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Abstract: High levels of M2 macrophage infiltration invariably contribute to poor cancer prognosis
and can be manipulated by metabolic reprogramming in the tumor microenvironment. However, the
metabolism-related genes (MRGs) affecting M2 macrophage infiltration and their clinical implications
are not fully understood. In this study, we identified 173 MRGs associated with M2 macrophage
infiltration in cases of gastric cancer (GC) using the TCGA and GEO databases. Twelve MRGs were
eventually adopted as the prognostic signature to develop a risk model. In the high-risk group, the
patients showed poorer survival outcomes than patients in the low-risk group. Additionally, the
patients in the high-risk group were less sensitive to certain drugs, such as 5-Fluorouracil, Oxaliplatin,
and Cisplatin. Risk scores were positively correlated with the infiltration of multiple immune
cells, including CD8+ T cells and M2 macrophages. Furthermore, a difference was observed in the
expression and distribution between the 12 signature genes in the tumor microenvironment through
single-cell sequencing analysis. In vitro experiments proved that the M2 polarization of macrophages
was suppressed by Sorcin-knockdown GC cells, thereby hindering the proliferation and migration of
GC cells. These findings provide a valuable prognostic signature for evaluating clinical outcomes
and corresponding treatment options and identifying potential targets for GC treatment.

Keywords: M2 macrophage; gastric cancer; prognosis; metabolism; tumor microenvironment

1. Introduction

Gastric cancer (GC) is the fifth most common malignancy and the fourth leading
cause of cancer-associated death worldwide [1]. The therapeutic strategies for GC include
surgery, chemotherapy, targeted therapy, and radiotherapy [2]. However, the efficacy of
these current treatments has not yet met expectations. Effective prognostic and treatment
evaluation is necessary in order to guide treatment decisions in clinical settings. Classi-
cally, pathological tumor node metastasis (TNM) staging is used as a common prediction
method applied to cancer. However, even patients with the same TNM pathological stage
usually exhibit different survival outcomes [3]. Tumor heterogeneity makes it difficult to
accurately predict disease development via pathological staging, and differences in genetic
characteristics can explain such heterogeneity. Exploring biological gene signatures is
an exciting strategy for identifying robust prognostic biomarkers and may contribute to
clinical decision making with respect to cancer.

In the tumor microenvironment (TME) of solid tumors, infiltrating macrophages
are particularly abundant [4]. High plasticity and heterogeneity are the hallmarks of
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macrophages. In response to different signals from the TME, tumor-associated macrophages
(TAMs) may be phenotypically polarized to the M1 (pro-inflammatory) or M2 (anti-
inflammatory) states [5]. M2 macrophages secrete various cancer-inducing molecules (such
as CHI3L1 and TGF-β), which stimulate the proliferation and metastasis of tumor cells [6,7].
Additionally, abundant M2 macrophages can remodel an immunosuppressive TME by
inhibiting the immune response of T cells, thereby promoting the immune escape of tumor
cells and resistance to immunotherapy [8,9]. Clinical and experimental evidence support
the notion that the abundance of infiltrating M2 macrophages is unfavorable with regard to
the prognosis of patients with various cancers [10]. Recently, the mechanisms underlying
M2 macrophage infiltration have garnered increasing attention and have become the focus
of anti-cancer research.

Previous studies suggest that metabolic alterations in the TME create pro-tumorigenic
and immunosuppressive microenvironments by manipulating the differentiation and activ-
ity of immune cells [11–14]. The tumor-specific metabolic reprogramming driven by the
alteration of metabolism-related gene (MRG) expression results in metabolic changes in
the TME and considerably regulates M2 macrophage infiltration in the TME. For exam-
ple, SREBP overexpression in tumor cells leads to the deregulation of lipid metabolism,
which promotes the formation of a lipid-enriched TME [15]. Changes in the TME polarize
macrophages to the M2 phenotype by stimulating unconventional endoplasmic reticulum
stress responses in TAMs [16]. In addition, PINK1 deficiency causes the Warburg effect in
GC cells. This metabolic alteration subsequently induces the M2 polarization of TAMs [17].
Thus, the consideration of changes in MRG expression can help researchers explore valuable
biomarkers for evaluating M2 macrophage infiltration and patient prognosis.

In this study, we identified MRGs that affected the abundance of infiltrating M2
macrophages and constructed a 12-MRG prognostic signature for a risk model of GC. We
confirmed the effectiveness of this prognostic signature in validation cohorts and used it to
assess the efficacy of anti-cancer drugs. We further investigated the mechanism of action of
the prognostic signature, especially regarding its relationship with the immune microenvi-
ronment in GC. We validated the expression of Sorcin (SRI) in GC cells and its role in the
M2 polarization of macrophages in vitro. These findings may help predict GC prognosis
and provide guidance for clinical decision making and potential treatment targets.

