suffering. SCI causes hemo-
dynamic disturbances and also affects areas of the brain associated with memory,
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emotions, and pain regulation as a result of pervasive neurodegenerative processes,
which is a powerful inducer of cognitive impairment [96]. SCI can trigger gray mat-
ter atrophy in the sensorimotor cortex, cerebellum, medial prefrontal cortex, and an-
terior cingulate region, increase nerve cell death by triggering apoptotic signaling,
and disrupt the neurotransmitter system. This negative front of molecular cellular
events caused by SCI can lead to dementia, cognitive impairment, depression and
anxiety disorders [97].

SCI increases the risk of developing neurodegenerative diseases. Parkinson’s dis-
ease can be caused as a result of neuroinflammation, microgliosis, accumulation of
α-Syn and the subsequent loss of dopaminergic neurons in SCI [11]. The main mech-
anism for the development of neuropathic pain after SCI may be nerve root damage,
neuroinflammation, activation of Na+ and NMDAR ion channels, and the inhibition
of serotonergic, noradrenergic, opioid and gamma-aminobutyric receptors at the area
of SCI [98].

4.3. Trauma of the Peripheral Nervous System

Peripheral nerve injury can lead to depression. It has been found that damage to
peripheral nerves can increase the level of the pro-inflammatory cytokine interleukin-
1β (IL-1β) in the frontal cortex and a simultaneous increase in the expression of glial
fibrillary acidic protein (GFAP) in the periaqueductal gray (PAG). These negative molecular
events may contribute to the development of depression-like behavior [99]. Peripheral
nerve injury is reported to induce apoptosis in the dorsal horns of the spinal cord, and
trigger mechanisms of excitotoxicity and death of GABAergic interneurons, leading to the
development of chronic pain [100].

Of course, in the above sections, we have touched on only part of the large-scale
molecular-cellular events during neurotrauma that can lead to certain mental disorders and
neurodegenerative diseases. In all these pathological conditions, H2S plays an important
role; so first, we will consider the main aspects of its endogenous synthesis, catabolism,
storage, and a variety of biological effects.

5. Metabolism and Functions of H2S
5.1. Biosynthesis of H2S and Its Deposition

The third gasotransmitter, after nitric oxide (NO) and carbon monoxide (CO), is H2S.
Its discovery as a signaling molecule dates back to 1996, when the endogenous formation
of H2S in the brain tissue was established with the help of the enzyme cystathionine-β-
synthase and its possible role in neuromodulation was assumed. In aqueous solutions,
hydrogen sulfide dissociates into H+, HS− and S2−. Under physiological conditions,
approximately 20% of this gas exists in the form of H2S, about 80% in the form of HS− and
only traces in the form of S2− [101,102].

H2S mainly exists as gaseous molecules or sodium bisulfide (NaHS). H2S can bind
to hemoglobin to form sulfhemoglobin. In addition, proteins containing the iron–sulfur
complex and sulfane, which includes hydrosulfides/persulfides, are commonly recognized
forms of H2S accumulation in the body [31].

The main substrate for the production of H2S in humans and animals is L-cysteine, as
well as its disulfide form—cysteine. The synthesis of hydrogen sulfide in the body occurs
under the influence of the enzymes cystathionine-β-synthase (CBS), cystathionine γ-lyase
(CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST) (Figure 1), together with cysteine
aminotransferase (CAT) [24,25,101,102].
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Figure 1. Biosynthesis of H2S in the body. Cystathionine-β-synthase (CBS) catalyzes the condensation
of homocysteine (Hcy) with serine to form cystathionine, which cleaves cystathionine-γ-lyase (CSE).
This results in the synthesis of H2S. CBS, CSE and 3-mercaptopyruvate sulfurtransferase (3-MST)
catalyze the conversion of cysteine to H2S.

CBS is predominantly expressed in the brain, liver, kidneys, and pancreas. It is
basically a cytosolic enzyme. However, in certain types of cells, it can be localized in the
nucleus [103] and mitochondria [104]. CBS expression is controlled by various extracellular
and intracellular mechanisms in normal and pathological conditions [105].

CBS catalyzes the condensation of homocysteine (Hcy) with serine to form cystathio-
nine. Subsequently, cystathionine undergoes proteolysis by the enzyme CSE. This leads
to the formation of cysteine, which is a precursor of glutathione. It should be noted that
in addition to the canonical pathway, CBS is involved in desulfurization reactions that
lead to the formation of endogenous H2S. The formation of H2S may be affected by a
thiol-cysteine reaction catalyzed by CBS with the release of s-thiolate. Cysteine may also
undergo hydrolysis by CSE to form H2S, as well as pyruvate and ammonia. Disruption
of the mechanisms of regulation of CBS is associated with a change in the levels of Hcy
and/or H2S and, inevitably, leads to various pathological conditions (Figure 1) [106,107].

CBS and CSE are jointly involved in the trans-sulfurization pathway, where homocys-
teine formed in the methionine cycle switches to cysteine synthesis (Figure 1) [108–110].

5.2. Catabolism of H2S

The catabolism of H2S has been studied much less than its synthesis in the body.
Currently, three pathways of H2S catabolism are mainly known: oxidation, methylation
and exhalation. The oxidation of H2S mainly occurs in hepatocytes. Here, H2S is oxidized
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by mitochondrial enzymes to sulfate with the intermediates persulfide (RSSH), sulfite
(SO3

2−), and thiosulfate (S2O3
2−) [111,112].

As a result, most of the H2S is excreted in the urine in the form of sulfate. It has
been shown that the increase in sulfide oxidation in the kidneys, heart and liver upon
administration of exogenous H2S is due to an increase in quinone oxidoreductase (SQR)
(Figure 2). However, this effect was not observed in the brain tissue, which indicates a
defect in the oxidation of sulfides in the nervous tissue of the brain [113].
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Free H2S exists in low concentration in the blood and decays rapidly. Therefore, it will
probably not all be transported to the liver for disposal. The question of H2S catabolism in
the brain via alternative pathways independent of the liver and kidneys remains open [31].

The methylation of H2S occurs primarily in the cytoplasm in contrast to the oxidative
catabolic pathway of this gasotransmitter. First, H2S is methylated to methane thiol,
and then it is methylated to a non-toxic dimethyl sulfide by a thiol-S-methyl transferase
(TSMT) (Figure 2). The methylation of sulfides has been found to be a significantly slower
process than oxidation [114,115]. H2S can be excreted from the body through lung tissue
(Figure 2) [31,116].

5.3. Various Biological Effects of Endogenous H2S

The main physiological effects of H2S are neuromodulation, regulation of vascular
tone and oxidative stress, anti-inflammatory action, angiogenesis, and energy generation.
However, these effects do not exhaust the diversity of the biological actions of H2S. Presently,
the list of functions performed by this gaseous signaling agent is constantly expanding
(Figure 3) [117].



Int. J. Mol. Sci. 2023, 24, 10742 9 of 42Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 9 of 44 
 

 

 
Figure 3. The participation of H2S in normal and pathological conditions in the brain, heart, blood 
vessels, gastrointestinal tract, liver, kidneys, and lungs. 

Just like NO, H2S is a new generation neurotransmitter that has also been shown to 
have pronounced neuroprotective effects. In physiological conditions, H2S has a role in 
learning and memory processes. It facilitates long-term potentiation in the hippocampus 
by activating NMDARs associated with Ca2+ channels [118,119]. Disturbances in the en-
dogenous production and metabolism of H2S have been observed in neurodegenerative 
diseases, such as Alzheimer’s (AD) and Parkinson’s disease (PD) [120,121]. Moreover, the 
use of exogenous H2S in these diseases has been proven to have a positive therapeutic 
effect [122,123]. 

Researches have shown that exogenous H2S reduces early brain injury in subarach-
noid bleeding [124], increases motor function, and reduces cortical lesions after traumatic 
injury [67]. 

However, the biological effects of H2S are far from ambiguous. It has been proven 
that the neuroprotective effect of H2S is due to anti-oxidant, anti-inflammatory and anti-
apoptotic properties [32]. However, under certain conditions, H2S can contribute to sec-
ondary damage to neurons, causing them to be overloaded with Ca2+ ions. In experiments 
on mice, it was found that inhibitors of enzymes for the synthesis of H2S can reduce early 
damage to the blood-brain barrier (BBB) after transient focal cerebral ischemia [125]. 

Now that we have considered the metabolism of H2S, as well as the molecular mech-
anisms of neurotrauma and its relationship with mental and neurodegenerative diseases, 
we can move on to the role of hydrogen sulfide in cell death in neurotrauma. This section 
will help us better understand the H2S-dependent signaling mechanisms that underlie 
mental disorders and neurodegenerative diseases. 

  

Figure 3. The participation of H2S in normal and pathological conditions in the brain, heart, blood
vessels, gastrointestinal tract, liver, kidneys, and lungs.

Just like NO, H2S is a new generation neurotransmitter that has also been shown
to have pronounced neuroprotective effects. In physiological conditions, H2S has a role
in learning and memory processes. It facilitates long-term potentiation in the hippocam-
pus by activating NMDARs associated with Ca2+ channels [118,119]. Disturbances in
the endogenous production and metabolism of H2S have been observed in neurode-
generative diseases, such as Alzheimer’s (AD) and Parkinson’s disease (PD) [120,121].
Moreover, the use of exogenous H2S in these diseases has been proven to have a positive
therapeutic effect [122,123].

Researches have shown that exogenous H2S reduces early brain injury in subarachnoid
bleeding [124], increases motor function, and reduces cortical lesions after traumatic injury [67].