2. Results
2.1. Metabolic Programming Involved in M2 Macrophage Infiltration Influencing GC Prognosis

A flow chart describing this study is shown in Figure 1. It has been reported that high
levels of M2 macrophage infiltration accelerate cancer development [18,19]. We evaluated
the effect of the M2 macrophage infiltration degree on GC prognosis using the CIBERSORT
algorithm based on the TCGA-STAD dataset. Kaplan–Meier survival analysis showed that
patients with GC samples presenting high infiltration of M2 macrophages had significantly
shorter overall survival (OS) compared to patients with low M2 macrophage infiltration
(Figure 2A). Gene Set Enrichment Analysis (GSEA) was conducted to explore potential
biological mechanisms associated with M2 macrophage infiltration. Multiple metabolic
pathways were significantly enriched in the high-M2-macrophage-infiltration group, such
as neutral lipid catabolic processes, energy reserve metabolic processes, and the regulation
of amino acid transport (Figure 2B). Furthermore, Gene Set Variation Analysis (GSVA)
was conducted; the heatmap of the GSVA scores also indicated that various metabolic
pathways were activated in the high-infiltration group (Figure 2C). These findings sug-
gest that metabolic reprogramming may contribute significantly to the infiltration of M2
macrophages in GC. This provides an essential basis for us to evaluate the role of M2
macrophage-associated MRGs in GC prognosis.



Int. J. Mol. Sci. 2023, 24, 10625 3 of 20

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 3 of 21 
 

 

infiltration of M2 macrophages in GC. This provides an essential basis for us to evaluate 
the role of M2 macrophage-associated MRGs in GC prognosis. 

 
Figure 1. The study flowchart. STAD: stomach adenocarcinoma; TCGA: The Cancer Genome Atlas; 
OS: overall survival; MRGs: metabolism-related genes; scRNA-seq: single-cell sequencing. 

Figure 1. The study flowchart. STAD: stomach adenocarcinoma; TCGA: The Cancer Genome Atlas;
OS: overall survival; MRGs: metabolism-related genes; scRNA-seq: single-cell sequencing.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 4 of 21 
 

 

 
Figure 2. Identification of metabolic programming significantly associated with M2 macrophage 
infiltration. (A) Kaplan–Meier curves showing the difference in overall survival between the high- 
and low-M2-macrophage-infiltration groups. (B) GSEA showing the enrichment of metabolism-re-
lated pathways in patients with a high infiltration level of M2 macrophages. (C) GSVA between the 
high- and low-M2-macrophage-infiltration groups. GSEA: Gene Set Enrichment Analysis; GSVA: 
Gene Set Variation Analysis. 

2.2. Identification of MRGs Associated with M2 Macrophage Infiltration 
A total of 1980 MRGs were identified from the Molecular Signature Database 

(MSigDB; http://www.broad.mit.edu/gsea/msigdb/, accessed on 20 November 2022; Sup-
plementary File S1). We initially analyzed the correlation between MRG expression and 
the abundance of infiltrating M2 macrophages via the Spearman correlation analysis us-
ing data from the TCGA-STAD and GSE84437 datasets. As shown in the Venn diagram 
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MRGs are primarily involved in fatty acid metabolism, the generation of precursor me-
tabolites and energy, and organic acid biosynthesis, among others, with regard to the cat-
egory of biological processes (BPs). The significant enrichment terms with regard to cel-
lular components (CCs) were the oxidoreductase complex, the lysosomal lumen, the vac-
uolar lumen, etc. Significant enrichment with regard to molecular functions (MFs) in-
cluded heme binding, tetrapyrrole binding, and iron ion binding, among others. KEGG 
analysis showed that the pathways primarily enriched included retinol metabolism, gly-
colysis/gluconeogenesis, and carbon metabolism, among others (Figure 3D).  
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infiltration. (A) Kaplan–Meier curves showing the difference in overall survival between the high-
and low-M2-macrophage-infiltration groups. (B) GSEA showing the enrichment of metabolism-
related pathways in patients with a high infiltration level of M2 macrophages. (C) GSVA between
the high- and low-M2-macrophage-infiltration groups. GSEA: Gene Set Enrichment Analysis; GSVA:
Gene Set Variation Analysis.