However, the biological effects of H2S are far from ambiguous. It has been proven
that the neuroprotective effect of H2S is due to anti-oxidant, anti-inflammatory and anti-
apoptotic properties [32]. However, under certain conditions, H2S can contribute to sec-
ondary damage to neurons, causing them to be overloaded with Ca2+ ions. In experiments
on mice, it was found that inhibitors of enzymes for the synthesis of H2S can reduce early
damage to the blood-brain barrier (BBB) after transient focal cerebral ischemia [125].

Now that we have considered the metabolism of H2S, as well as the molecular mecha-
nisms of neurotrauma and its relationship with mental and neurodegenerative diseases, we
can move on to the role of hydrogen sulfide in cell death in neurotrauma. This section will
help us better understand the H2S-dependent signaling mechanisms that underlie mental
disorders and neurodegenerative diseases.

6. Endogenous and Exogenous H2S in Neurotrauma
6.1. Endogenous H2S Levels in Neurotrauma

Recently, several experiments have been developed to study and detect changes in the
concentration of H2S in neurotrauma in both animal and human models. The concentration
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of H2S has been shown to be a dynamic system. The level of the endogenous expression
of H2S and CBS in the blood and brain tends to decrease after neurotrauma. Zhang M
and colleagues demonstrated that CBS expression was suppressed in the cerebral cortex
and hippocampus of mice in TBI. Furthermore, at first it gradually decreased, reaching the
minimal values, and then increased. H2S demonstrated dynamic changes in TBI, in parallel
with the expression of the key enzyme of its synthesis [126]. There was a significant decrease
in CBS and CSE in the hypothalamus and brain stem. Furthermore, 3-MST decreased only
in the hypothalamus. At the same time, regular intra-abdominal administration of NaHS
restored the levels of CBS and CSE, and of 3-MST [127].

Interesting results were obtained on the TBI model in salmon fish, as the number
of CBS+ cells in the telencephalon significantly increased after injury compared to the
control group [128,129]. In a recent study, TBI was shown to significantly reduce H2S/CSE
levels without significant changes in CBS expression [130]. In a porcine model of acute
subdural hematoma, increased levels of CBS and CSE were observed in neurons, vessels,
and parenchyma at the base of the cerebral gyri [131].

Changes in the level of H2S in the spinal cord have been reported in various neu-
rodegenerative processes [132]. However, there is practically no information concerning
changes in the level of hydrogen sulfide in the spinal cord during traumatic exposure.
More scientific data is devoted to the study of the effect of hydrogen sulfide donors on the
signaling mechanisms of survival and death of neurons and glial cells in SCI.

6.2. Exogenous H2S: Between Neuroprotection and Neurodegeneration

It is known that H2S is involved in the processes of neuroprotection and neurode-
generation in neurotrauma. The administration of H2S donors can protect neurons and
prevent the development of hemodynamic disorders in TBI [126]. Increasing the concentra-
tion of H2S reduces cerebral edema, improves motor activity, and reduces apoptosis and
autophagy in an animal model of TBI [133]. According to Jiang and co-authors, H2S leads
to the activation of antioxidant enzymes, reducing the oxidative damage to nervous tissue
cells in TBI [134]. The authors of another study indicate that H2S reduces mitochondrial
dysfunction and autophagy in TBI (Figure 4) [135].
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Increasing the concentration of H2S by using a ferrofluid hydrogel (FFH) with iron
tetrasulfide (Fe3S4) significantly reduces activated microglial/macrophage levels and
the expression of pro-inflammatory factors, and increases the rate of directional growth
of axons in animal models of SCI [136]. The use of H2S-releasing silk fibroin hydrogel
resulted in a decrease in the level of neuronal pyroptosis induced by TBI [137]. NaHS
has been reported to reduce the area of spinal cord infarction in the ischemic-reperfusion
model of injury [138]. CBS activation reduces the level of reactive oxygen species, lactate
dehydrogenase expression, and apoptosis in the nervous tissue in massive cerebral
infarction [139]. H2S donors reduce neurological disorders, nerve cell apoptosis, pro-
inflammatory secretion, and oxidative stress in spinal injuries [140]. It is also reported
that increasing H2S levels significantly reduces the permeability of the blood-spinal
barrier, improving the recovery of damaged spinal cord neurons [57]. The use of H2S-
bound nanoparticles promoted the regeneration of damaged spinal cords in rats via
the TOR signaling pathway [141]. Intranasal administration of polysulfide prevented
neurodegenerative changes in the injured spinal cord [142]. It has been shown that
H2S is involved in neuroglial interaction in the spinal cord, regulating the survival
and death of neurons [143]. This gasotransmitter showed a protective effect against
the processes of demyelination in cauda equina fibers in cases of compression injury
(Figure 4) [144].

In a mouse model of sciatic nerve damage, H2S was shown to significantly reduce
neuropathic pain [145]. In addition, CSE and MST have been found to be present in normal
nerves, and axotomy activates CSE in Schwann cells [113]. Inhibition of H2S production has
been reported to improve the growth of regenerating axons and remyelination processes in
peripheral nerve injuries (Figure 4) [146].

7. The Role of H2S in Cell Death in Neurotrauma
7.1. Participation of H2S in Oxidative Stress

Free radical processes are a vital and important link in metabolism, the violation of
which leads to the development of oxidative stress. Violation of the dynamic equilibrium of
the oxidant/anti-oxidant system towards free radical oxidation against the background of
tension and violation of the coherence of the action of the antioxidant system components
leads to the development of oxidative stress [35].

Recently, the main H2S-dependent biological effects in various neurotraumas are
considered in the context of the regulation of oxidative stress. It is known that, at
37 ◦C and a pH of 7.4, more than 80% of H2S molecules dissolve in surface waters and
dissociate into the ions H+, HS- and S2−. HS− is a powerful one-electron chemical
reagent that effectively traps reactive oxygen species (ROS). Hydrosulfide anions are
able to quench ROS by transferring a hydrogen atom or a single electron. The rate of
this reaction is directly limited by diffusion. In this case, the reaction of hydrosulfide
anions with molecular oxygen proceeds faster in the presence of divalent metal ions. H2S
effectively interacts with hypochlorous acid (HClO), hydrogen peroxide (H2O2), lipid
hydroperoxides and peroxynitrite (ONOO−), neutralizing their oxidative potential [147].
In addition, H2S itself is a reducing agent that can directly react and extinguish the
superoxide anion (O2

−), NO and its free radical products, as well as other ROS (Figure 5).
In addition, H2S can act as a trigger molecular agent that triggers antioxidant defense
processes [32]. It should be noted that the effectiveness of H2S and other simple SH-
compounds in neutralizing free radicals is limited due to their low concentration in blood
and tissues [148].
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Figure 5. The role of H2S in oxidative stress in neurotrauma. H2S can directly react with and quench
ROS and NO. In addition, H2S can increase the level of intracellular reduced glutathione (GSH),
which is an antioxidant. However, H2S can activate γ-glutamylcysteine synthase (γ-GSC), which
limits GSH synthesis. H2S is involved in the activation of a number of antioxidant defense enzymes:
γ-glutamylcysteine synthase (γ-GSC), thioredoxin (Trx-1), superoxide dismutase (SOD), catalase
(CAT), glutathione peroxidase (GPx), and p66Shc.

In addition, H2S can react with NO to form nitroxide (HNO), which is able to bind to
the thiol groups of proteins, leading to the formation of disulfide bonds. HNO can modify
GSH with the formation of GSH disulfide and sulfinamide, which can increase oxidative
stress and inflammatory processes [149].

Studies have shown that H2S increases levels of intracellular reduced glutathione
(GSH), which is a major antioxidant in the brain [33,34] and spinal cord [150]. Past studies
have shown that the H2S donor promotes glutamate uptake in astrocytes by enhancing
glial glutamate transporter GLT-1 delivery, enhancing cystine transport, and as a result,
GSH synthesis [32]. Administration of H2S is also associated with elevated levels of
GSH in the mitochondria [63]. On the other hand, H2S is able to enhance the activity
of γ-glutamylcysteine synthase (γ-GSC), which acts as an enzyme that limits the rate of
formation of GSH (Figure 5) [25].

Recently, Kimura et al. showed another mechanism of H2S effect on the intracellular
production of GSH. They reported that the H2S produced in cells can be released into the
extracellular space and restore cystine to cysteine, which will, thus, be efficiently imported
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into cells through a cysteine transporter other than the Xc− system and used to synthesize
GSH (Figure 5). Meanwhile, Jane et al. also demonstrated that H2S increased intracellular
GSH production by activating the glutamate-cysteine ligase catalytic subunit (GCLC) and
the glutamate-cysteine ligase modifier subunit [32].

H2S increases thioredoxin (Trx-1), which is a small (12 kDa) molecule containing the
characteristic Cys–Gly–Pro–Cys motif, and the oxidation–reduction of Trx-1 occurs from
two of its cysteine residues. Trx-1 is a 12 kDa oxidoreductase enzyme containing a dithiol-
disulfide active site that acts as an antioxidant, facilitating the reduction of other proteins
by cysteine-thiol-disulfide [69]. Trx-1 has been reported to perform a variety of intracellular
and extracellular functions, including capturing ROS and protecting the cell from oxidative
stress. Trx-1 reduces hydrogen peroxide with peroxiredoxine (Prx), and oxidized Trx-1 is
reduced with thioredoxine reductase. H2S has been shown to increase gene transcription
and Trx-1 levels [34,69].

H2S can bind to the copper (Cu) catalytic center of superoxide dismutase (SOD),
which leads to an increase in the rate of absorption of superoxide anions [151]. Recent
studies have also shown that H2S can attenuate oxidative stress by increasing the activity
of catalase (CAT) and glutathione peroxidase (GPx) (Figure 5). In addition, H2S can inhibit
the mitochondrial production of ROS through p66Shc-dependent signaling. p66Shc is
an adaptor protein. It has a negative effect on the ROS-mediated signaling pathway and
is involved in the mitochondrial signaling of redox potential. Under oxidative stress, it
travels to the mitochondria, binds to cytochrome c (Cyt c), and transfers electrons from Cyt
c to molecular oxygen to form ROS. H2S interact with p66Shc through sulfhydration and
reduces the formation of mitochondrial ROS [35]. However, a high level of H2S can, on the
contrary, induce the formation of ROS and cause an increase in oxidative stress.

7.2. Modulation of the H2S Activity of NMDARs and Intracellular Ca2+ Homeostasis

H2S has been found to modulate NMDAR activity. Protein kinase A (PKA) is known to
regulate NMDAR activity. Studies have shown that H2S can increase levels of cAMP, which,
as a secondary messenger, activates PKA. As a result, the activity of the NMDAR increases.
However, H2S can activate NMDARs in an independent way. Since NMDARs are extremely
sensitive to oxidation and reduction reactions, the biological effects of H2S on these receptors
may be due to the reduction of disulfide bonds [118]. H2S can directly interact with the cysteine
residues of receptor subunits, modifying them by S-sulfhydration [119]. It has been established
that the hyper activation of the NMDAR, which is an integral part of the pathogenesis of
various neurotraumas, leads to Ca2+ excitotoxicity and cell death [54,55,118,119].

H2S can increase cytosolic Ca2+ in neurons by activating slow Ca2+ L-type channels.
Ca2+ L-type channels are one of the main members of the family of potential-controlled
calcium channels. The discovery of these channels occurs in response to a strong depolar-
ization of the membrane and causes a prolonged current of Ca2+. Ca2+ L-type channels are
expressed in many tissues, including the nervous system [152]. It is known that these Ca2+

channels are involved in the pathogenesis of various injuries of the central nervous system
and the PNS [153–155]. Thus, it has been shown that H2S can increase the Ca2+ current in
astrocytes, microglia and neurons through the activation of Ca2+ L-type channels [156,157].
These H2S effects can be significantly reduced by these channel antagonists [158,159]. The
role of H2S in regulating fast T-type Ca-type CaV 3.2 channels is interesting. Studies have
shown that the inhibition of CSE in sciatic nerve injury significantly weakened the activa-
tion of CaV3.2 in the ganglia of the posterior roots of the spinal cord. This effect is probably
related to the redox H2S-dependent modulation of Ca2+ channels of this type [119,160]. It
is worth noting that the amplification of the Ca2+ current through channels of the CaV3.2
type, activated by H2S, can participate in the regeneration of neurons [161].

7.3. Anti- and Pro-Inflammatory Effects of H2S

Neuro inflammation is an inflammatory response in the nervous tissue characterized
by the activation of glial cells, the involvement of neutrophils and macrophages, and the
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increased synthesis of cytokines, chemokines, free radicals and secondary messengers.
The neuroinflammatory response is characterized by a growing front of molecular cellular
events underlying secondary damage to nervous tissue [162,163]. A number of studies have
shown that H2S plays an important role in inflammatory processes in various pathological
conditions, including neurotrauma. The use of ATB-346 (2-(6-methoxynapthalen-2-yl)-
propionic acid 4-thiocarbamoyl-phenyl ester), a new H2S-releasing derivative of naproxen,
in TBI, significantly reduced the inflammatory response, due to the inhibition of oxidative
stress, nuclear NF-κB (factor kappa-light-chain-enhancer of activated B cells), leukocyte
adhesion to the endothelium, tumor necrosis factor (TNF), and interleukin-1 β (IL-1 β) [67].
It is reported that H2S can reduce neuronal inflammation by inhibiting the NLRP3/caspase-
1/GSDMD signaling pathway in ischemia/reperfusion brain injury [164]. H2S protects
retinal ganglion cells in an ischemia/reperfusion injury animal model by regulating a
range of signaling proteins involved in inflammation, oxidative stress, and mitochondrial
homeostasis (Figure 6) [165].
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cyclooxygenase; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; iNOS, in-
ducible nitric oxide synthase; NO, nitric oxide; IL-1β, interleukin-1 beta; NLRP, nucleotide-binding
oligomerization domain, leucine rich repeat and pyrin domain containing; GSDMD, Gasdermin D;
Casp1, caspase-1; Casp3, caspase-3; PKC, protein kinase C; Ca2+, calcium ions; CaM, calmodulin;
p38, p38 mitogen-activated protein kinase; CD11b\CD18, Mac-1β2 integrin; CcO, cytochrome-c-
oxidase. Arrows with a sharp end—positive regulation; arrows with a blunt end—negative regulation.
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The family NF-κB is known to consist of transcription factors that play a complex role
in immunity and inflammation. NF-κB regulates inflammation through nuclear transloca-
tion followed by the expression of pro-inflammatory factors [166]. H2S can modulate the
activity of NF-κB activity through trans-sulfonation mechanisms, resulting in the inhibition
of the nuclear translocation of NF-κB and a reduced inflammatory response [167,168]. In
addition, H2S can inhibit the phosphorylation of the p65 NF-κB subunit, preventing the
activation of this transcription factor [50]. It is worth noting that NF-κB is also a tran-
scription factor for inducible NO synthase (iNOS) [169,170]. iNOS is a Ca2+-independent
enzyme that generates high levels of NO, in contrast to the constitutive forms of NOS
(eNOS/NOS3/endothelial NOS and nNOS/NOS1/neuronal NOS), and is responsible for
the increase in oxidative stress and the progression of neuroinflammation [171]. H2S can
significantly reduce inducible NO production through the inhibition of NF-kB. H2S can also
inhibit iNOS expression through heme oxygenase (HO-1) activation in macrophages [68].
This gasotransmitter is capable of suppressing the activity of Ca2+-dependent NOS [172].
H2S has also been shown, in studies, to increase the production of NO in endothelial cells
by activating eNOS. In addition, the anti-inflammatory effects of H2S in neurotrauma can
be realized through the modulation of mitochondrial respiration due to the reversible
inhibition of cytochrome-c-oxidase (CcO) (Figure 6) [173]. H2S has been reported to reduce
inflammation in dorsal root ganglia during sciatic nerve transection [174].

However, the role of H2S in inflammation is not so unambiguous. The over produc-
tion of ROS by neutrophils can cause the oxidation of H2S to form sulfite, which leads to
leukocyte adhesion and neutrophil activation through the activation of the Mac1 β 2 inte-
grin (CD11b/CD18) and protein kinase C (PKC)/Ca2+ calmodulin pathway, respectively.
In addition, H2S can inhibit the breakdown of caspase-3 and the activation of mitogen-
activated protein kinase p38 (MAPK) in granulocytes, which is followed by an increase in
the inflammatory response (Figure 6) [37,38].

7.4. The Effect of H2S on the Level of Neurotrophic Factors

Neurotrophic factors are high molecular weight polypeptides that play an important
role in the survival, differentiation, and functioning of nerve and glial cells in the brain and
spinal cord [175]. Different types of neurotrophic factors, such as nerve growth factor (NGF),
brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and glial cell-derived
neurotrophic factor (GDNF), respectively, play a crucial role in neuronal regeneration in
spinal injury, causing the growth of axons and dendrites and showing a neuroprotective
effect in TBI neuron models [176–178].

It is known that H2S is able to modulate the level of neurotrophic factors in normal
and pathological conditions [26,179,180]. Thus, in a mouse TBI model, the administration
of an H2S donor restored GDNF and NGF levels in damaged neural tissue, preserving
their neuroprotective effects [67]. The use of a mitochondria-targeted H2S donor in mid-
dle cerebral artery occlusion has been reported to increase BDNF and NGF expression,
reducing ischemic neuronal damage [26]. The administration of NaHS, a donor of H2S,
increased BDNF levels, probably through activation of the transcription factor cAMP re-
sponse element-binding protein (CREB), which regulates the gene for this neurotrophic
factor in brain damage [181].

H2S has also been found to regulate the expression of vascular endothelial growth
factor (VEGF), which exhibits neurotrophic and neuroprotective effects in traumatic CNS
injury. VEGF is involved in neovascularization, which is necessary for the repair of brain
tissue and the regeneration of nerves after neurotrauma. Exogenous H2S significantly
increased the level of VEGF in the affected area in TBI, which led to the restoration of
the BBB [67].

7.5. Effects of H2S on the Blood-Brain Barrier and Cerebral Edema

Damage to the BBB is the most important pathological substrate of neurotrauma. It
was found that H2S can participate in the restoration of the functional and anatomical
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integrity of the BBB [182,183], as well as reduce cerebral edema [25,184]. Thus, in a rat TBI
model, it was shown that the use of NaHS, the classic H2S donor, reduced the excessive
permeability of the BBB by activating the mitochondrial adenosine triphosphate-sensitive
potassium channels and reducing oxidative stress. Positive H2S-dependent effects may
be associated with the inhibition of PKC-α, β I, β II and δ and the activation of PKC-ε,
as well as increased levels of Claudin-5, Occludin and ZO-1 [185]. In addition, H2S can
reduce vascular dysfunction by modulating eNOS levels in TBI [186]. The administration
of NaHS significantly reduced damage to the BBB in a spinal cord compression injury
model. This H2S donor prevented the reduction of the proteins TJ (P120, β-catenin) and AJ
(Occlusin), which are among the key components of the BBB [57]. It is known that H2S is
able to reduce edema in traumatic injury to the naked brain. One of the mechanisms of this
H2S-dependent effect may be to reduce the destruction of the BBB by suppressing the ex-
pression of aquaporin 4 (AQP4) on astrocytes and inhibition of matrix metalloproteinase-9
(MMP-9) [184].