2.2. Identification of MRGs Associated with M2 Macrophage Infiltration

A total of 1980 MRGs were identified from the Molecular Signature Database (MSigDB;
http://www.broad.mit.edu/gsea/msigdb/, accessed on 20 November 2022; Supplementary
File S1). We initially analyzed the correlation between MRG expression and the abundance
of infiltrating M2 macrophages via the Spearman correlation analysis using data from
the TCGA-STAD and GSE84437 datasets. As shown in the Venn diagram (Figure 3A),
173 MRGs were found to be associated with M2 macrophage infiltration (cor > 0.1, p < 0.05;
Supplementary File S3). The co-expression network diagram shows the top 30 related
MRGs, including TREM2, OLR1, ASAH1, LIPA, and NOX4 (Figure 3B).
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Figure 3. Identification of MRGs associated with M2 macrophage infiltration. (A) Venn diagram
of MRGs associated with M2 macrophage infiltration. (B) Co-expression network diagram of the
top 30 MRGs associated with M2 macrophage infiltration. (C) Bubble plots displaying the GO
analysis results of all 173 MRGs associated with M2 macrophage infiltration. (D) Bubble plots
displaying KEGG analysis results of the 173 MRGs associated with M2 macrophage infiltration. MRGs:
metabolism-related genes; GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes.

Next, we explored the molecular characteristics of the 173 M2-macrophage-related
MRGs using Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analyses. As shown in Figure 3C, the GO analysis revealed that these
MRGs are primarily involved in fatty acid metabolism, the generation of precursor metabo-
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lites and energy, and organic acid biosynthesis, among others, with regard to the category
of biological processes (BPs). The significant enrichment terms with regard to cellular com-
ponents (CCs) were the oxidoreductase complex, the lysosomal lumen, the vacuolar lumen,
etc. Significant enrichment with regard to molecular functions (MFs) included heme bind-
ing, tetrapyrrole binding, and iron ion binding, among others. KEGG analysis showed that
the pathways primarily enriched included retinol metabolism, glycolysis/gluconeogenesis,
and carbon metabolism, among others (Figure 3D).

2.3. Construction and Validation of a Novel Prognostic Model

To determine the prognostic value of the MRGs associated with M2 macrophage
infiltration, we constructed and validated a prognostic model based on the 173 MRGs.
The TCGA-STAD cohort (consisting of 371 samples) was used as the training set, and the
GSE84437 cohort (consisting of 433 samples) was used as the validation set. For the training
set, we assessed the associations between the MRGs and OS through univariate Cox propor-
tional hazards regression analysis and identified 40 OS-related MRGs (OS-MRGs, p < 0.05)
(Figure 4A). Lasso regression was then applied to exclude overfitting genes (Figure 4B,C).
As a result, 12 OS-MRGs were identified: NOX4, STARD3NL, ABCA1, LPL, DYNLL1,
SLC5A5, APOD, ELOVL4, SRI, FUT2, SMPD3, and FAAH. The risk scores of each sample
were calculated based on the 12 identified OS-MRGs (the details are shown in Supple-
mentary File S4). The receiver operator characteristic (ROC) curves and corresponding
AUC values were also determined to assess the discriminatory ability of the constructed
model. The AUC values for the one-year, three-year, and five-year OS were 0.694, 0.705,
and 0.72, respectively, suggesting that the sensitivities and specificities of the risk scores
were reasonable (Figure 4D). A cutoff point of 4.52 for the model was selected based on the
minimum Akaike information criterion (AIC) (Figure S1A). Accordingly, 229 samples (risk
score < 4.52) and 142 samples (risk score ≥ 4.52) were classified into the low-risk group and
high-risk group, respectively (Figure 4E). Higher risk scores corresponded with more death
events (Figure 4F). Kaplan–Meier survival analysis revealed that the patients in the low-risk
group had significantly better prognostic outcomes than the patients in the high-risk group
(p < 0.001) (Figure 4G).

To further evaluate the predictive efficacy of the risk model, the validation set was
used to generate a distribution plot of the risk score and the Kaplan–Meier survival curves.
As expected, the patients in the validation set could be reasonably divided into low- or high-
risk groups according to the cutoff point defined in the TCGA-STAD cohort (Figure S1B,C).
Patients with a high risk score had higher mortality rates than patients with a low risk score
in the validation set. Notably, the prognostic model has an extremely significant p-value
(p < 0.001) in the validation set, thus confirming that the model has good predictive ability
and a wide range of applications (Figure 4H).