7.6. The Role of H2S in Remyelination Processes

Remyelination is an important aspect of the recovery of damaged neurons in injuries
of the brain [187], spinal cord [188], and peripheral nerves [189]. The processes associated
with demyelination develop as a result of secondary damage, leading to a dysfunction of
the neuronal network, neurodegeneration, and ultimately, to the death of neurons [188]. It
is known that H2S can participate in this process [146].

It has been shown that the production of H2S in Schwann cells can lead to destruction
of the myelin sheath and the recruitment of macrophages. H2S positively influences the
dedifferentiation and proliferation of Schwann cells in Wallerian degeneration by regulating
lysosomal-associated membrane protein 1 (LAMP1), p75 neurotrophin receptor (p75 NTR),
c-Jun, and p-ERK1/2. The authors of the study suggest that inhibition of CSE expression
may be a potential target in the treatment of pathological processes associated with de-
myelination [146]. However, there are other studies that show that H2S donor treatment
leads to a decrease in the demyelination of cauda equina fibers and a decrease in glial cell
apoptosis in compression injury [144]. NaHS is reported to promote axonal remyelination
and repair by activating the PI3K/AKT/mTOR signaling pathway in TBI [135].

7.7. H2S-Associated Anti- and Pro-Apoptotic Signaling Mechanisms

H2S can modulate the apoptosis of neurons and glial cells in neurotrauma. It can act
as an anti- and pro-oxidant, as described above, and can regulate the levels of anti- and pro-
apoptotic groups of proteins in various traumatic injuries of the nervous system [29–31,133].
H2S can directly interact with proteins through S-sulfhydration or persulfhydration of
cysteine residues on proteins [190], and bind to metalloproteins, modulating their activity
and function [191]. In addition, H2S can realize its activity through the activation and
inhibition of various signaling pathways [25,133].

The p53 protein is one of the key pro-apoptotic proteins. It is known as a tumor
suppressor and a “guardian of the genome”. This protein controls the most important
cellular functions: DNA repair, cell cycle, metabolism, apoptosis, etc. [192,193]. As a
transcription factor, p53 is responsible for the expression of many genes, including genes
associated with apoptotic cell death [194]. In addition, p53 can participate in transcription-
independent processes, regulating mitochondrial functions and triggering the intracellular
pathway of apoptosis [195,196]. We have shown the key role of this protein in cell death
in neurotrauma in our studies using models of axotomy in vertebrate and invertebrate
animals [197,198]. A number of scientific studies have also demonstrated the key role
of p53 in the death of neurons and glial cells in various neurotraumas [199,200]. One of
the signaling mechanisms for regulating the expression of p53 may be H2S (Figure 7).
In a recent study, it was shown that H2S can inhibit the expression of the p53 protein
in damaged neurons, exerting a neuroprotective effect in TBI. Moreover, as the authors
suggest, this H2S-dependent effect was mediated through the pathway p53/glutaminase 2.
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The use of an H2S donor showed a significant decrease in TUNEL-positive neuronal and
glial cells [29]. However, in other studies, H2S caused an increase in p53 expression and
the initiation of apoptosis [39,40]. Another major pro-apoptotic protein, caspase-3, is also
a target for H2S. Caspase-3 plays a central role in the cascade of caspases, proteolytic
enzymes that sequentially activate each other and underlying proteases [201,202]. H2S
has been shown to reduce the expression of caspase-3 in damaged neurons and their
apoptosis in TBI [29,50]. H2S reduced levels of this proapoptotic enzyme in spinal cord
injury models (Figure 7) [35,140]. However, there are studies in which H2S, on the contrary,
induces the expression of caspase-3 and increases apoptotic cell death [203]. H2S can affect
the activity of caspase-3 by regulating the ROS signaling pathway of activation of this
enzyme [29,30]. In addition, the cysteine content of caspase-3 makes it a potential target for
direct interaction with H2S. This gasotransmitter persulfides caspase-3 using cysteine 163,
inhibiting its activity [204]. However, a single concept of the role of the H2S-dependent
regulation of caspase-3 in survival or cell death still does not exist.
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Important proteins involved in the regulation of the permeability of the external
mitochondrial membrane and in the regulation of apoptotic signaling are Bcl-2 (B-cell
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lymphoma 2) and Bax (bcl-2-like protein 4). Bax is known to activate cell death by causing
the permeabilization of mitochondrial membranes. The Bcl-2 protein is a molecular antag-
onist of the proapoptotic effects of Bax. The balance between the levels of these proteins
significantly affects cellular fate, leading to either survival or death [205]. A number of
studies have shown that H2S can act as a modulator of the level of these proteins, regulating
the mitochondrial pathway of apoptosis (Figure 7) [29,50]. The anti-apoptotic effect of
H2S can be realized through the modulation of L-type Ca2+ channels and also through a
decrease in the level of Bax and caspase-3 in the brain in a model of subarachnoid hemor-
rhage in rats [206]. It is also reported that H2S inhalation in ischemia/reperfusion injury
of the brain increases Bcl-2 expression, reduces the level of NF-κB p65, and enhances Akt
(protein kinase B) phosphorylation, which may lead to an anti-apoptotic effect. At the same
time, exogenous H2S suppressed the expression of NOX4 (NADPH-oxidases 4) and CBS
(Figure 7) [207].

H2S can interact with noncoding RNAs (ncRNAs), which are responsible, in particular,
for cell death [208]. It is reported that H2S can reduce neuronal apoptosis through the
activation of lncRNA CasC7, which has neuroprotective effects, in rat spinal cord ischemia-
reperfusion injury (Figure 7) [138].

H2S regulates the activity of the NF-κB-dependent signaling pathway, which is a
central mechanism in signaling between neurons and glial cells. H2S has been shown to
reduce NF-kB levels by reducing the expression of iNOS, COX-2 (cyclooxygenases-2), and
the cytokines responsible for the inflammatory response (Figure 7) [209,210]. However, H2S
can sulfhydrate the p65 NF-κB subunit using cysteine-38, which promotes its binding to the
coactivator of the ribosomal protein S3 (RPS3) and increases transcriptional activity [24,211].
H2S may regulate another transcription factor, Nrf2, associated with anti-apoptotic, anti-
inflammatory, and antioxidant effects. H2S is reported to reduce nerve cell apoptosis
through activation of an Nrf2-dependent signaling pathway in a model of spinal cord
injury (Figure 7) [140].

7.8. H2S-Associated Mechanisms of Autophagy

Autophagy is the main physiological mechanism of intracellular degradation, by
which cytoplasmic material is delivered to the lysosome and destroyed in it. It plays a
crucial role in maintaining cell survival under various stressors and is a necessary link in
the restoration of cellular homeostasis. However, autophagy can lead to cell death [212]. In
neurotrauma, the natural process of autophagy is disturbed and can turn into a pathophys-
iological state, entailing the death of neurons and glial cells [213].

Autophagy plays an important role in the survival and death of neurons in brain
injuries [214]. H2S has been shown to regulate autophagy-dependent cell death after
TBI [25,50]. One of the mechanisms for blocking autophagic neuronal death in neurotrauma
may be the H2S-dependent modulation of the PI3K/Akt/Nrf2 pathway and a reduction in
oxidative stress [215]. It is known that PI3K/Akt/Nrf2 is a central mechanism involved in
autophagy (Figure 8) [216,217].

It is worth noting that autophagy plays a critical role in damage to nerve and glial cells
in traumatic and ischemic-reperfusion injuries of the spinal cord [56]. H2S may regulate
autophagy in spinal cord injuries [57,218]. In a model of ischemic-reperfusion spinal cord
injuries, H2S has been shown to induce autophagy through the increased expression of
miR-30c, Beclin 1, and LC3. miR-30c is a micro-RNA (miRNA) that has been shown to be
actively involved in neuroprotection. This miRNA is known to regulate autophagy. In turn,
Beclin 1 and LC3 are involved in autophagic processes (Figure 8) [218]. Another study
reports that endogenous H2S, on the contrary, inhibits autophagy caused by endoplasmic
reticulum stress in SCI [57].
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7.9. H2S-Associated Mechanisms of Ferroptosis

Ferroptosis is another type of programmed necrotic cell death, which is characterized
by Fe2+-dependent lipid peroxidation. It should be noted that, in its morpho-biochemical
and molecular genetic mechanisms, ferroptosis differs from apoptosis, autophagy, and
necroptosis [219]. In this type of cell death, the size of the mitochondria with condensed
dense inner membranes decreases, their cristae undergo changes, up to their complete
disappearance, and the mitochondrial membrane ruptures [220]. Traumatic action of the
nervous tissue releases a large amount of Fe2+, which can lead to ferroptosis of neurons
and glial cells [221].

H2S plays an important role in ferroptosis. This gasotransmitter can inhibit the process
of ferroptosis by increasing the level of antioxidant enzymes, such as GSH, and via ROS
uptake [222]. There are practically no data on the functions of H2S in the ferroptosis of
neurons and glial cells in nervous tissues. For example, H2S protects the retinal-blood-
brain barrier through the activation of the NRF2/KEAP1 signaling pathway, and via
AMPK to p62 phosphorylation [223]. H2S is reported to protect BV2 microglial cells by
reducing lactate dehydrogenase levels (LDH), oxidative stress, lipid peroxidation, and
Fe2+ accumulation [224].
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7.10. H2S-Associated Mechanisms of Pyroptosis

Pyroptosis is a type of programmed necrotic cell death that occurs as a result of
caspase-1 activation and the disruption of the integrity of the plasma membrane. A feature
of this cell death is the active release of IL-1β and IL-18, dependent on caspase-1, which
determines the development of an inflammatory reaction [225]. To date, it has been proven
that pyroptosis plays an important role in the pathogenesis of injuries of the brain and
spinal cord [226]. It has been shown that H2S may be a key regulator of the processes
associated with pyroptosis [164].

There are not many scientific data on the role of H2S in the pyroptosis of neu-
rons and glial cells under conditions of traumatic injury. For example, studies have
shown that the use of the new silk hydrogel fibroin (SF), which releases H2S, effec-
tively reduces TBI-induced neuronal pyroptosis by inhibiting NOD-, LRR-, and pyrin
domain-containing 3 (NLRP3), pyroptosis protein Gasdermin D (GSDMD), caspase-1,
and apoptosis-associated speck-like protein containing a CARD (ASC or Picard). In ad-
dition, the authors demonstrated that H2S inhibits the expression of receptor-interacting
serine/threonine-protein kinase 1 (RIPK-1), which is associated with necroptosis [137]. H2S
may reduce neuronal pyroptosis after severe intracerebral hemorrhage, which often occurs
in TBI [227]. NaHS use reduced the pyroptosis of retinal cells and brain neurons through
inhibition of the NLRP3/caspase-1/GSDMD signaling pathway in an ischemia/reperfusion
injury model [164].

8. The Role of H2S in Mental Disorders and Neurodegenerative Diseases
8.1. Cognitive Impairment

Endogenous H2S may reduce cognitive impairment through the reduction
of endoplasmic reticulum stress and the inhibition of caspase-12 and C/EBP homol-
ogous protein (CHOP) levels [27]. It has been shown in a rat model of subarachnoid
hemorrhage that H2S can reduce cognitive deficits by inhibiting the neuroinflamma-
tion induced by the TLR4/NF-κB signaling pathway that activates microglial cells
(Figure 9) [228].

NaHS, the classic H2S donor, had a beneficial effect on the memory of TBI-surviving
rats [4]. In a mouse model of surgical trauma accompanied by neuroinflammation, H2S
improved orientation in the Morris water maze. At the same time, the neuroprotective
effect of H2S was due to a decrease in the level of pro-inflammatory cytokines TNF-α, IL-1β,
and IL-6 in blood serum and in hippocampal cells, which is a key structure of learning
and memory [229]. In another study, H2S-dependent cytoprotection was associated with
a decrease in the level of NO and iNOS expression in hippocampal cells, as well as with
the activation of the antioxidant defense system and a decrease in microglial activation
(Figure 9) [230].

In a postoperative trauma model, H2S reduced cognitive impairment in the Y-maze
test; improved the recognition of new objects, and the Morris water maze, by increasing
the expression of the synapsin-1 and PSD-95 proteins involved in the process of synaptic
plasticity; and prevented a decrease in the density of synapses in the hippocampi of rats. In
addition, H2S enhanced the Warburg effect, known as aerobic glycolysis, which promotes
synaptic plasticity and has a neuroprotective effect [231], in the hippocampal cells of
rats with a cognitive deficit against the background of an increase in the expression of
hexokinase 2 (HO-2), pyruvate kinase M2 (M2-RK), lactate dehydrogenase A (LDH A),
kinase pyruvate dehydrogenase 1 (PDK), increased levels of lactic acid, and reduced
expression of pyruvate dehydrogenase (PD) (Figure 9) [232].
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Syn1, synapsin 1; LDHA, lactate dehydrogenase A; mTOR, mammalian target of rapamycin; PDK,
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PD, pyruvate dehydrogenase; Bcl-2, B-cell lymphoma 2; HO-2, heme oxygenase 2; M2-PK, pyruvate
kinase M2; CPR78, cuticular protein RR-2 motif 78; Nrf2, nuclear factor erythroid 2–related factor 2;
ARE, antioxidant response element.

H2S is reported to improve object recognition and spatial orientation by decreasing
Sirt1, oxidative stress, lipid peroxidation, CPR78, CHOP and caspase-12, and increasing
GSH and SOD. At the same time, the H2S donor significantly reduced the level of apop-
tosis in the hippocampus, as evidenced by a decrease in TUNEL-positive cells and the
Bax\Bcl-2 ratio (Figure 9) [15]. The use of H2S donors, ATB-346 and diallyl trisulfide, re-
duced memory deficits in rats by modulating neuroinflammation, oxidative stress, and the
cholinergic system [233].

It is known that damage to the neuromodulatory system often occurs after TBI
and underlies cognitive disorders [234]. It is indicated that exogenous H2S modu-
lates the level of catecholamines and increases the endogenous synthesis of H2S in
cognitive impairment [235].
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8.2. Encephalopathy

H2S can significantly attenuate oxidative stress and apoptosis in encephalopathy
through activation of the Nrf2/ARE signaling pathway [236]. However, a high content of
H2S can lead to a decrease in the activity of citrate synthase (CS) and aconitase (Aco) in the
mitochondria of neurons of the cerebral cortex, as well as creatine kinase (CK) in this brain
structure, the striatum, and the hippocampus in encephalopathy. In addition, H2S can
enhance lipid peroxidation and disrupt bioenergetic processes in mitochondria [237]. The
use of NaHS or S-adenosylmethionine (SAMe), a CBS activator, reduces neuroinflammation
and inhibits the expression of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α), restores
SIRT1 levels and the phosphorylation of mTOR and NF-κB p65 in neuronal HT-22 cells at
high glucose levels, which may indicate H2S-dependent neuroprotective defense mecha-
nisms in diabetic encephalopathy [238]. The cytoprotective effect of H2S in encephalopathy
can be realized through the activation of the antioxidant defense system and a decrease in
NMDARs expression (Figure 9) [239].

8.3. Depression and Anxiety Disorders

Studies have shown that the administration of NaHS for a week had an antidepressant
and anxiolytic effect on mice and rats in various test procedures: forced swimming, tail
hanging, and plus maze [240]. In a model of sleep deprivation in rats, H2S attenuated
depressive and anxiety disorder through the increased expression of Sirt1 in the hippocam-
pus and decreased levels of pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) and CC
motif chemokine ligand 2 (CCL2). At the same time, H2S increased the expression of IL-4
and IL-10, which belong to the anti-inflammatory group of cytokines. The use of the Sirt1
inhibitor leveled the neuroprotective effects of H2S [241].

In another study, the use of NaHS resulted in a reduction in stress-induced depression-
like behavior in rats, also via the H2S/Sirt1 signaling pathway, which inhibits endoplasmic
reticulum stress in hippocampal neurons [242]. H2S reduced depressive and anxious
behavior in mice by reducing ferroptosis in the H2S prefrontal cortex. This H2S-dependent
effect was due to a decrease in Fe2+ deposition, oxidative stress, and an increase in GPX4 and
SLC7A11 levels. In addition, the introduction of an H2S donor suppressed the activation
of microglial cells, reduced the level of pro-inflammatory cytokines, and increased the
expression of sirtuin 6 (Sirt6). Moreover, H2S increased the deacetylase activity of Sirt6
and reduced the level of acetylated histone H3 lysine 9 (H3K9ac), Notch1, ROS, and the
activation of antioxidant enzymes (Figure 10) [243].

Use of the donors H2S, llyl isothiocyanate (A-ITC), and phenyl isothiocyanate (P-ITC),
reduced depressive behavior by activating the PI3K/p-Akt signaling pathway, as well
as reducing oxidative stress, iNOS levels, and inflammatory response in hippocampal
cells [244]. In a constraint-induced depression model, H2S has been shown to reduce
synapse loss and autophagic cell death in the hippocampus via adiponectin activation.
NaHS significantly reduced the number of autophagosomes and the level of Beclin 1. This
H2S donor increased the expression of P62 and adipoxin in the hippocampus of rats with
depression-like behavior (Figure 10). The use of Anti-acrp30, which inhibits adiponectin,
neutralized the neuroprotective and antidepressant effects of NaHS [245].

It is reported that H2S prevents the decrease in the density of dendritic spines and
increases the level of mTORC1, as well as the neurotrophic receptors, TrkB, in a rat model
of chronic stress-induced depression. As a result of the H2S-dependent upregulation of
the mTORC1/TrkB signaling pathway, the expression of synaptic proteins, such as PSD-95,
synaptophysin, and the AMPA receptor GluR 1/2 subunit, in the hippocampus of rats
with depression-like behavior, was increased [246]. H2S can realize its antidepressant and
anxiolytic effects through the activation of the PI3K/AKT pathway and increased neuroge-
nesis in the hippocampus [247]. Studies have shown that hippocampal levels of H2S, CBS,
BDNF and PSD-95 are significantly reduced in chronic stress-induced depression in mice.
However, the use of S-adenosylmethionine (SAM), which activates CBS, prevented these
negative effects and improved the synapse ultrastructure [248]. H2S may reduce depressive
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symptoms through the inhibition of endoplasmic reticulum stress and lower levels of
glucose-regulated protein 78 (GRP78), CCAAT/enhancer binding protein homologous
protein (CHOP), and caspase-12, in rat hippocampal cells (Figure 10) [249].
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AMPAR, AMPA-type glutamate receptor; IL-4, interleukin-4; IL-6, interleukin-6; IL-1β, interleukin-
1β; IL-10, interleukin-10; TNF-α, tumor necrosis factor-α; HO-2, heme oxygenase 2; PI3K, phos-
phatidylinositol 3-kinase; AKT, RAC-alpha serine/threonine-protein kinase; Sirt1, NAD-dependent
deacetylase sirtuin-1; mTORC1, mammalian target of rapamycin complex 1; H3K9ac, acetylated
histone H3 lysine 9; GPX4, Glutathione peroxidase 4; Kir6.2, major subunit of the ATP-sensitive
K+ channel; SUR1, subunit of the ATP-sensitive K+ channel; GRP78, glucose-regulated protein 78;
GSH, glutathione; PSD-9, postsynaptic density protein 95; NQO1, NAD(P)H quinone dehydrogenase
1; OPA1, optic atrophy 1; Beclin, mammalian orthologue of yeast Atg6; Mff, mitochondrial fission
factor; ROS, reactive oxygen species; Sirt6, NAD-dependent deacetylase sirtuin-6; p-Akt, phosphory-
lated RAC-alpha serine/threonine-protein kinase; NOS2, inducible nitric oxide synthase; SLC7A11,
solute carrier family 7 member 11; CCL2, C-C motif ligand 2; Fe2+, iron ion; Casp12, caspase-12;
NMDAR, N-methyl-D-aspartate receptor; GSTA1, glutathione S-transferase A1; BDNF, brain-derived
neurotrophic factor; TrkB, tropomyosin receptor kinase B; c-fos, gene encoding c-fos protein; Notch1,
Notch homolog 1; ACRP30, Adipocyte complement-related protein of 30 kDa; MFN2, Mitofusin-2;
Syp, synaptophysin; Drp1, dynamin-related protein; CHOP, C\EBP homologous protein; PKC, pro-
tein kinase C; P62, sequestosome 1; GSTM1, glutathione s-transferase Mu 1; GABABR1\GABABR2,
gamma-aminobutyric acid receptor subunits, GABABR1 and GABABR2.

8.4. Epilepsy

In a mouse model of electrically stimulated epileptic seizures, it has been shown that
acute and recurrent seizures lead to a decrease in plasma H2S levels. The authors of the
study suggest that H2S can be considered as a new candidate for the role of a biomarker of
severe epileptic seizures. The level of thiocyanate, which is a product of cyanide metabolism
via the trans-sulfonation pathway involving H2S, was also strongly reduced in the brain
and plasma after convulsions. It is noted that the level of GSH did not change. The study
yielded important data on the expression of a number of proteins. An increase in the
anti-apoptotic protein optic atrophy 1 (OPA1) was observed, as well as mitochondrial
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fission factor (Mff), mitofusin 2 (MFN2), and dynamin-1-like protein (Drp1) after epileptic
seizures (Figure 10) [250].

Studies have shown that a new H2S donor based on carbazole has an anti-convulsing
effect. In addition, it reduced the level of aquaporin 4, 1β, IL-6 and TNF-α and increased
the expression of protein kinase C (PKC). The use of a PKC inhibitor significantly atten-
uated these H2S-dependent effects. The authors suggest that the neuroprotective H2S
signaling pathway in epilepsy may be mediated through PKC [251]. In addition, H2S syn-
thesized on the basis of carbazole from aldehydes suppressed convulsions and increased
the expression of the subunits of ATP-sensitive K+ channels, Kir6.2 and SUR1 [251]. In a
febrile seizure model in rats, NaHS administration protected hippocampal cells, reduced
c-fos expression, and increased the expression of gamma-aminobutyric acid receptor sub-
units, namely GABABR1 and GABABR2 [252]. The use of NaHS significantly increased
the latency period between seizures, and suppressed the production of IL-1β and TNF-α
in the hippocampus [253]. The inhibition of CBS with aminooxyacetate significantly in-
creased the severity of seizures in rats with lindane-induced refractory generalized epilepsy
(Figure 10) [254].

However, there is evidence that H2S may exacerbate seizure-like events in rats with
entylenetetrazole-induced epilepsy and pilocarpine. Moreover, epileptic activity was
recorded using the patch-clamp method in brain sections. The authors of the study suggest
that this negative H2S effect was due to the activation of the NMDA and AMPA receptors, as
well as the voltage-dependent Na+ channels, through signaling pathways associated with
H2S [255]. The use of an H2S-sensitive fluorophore has been shown to increase H2S in mild
epilepsy and significantly decrease in severe epilepsy due to neuronal damage [256]. H2S is
reported to be elevated during seizures. The use of a CBS inhibitor reduced functional brain
hyperemia in epilepsy. NaHS blocked ROS and reduced the cerebrovascular dysfunction
caused by epileptic seizures (Figure 10) [257].

8.5. Chronic Pain

H2S inhalation can reduce neuropathic pain caused by sciatic nerve injury by re-
ducing the expression of pro-inflammatory cytokines and the activation of IL-6-induced
microglia in the spinal cord [145]. Using diallyl disulfide (DADS) and morpholin-4-ium
4-methoxyphenyl (morpholino), phosphinodithioate dichloromethane complex (GYY 4137),
a sustained release of H2S, had an analgesic effect on chronic pain in mice by reducing
oxidative stress and apoptosis in the amygdala and lowering the levels of phosphoinositide
3-kinase (PI3K) in this brain structure, gray matter, and the frontal part of the cingulate
cortex. In addition, an H2S-dependent effect was manifested in the suppression of PKB
activation in the infralimbic cortex of the cerebral hemispheres and in the amygdala [258].
Studies have shown that DADS increases the expression of Nrf2, HO-1, NQO1 and GSTM1
in dorsal root ganglia and the periaqueductal gray matter of the cerebral cortex in chronic
pain (Figure 10). The authors suggest that H2S-induced activation of the antioxidant system
in the CNS and PNS contributes to the reduction of pain sensations [259].

Introduction of the slowly releasing H2S donors, allyl isothiocyanate (A-ITC) and
phenyl isothiocyanate (P-ITC), effectively reduced neuropathic pain, increased HO-1,
GSTM1 and GSTA1 levels, and decreased neuroinflammation in the hippocampus and
prefrontal brain [260]. NaHS also decreased hyperalgesia and allodynia through activation
of the Nrf2/HO-1 signal pathways and decreased TNF-α, IL-1 β, IL-6 and high-mobility
group protein B1 (HMGB1) in the dorsal brains of rats with neuropathic pain caused by
compression of the ischial nerve (Figure 10) [261]. New σ 1 receptor antagonists, linked to
H2S donors, have been developed and shown to be effective in pain relief [262].

9. Neurodegenerative Diseases
9.1. Alzheimer’s Disease

Studies have shown that there is a significant decrease in the level of H2S in the brain
of patients suffering from AD [28]. Violation of H2S-homeostasis towards a decrease in the
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level of H2S is also observed in neurotrauma [126], which indicates the general mechanisms
of dysfunction of the H2S-synthesizing system in these pathological conditions. H2S and
its metabolites have been proposed as markers of cognitive impairment and vascular
dysfunction in AD [120].

H2S is reported to inhibit the hyperphosphorylation of Tau by sulfhydration glycogen
synthase kinase 3β (GSK3β), improving the motor and cognitive impairment caused by
AD [41]. In a triple transgenic mouse model of AD (3×Tg-AD) demonstrating both Aβ and
Tau disorders, the treatment for three months with H2S significantly protected learning
and memory in 3×Tg-AD mice. At the same time, a decrease in amyloid β-plaques in the
cortex and hippocampus was observed. These neuroprotective effects were due to the H2S-
dependent downregulation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated
kinases, and p38, which play a key role in phosphorylation, Tau, inflammatory response,
oxidative stress, and Ca2+-excitotoxicity (Figure 11) [263].
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H2S may decrease expression mRNA pro-inflammatory cytokines, TNF-α, IL-6 and
IL-1β, and prevent synapse loss in AD by increasing synaptophysin and postsynaptic
density protein 95 (PSD-95) [264]. The use of NaHS reduced TNF-α, miR-155, pAkt and
inhibited apoptosis in AD-induced rats. The morphological picture in the hippocampus
improved under the influence of this H2S donor [265]. The neuroprotective effects of
H2S in AD may be due to a decrease in the level of TNF-α, BAX, caspase-3 and the
activation of Bcl-2 [266]. It is reported that H2S can reduce disturbances in the blood-brain
barrier, cerebral circulation, and also modulate NMDAR and synaptic plasticity in AD
(Figure 11) [267].

NaHS administration improved spatial memory and learning while reducing apop-
tosis, microgliosis, and astrogliosis in the hippocampus. There was an H2S-dependent
decrease in the level of Aβ1-40 phosphorylation of p38 MAPK and p65 NF-κB [268]. In
another study, H2S showed a neuroprotective effect in AD, which was due to a decrease
in the level of Aβ1-40 and Aβ42, as well as BACE1 (Beta-site APP-cleaving enzyme 1) and
PS1. In addition, exogenous H2S led to a significant increase in ADAM 17 (a disintegrin
and metalloproteinase domain 17) [268]. H2S exerts a protective effect against neurotoxins
via sulfhydration of the transcription factors Sirt1 and Nrf2, which positively regulate gene
expression for a number of antioxidant enzymes, and NF-κB, a key player in the inflam-
matory response. This leads to the regulation of downstream signaling pathways, such as
SIRT1/TORC1/CREB/BDNF, TrkB, and Nrf2/ARE/HO-1, or other pathways. In addition,
H2S can directly bind neurotoxic agents (Figure 11). Violation of these H2S-associated
mechanisms may underlie the pathogenesis of AD [269].

9.2. Parkinson’s Disease

Abnormal levels of H2S and its metabolites have been identified in many studies in
PD. Thus, it was shown that the level of endogenous H2S significantly decreased in the
substantia nigra (SN) in PD, and the use of H2S donors contributed to the neuroprotective
effect and reduced the death of dopaminergic neurons in this pathological condition [270].
The protective effect of H2S has been shown in various PD models in vitro and in vivo [271].

It was shown that the use of the H2S donor ACS84, a derivative of the compound
L-Dopa, reduced motor dysfunction in mice with induced PD by reducing neuronal loss
in the SN, via Nrf-2 activation, and through the increased expression of a number of
antioxidant enzymes [272]. In addition, four L-Dopa hybrids associated with different
H2S releasing compounds demonstrated efficacy in the treatment of PD, which could be
due to a significant increase in the intracerebral dopamine and GSH reported in PD rats
following administration of these drugs [273]. In addition, H2S donors can inhibit the
ROS-NO cytotoxic pathway in PD (Figure 11) [121].

The H2S-dependent antiparkinsonism effect may be caused by a decrease in excess
malonic production dialdehyde (MDA), a product of lipid peroxidation [274]. In a 6-
hydroxydopamine (6-OHDA) induced PD model, NaHS significantly attenuated motor
asymmetry, increased neuronal survival in the SN, and also increased striatal dopamine
levels. However, the use of a blocker of ATP-sensitive K+-channels, glibenclamide, caused
a decrease in the antiparkinsonian effects of NaHS, which indicates the importance of these
channels in the implementation of the neuroprotective effects of H2S [274]. It is indicated
that H2S attenuates cognitive impairment, promotes the polarization of microglia from
M1 to M2, and enhances the Warburg effect in the hippocampus of rats with PD [245].
In addition, the neuroprotection of H2S may be due to the negative regulation of histone
acetylation in PD [275]. H2S enhances the long-term potentiation of the hippocampus,
inhibits the hyper activation of astrocytes, and reduces damage to the dopamine neurons in
the striatum in rats with PD induced using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
and probenecid (MPTP/p). In addition, exogenous H2S increased the level of serotonin and
modulated the level of glutamate and γ-aminobutyric acid in the striatum (Figure 11) [276].

Recent studies have shown that an H2S-dependent neuroprotective effect may be
mediated through activation of the BDNF-TrkB pathway in a mouse model of PD [277].
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H2S significantly reduces the expression of Rho-associated protein kinase 2 (ROCK2),
associated with neurodegenerative processes, by increasing the level of miR-135a-5p in
an animal model of PD. It is known that miR-135a-5p inhibits the translation of ROCK2
mRNA in neurons and has a neuroprotective effect (Figure 11) [278].

10. Therapeutic Approaches Using H2S as a Neuroprotector

Many experimental animal studies have shown that H2S has a beneficial effect on
the survival of neurons and glial cells in various pathological conditions, including neu-
rotrauma, and psychiatric and neurodegenerative diseases. However, there is no H2S-
associated neuroprotector that has undergone clinical trials, yet.

The complexity of the development of this drug lies in the fact that it is necessary
to understand the molecular signaling mechanisms associated with H2S well, which are
realized under the conditions of a particular pathological condition. This is not the end of
the problem. The therapeutic effect of H2S largely depends on its concentration: a level
of H2S close to the physiological level exhibits a neuroprotective effect, and a high level
of H2S can lead to cytotoxicity. Therefore, this drug should release H2S at the required
concentration for a long time and have a neurocumulative effect in order to accumulate
precisely in the nervous tissue and not release H2S in non-target organs. Moreover, if there
are already good developments on the first point, then the situation is more complicated
regarding the second [279].

To date, the main H2S donors used in research are sodium sulfide (Na2S), calcium
sulfide (CaS), and NaHS [280]. Their main drawback is the rapid release of H2S, which
often leads to conflicting results. However, recent studies have increasingly used slow H2S
donors, which are able to gradually increase the concentration of H2S over a long period
of time. These donors include allyl isothiocyanate (A-ITC) and phenyl isothiocyanate
(P-ITC) [260], as well as ferrofluid hydrogels (FFH) with iron tetrasulfide (Fe3S4), which
have a beneficial effect on nerve and glial cells in pathological conditions [136].

A new water-soluble molecule that effectively but sustainably releases H2S is reported,
namely GYY4137 (morpholin-4-ium 4-methoxyphenyl(morpholino) phosphinodithioate).
It has been shown that the intraperitoneal administration of GYY4137 reduces the negative
manifestations of peripheral neuropathy by reducing the secretion of pro-inflammatory
cytokines and the activation of microglia and astrocytes in the spinal cord [281]. In addition,
GYY4137 protected retinal ganglion cells from oxidative stress and acute ischemic damage
in experimental models of glaucoma [282]. In addition, this H2S donor affects immune cells
involved in the pathogenesis of multiple sclerosis [283].

However, the situation with slow H2S donors is also ambiguous. For example,
GYY4137 is reported to be ineffective due to the low release of H2S, requiring high concen-
trations. In this connection, new, long-acting H2S donors based on GYY4137, such as AP67
and AP105, have been developed. They exhibit high biological activity [284]. FW1256 could
be a promising H2S donor; it has demonstrated a good anti-inflammatory effect in a number
of studies [285]. In addition, the use of ATB-346 (2-(6-methoxynapthalen-2-yl)-propionic
acid 4-thiocarbamoyl-phenyl ester), releasing H2S, effectively reduced cell death in TBI and
SCI by reducing the inflammatory response and oxidative stress [67]. There are also hybrid
H2S donors that are capable of releasing not only H2S, but also another gasotransmitter.
For example, NOSH-aspirin (NBS-1120) releases H2S and NO during its metabolism and
has a pronounced anti-inflammatory and neuroprotective effect. Researchers suggest that
it may become a new candidate for the treatment of neuropathological conditions [286]. Of
course, there are a number of H2S donors that may have the potential to be new generation
H2S-associated neuroprotectors.

It is possible to modulate the H2S level by using inhibitors of key enzymes of its
synthesis. The best known inhibitors of CBS are aminooxyacetic acid (AOAA) and hy-
droxylamine (NH2OH), CSE–PAG (propargylglycine) and β-cyanolanine (BCA) [287], and
3 MST–2-[(4-hydroxy-6-methylpyrimidin-2-yl)sulfanyl]-1-(naphthalen-1-yl)ethan-1-one
(HMPSNE) [288]. They can be used in cases where there is a dangerous neurotoxic level of
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H2S. However, it should be noted that the presented inhibitors are non-selective, inhibiting
the activity of other enzymatic systems, which undoubtedly presents a big problem for
their use in medicine and indicates the need to develop inhibitors directed to this class
of enzymes [289].

Thus, neuropathology therapy using H2S donors/inhibitors is at the preclinical studies
stage. However, even now, we can see the therapeutic potential of H2S, which has a wide
range of biological effects. Further fundamental and practical research on this gasotrans-
mitter is necessary for the effective treatment of many diseases, including pathological
conditions associated with the CNS and PNS.

11. Conclusions

Injuries of the central and peripheral nervous system and associated neurodegener-
ative diseases and mental disorders are one of the main causes of disability and death
worldwide after cardiovascular and oncological diseases. H2S can be considered as a
potential molecular target for neuroprotective effects. Definitely, the positive role of H2S,
manifested in the reduction of oxidative stress, inflammation, demyelination processes,
excitotoxicity, apoptosis, autophagy, ferroptosis, and pyroptosis, prevail over its negative
effects in the nervous tissue during traumatic damage to the CNS and PNS. In addition, the
use of H2S donors effectively reduces the symptoms of mental disorders, such as cognitive
impairment, encephalopathy, depression and anxiety disorders, epilepsy, chronic pain, and
also inhibits the progression of neurodegenerative diseases (Table 2).

Table 2. The role of H2S in cell death in neurotrauma and associated psychiatric and neurodegenera-
tive diseases.

The Role of H2S in Cell Death

Process Effects of H2S on signaling
pathways/molecular targets Effect

Oxidative stress Increasing GSH, Trx-1, COD, CAT, GPx,
p66Shcis, and ROS uptake

Reducing oxidative stress
levels

Ca2+-
homeostasis

Modulation of NMDAR activity via
PKA-dependent and independent pathways;
regulation of L-type Ca2+ channels and fast
T-type Ca-type CaV 3.2 channels

Increase/decrease in
intracellular Ca2+ levels

Inflammation

Inhibition of ROS, NF-κB, leukocyte
endothelial adhesion, TNF, IL-1 β, iNOS,
NLRP3/caspase-1/GSDMD, cytochrome c
oxidase

Reducing the level of
inflammation

Oxidation of H2S to form sulfite leads to
leukocyte adhesion and neutrophil
activation via CD11b/CD18 and PKC/CaM;
inhibition of H2S cleavage of caspase-3 and
p38 in granulocytes

Increased levels of
inflammation

Remyelination

PI3K/AKT/mTOR activation Remyelination and repair of
axons

Regulation of LAMP1, p75NTR, c-Jun, and
p-ERK1/2

Increased dedifferentiation
and proliferation of Schwann

cells in Wallerian
degeneration

Apoptosis

Decreased expression of p53, caspase-3, Bax,
NF-κB p65, NOX4, iNOS, COX-2; increased
levels of Bcl-2, ncRNA CasC7 and Akt
phosphorylation

Reducing the level of
apoptosis
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Table 2. Cont.

The Role of H2S in Cell Death

Autophagy

Inhibition of the PI3K/Akt/Nrf2 and ROS
signaling pathways Decreased autophagy

Increasing miR-30c, Beclin 1, and LC3 levels Increase in autophagy

Ferroptosis

Inhibition of ROS, LDH, and Fe2+

accumulation; increased GSH levels,
NRF2/KEAP1 and AMPK; activation of p62
phosphorylation

Reducing ferroptosis

Pyroptosis Inhibition of NOD-, LRR-, and NLRP3,
GSDMD, caspase-1, and ASC Reducing pyroptosis

The role of H2S in psychiatric disorders

Cognitive
impairment

Inhibition of endoplasmic reticulum stress,
caspase-12, CHOP and TLR4/NF-κB;
decrease in the level of TNF-α, IL-1β and
IL-6, Sirt1, ROS, LP, CPR78, CHOP,
caspase-12, Bax; increase in synapsin-1 and
PSD-95, Bcl-2, HO-2, M2-RK, LDHA, PDK
in the hippocampus; catecholamine level
modulation

Reducing the symptoms of
cognitive impairment;

improving spatial memory,
learning, memorization;

reducing the level of
apoptosis in the cerebral
cortex and hippocampus

Encephalopathy

Nrf2/ARE activation; decrease in IL-1β,
IL-6, TNF-α levels; restoration of SIRT1
levels and phosphorylation of mTOR and
NF-κB p65

Reducing the symptoms of
encephalopathy; reducing the

level of neuroinflammation
and apoptosis

Decreased activity of CS, Aco, and CK;
increased LP in the brain with a high level
of H2S

Increased neuroinflammation
and apoptosis

Depression and
anxiety
disorders

Increased expression of Sirt1, Sirt6, IL-4,
IL-10, NOS2, PI3K/p-Akt, mTORC1, TrkB
PSD-95, synaptophysin, and AMPA receptor
GluR1/2 subunit; decreased levels of IL-1β,
IL-6, TNF-α; deposition of Fe2+, ROS,
H3K9ac, Notch1, Beclin 1, GRP78

Antidepressant and anxiolytic
effect; improvement of

memory, learning ability;
reduction of apoptosis; loss of

dendritic spines

Epilepsy

Decreased levels of aquaporin 4, 1β, IL-6,
TNF-α, c-fos; increased expression of PKC,
Kir6.2 and SUR1, GABABR1 and GABABR2

Reducing epileptic seizures

NMDAR and AMPAR activation Increase in epileptic seizures

Chronic pain Decrease in PI3K, TNF-α, IL-1β, IL-6;
increase in Nrf2, HO-1, NQO1 and GSTM1

Reduced symptoms of chronic
pain, neuroinflammation and

apoptosis

The role of H2S in neurodegenerative disorders

Alzheimer’s
disease

Inhibition of Tau hyperphosphorylation;
expression of JNK, p38, TNF-α, IL-6, IL-1β,
miR-155, pAkt, Bax, caspase-3, Aβ1-40,
Aβ42; phosphorylation of p38 MAPK, p65
NF-κB, BACE1; increased levels of
synaptophysin, PSD-95, Bcl-2, Sirt1, Nrf2

Improving memory, learning;
reducing the number of

amyloid β-plaques in the
hippocampal cortex, the level

of neuroinflammation and
oxidative stress

Parkinson’s
disease

Increased expression of Nrf-2, dopamine,
GSH; activation of BDNF/TrkB,
miR-135a-5p; inhibition of ROS/NO, LP,
ROCK2

Reducing the progression of
Parkinson’s disease; decreased

death of dopaminergic
neurons in the SN;

neuroinflammation, oxidative
stress



Int. J. Mol. Sci. 2023, 24, 10742 30 of 42

Despite the progress achieved in this area, further research into H2S-dependent sig-
naling mechanisms underlying the pathogenesis of neurotrauma, mental disorders, and
neurodegenerative diseases is needed. This is of fundamental importance and should ex-
pand our knowledge of the H2S signaling mechanisms in the survival and death of neurons
and glial cells. At the same time, these studies are of practical value and can become the
basis for the development of new clinically effective H2S-associated neuroprotective drugs
of a new generation and optimize the existing tactics for the treatment of the pathological
conditions discussed above.

12. Main Conclusions
12.1. Effects of H2S in Neurons and Glial Cells in Injuries of the Central and Peripheral
Nervous System

1. H2S reduces oxidative stress via uptake of ROS and increased levels of GSH,
Trx-1, COD, CAT and GPx, and p66Shcis. However, high levels of H2S can induce
oxidative stress;

2. H2S can modulate NMDAR activity through cAMP\PKA, and H2S can directly inter-
act with cysteine residues of NMDAR subunits, modifying them by S-sulfhydration.
H2S can activate slow L-type Ca2+ channels, as well as fast T-type Ca-type CaV
3.2 channels;

3. H2S can inhibit inflammation by reducing ROS, NF-κB, leukocyte adhesion to the
endothelium, TNF, IL-1β, and NLRP3/caspase-1/GSDMD. However, excessive pro-
duction of ROS can cause the oxidation of H2S to form sulfite, leading to leukocyte
adhesion and neurophilic activation. H2S may increase inflammation through the
inhibition of caspase-3 and the activation of p38 protein kinase;

4. H2S can increase the level of the neurotrophic factors GDNF, NGF, BDNF, and VEGF;
5. H2S is involved in maintaining the integrity of the blood-brain barrier via inhibition

of PKC-α, β I, β II and δ, and activation of PKC-ε and increased levels of Claudin-5,
Occlusin and ZO-1, as well as in the suppression of the expression of AQP4 on
astrocytes and the inhibition of MMP-9 and NOS level modulation;

6. H2S can lead to both the destruction of the myelin sheath and the processes of remyeli-
nation and the repair of axons by activating the PI3K/AKT/mTOR signaling pathway;

7. H2S can regulate apoptosis by acting as an anti- or pro-oxidant, or by interacting
with proteins involved in apoptotic signaling. H2S can reduce the expression of p53,
caspase-3, Bax, NF-κB p65, NOX4, iNOS, COX-2, and increase Bcl-2, ncRNA CasC7
and the phosphorylation of Akt;

8. H2S can reduce autophagy by modeling the PI3K/Akt /Nrf2 and ROS signaling path-
ways. H2S may enhance autophagy by increasing miR-30c, Beclin 1, and LC3 levels;

9. H2S can inhibit ferroptosis by reducing the level of ROS, the LDH accumulation of
Fe2+, and by increasing the antioxidant enzyme GSH, as well as through the activation
of NRF2/KEAP1 and AMPK to phosphorylate p62;

10. H2S can reduce pyroptosis by inhibiting NOD-, LRR-, NLRP 3, GSDMD, caspase-1,
and ASC.

12.2. Effects of H2S in Neurons and Glial Cells in Mental Disorders:

1. H2S may reduce cognitive impairment through the inhibition of endoplasmic reticu-
lum stress, caspase-12, CHOP, and TLR4 /NF-κB; a decrease in the level of TNF-α,
IL-1β and IL-6, Sirt1, ROS, LP, CPR78, CHOP, caspase-12, Bax; and an increase in
synapsin-1 and PSD-95, Bcl-2, HO-2, M2-RK, LDHA, and PDK in the hippocampus.
H2S modulates the level of catecholamines and reduces the level of apoptosis;

2. H2S may reduce apoptosis in encephalopathy through Nrf2/ARE activation. However,
a high content of H2S reduces the activity of CS, Aco, and CK, and enhances LP in the
brain. H2S reduces neuroinflammation through a decrease in the level of IL-1β, IL-6,
TNF-α, and also restores the level of SIRT1 and phosphorylation mTOR and NF-κB
p65 for encephalopathy;
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3. H2S has an antidepressant and anxiolytic effect through an increase in the expression
of Sirt1, Sirt6, IL-4, and IL-10, the activation of PI3K/p-Akt, and a decrease in the level
of IL-1β, IL-6, TNF-α, Fe2+ deposition, ROS, NOS2, H3K9ac, Notch1, Beclin 1, and
GRP78. H2S prevents the loss of dendritic spines and increases the level of mTORC1,
TrkB PSD-95, synaptophysin, and the AMPA receptor GluR1/2 subunit in depression
and anxiety disorders;

4. H2S reduces epileptic seizures. H2S reduces the level of aquaporin 4, 1β, IL-6, TNF-α,
and c-fos, and increases the expression of PKC, Kir6.2 and SUR1, GABABR1 and
GABABR2. However, H2S can also lead to seizures via activation of NMDARs
and AMPARs;

5. H2S can reduce neuropathic pain through the inhibition of the expression of microglial
activation, a decrease in the level of apoptosis, PI3K, TNF-α, IL-1β, and IL-6, and
increased levels of Nrf2, HO-1, NQO1 and GSTM1.

12.3. Effects of H2S in Neurons and Glial Cells in Neurodegenerative Diseases:

1. H2S may reduce the progression of Alzheimer’s disease. H2S inhibits hyperphospho-
rylation Tau; reduces amyloid β-plaques in the hippocampal cortex, neuroinflamma-
tion, oxidative stress, JNK expression, p38, TNF-α, IL-6, IL-1β, miR-155, pAkt, Bax,
caspase-3, Aβ1-40, Aβ42, the phosphorylation of p38 MAPK, p65 NF-κB, and BACE1;
and increases synaptophysin levels, PSD-95, Bcl-2, Sirt1, and Nrf2;

2. H2S may reduce the progression of Parkinson’s disease. H2S reduces the death of
dopaminergic neurons in the SN; increases the expression of Nrf-2, dopamine, and
GSH; activates BDNF/TrkB, and miR-135a-5p; and inhibits ROS/NO, LP, and ROCK2.
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