2.4. Evaluation of the Clinical Values of the Prognostic Risk Model

In the prognostic gene signature, nine risk MRGs (NOX4, STARD3NL, ABCA1, LPL,
DYNLL1, SLC5A5, APOD, ELOVL4, and SRI) were upregulated in the high-risk group,
whereas three MRGs (FUT2, SMPD3, and FAAH) were downregulated in the high-risk
group (Figure 5A). The univariate and multivariate Cox proportional hazard regression
analyses confirmed that the risk score based on the 12 MRGs was an independent prognostic
factor compared to various clinical characteristics (Figure 5B,C).
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Figure 4. Construction and validation of an MRG prognostic model. (A) Forest plot of 40 prognostic
M2-macrophage-related MRGs determined via univariate Cox regression analysis. (B,C) Cvfit and
lambda curves showing the process through which we calculated the minimum cross-validation
error point (B), and the corresponding nonzero coefficients for prognostic risk model construc-
tion (C). (D) 1-, 3-, and 5-year ROC curves of risk model for predicting OS status in the training
group. (E) Risk plot showing the distribution of the risk score in the training group. (F) Risk plot
showing the distribution of OS outcome in the training group. (G) Kaplan–Meier curves of OS
status in the training group. (H) Kaplan–Meier curves of OS status in the validation group. MRGs:
metabolism-related genes; OS: overall survival; ROC: receiver operator characteristic.
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Figure 5. Evaluation of the clinical values of the prognostic risk model. (A) The upper heatmap
depicts the difference in the distribution of clinical characteristics between the two groups. The
bottom heatmap shows the distribution of prognostic MRG expression. * p < 0.05, ** p < 0.01, and
*** p < 0.001. (B,C) Forest plots showing the univariate (B) and multivariate (C) Cox regression
analyses of clinical parameters and the risk score. (D) Kaplan–Meier curves for PFS outcome of
samples from the TCGA-STAD cohort. (E) ROC curves of risk model for predicting 1-year, 3-year,
and 5-year PFS status of samples from the TCGA-STAD cohort. (F) Nomogram for predicting 1-year,
3-year, and 5-year probabilities of OS outcome. (G) Calibration curves for assessing accuracy of the
nomogram. The dashed diagonal line in grey represents the ideal model. MRGs: metabolism-related
genes; PFS: Progression-Free Survival; OS: overall survival; ROC: receiver operator characteristic.

We further analyzed the differences in the clinical characteristics between the two risk
groups. Significant differences were observed regarding the M stage (p < 0.05) and grade
(p < 0.001) between the two groups (Figure 5A). Kaplan–Meier analysis for PFS (Progression-
Free Survival) showed that patients in the high-risk group had higher recurrence rates than
patients in the low-risk group (p < 0.001) (Figure 5D), with reasonable sensitivities and
specificities (Figure 5E).
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Using the clinical parameters and risk score, a nomogram model was established for
predicting OS. As depicted in Figure 5F, the one-year, three-year, and five-year predicted OS
values of patients were calculated according to the sum of each point. A higher point total
corresponded with a worse survival outcome. The calibration curve was used to evaluate
this nomogram. The calibration curves based on the prediction of one-year, three-year, and
five-year OS were closely consistent with an ideal diagonal curve, which suggested that the
nomogram was highly precise (Figure 5G). In addition, a nomogram was also developed
for predicting PFS with reasonable accuracy (Figure S1D,E).

2.5. Gene Mutation and Drug Sensitivity in the Risk Model

We counted the frequencies and distributions of gene mutations in each group
(Figure 6A,B). The waterfall plots show that TTN (52%), TP53 (44%), MUC16 (33%), ARID1A
(31%), and CSMD3 (26%) were the top five most frequent mutational genes in the low-risk
group. Moreover, TTN (47%), TP53 (39%), LRP1B (29%), MUC16 (25%), and CSMD3 (23%)
were the top five frequent mutational genes in the high-risk group. In the high-risk group,
ARID1A had a lower mutational frequency (15% vs. 31%), whereas FAT3 presented a higher
mutational frequency (19% vs. 14%). Analysis of the difference in tumor mutational burden
(TMB) between the two groups showed that the TMB values in the low-risk samples were
higher than those in the high-risk samples (p < 0.01) (Figure 6C).

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 9 of 21 
 

 

(31%), and CSMD3 (26%) were the top five most frequent mutational genes in the low-risk 
group. Moreover, TTN (47%), TP53 (39%), LRP1B (29%), MUC16 (25%), and CSMD3 (23%) 
were the top five frequent mutational genes in the high-risk group. In the high-risk group, 
ARID1A had a lower mutational frequency (15% vs. 31%), whereas FAT3 presented a 
higher mutational frequency (19% vs.14%). Analysis of the difference in tumor mutational 
burden (TMB) between the two groups showed that the TMB values in the low-risk sam-
ples were higher than those in the high-risk samples (p < 0.01) (Figure 6C). 

 
Figure 6. Cancer-related gene mutation and drug sensitivity in the risk model. (A,B) Waterfall plots 
showing the mutation information in the low-risk group (A) and high-risk group (B). (C) Violin plot 
showing the difference in TMB between the two risk groups. (D–H) Box plots depicting the mean 
differences in estimated IC50 values of 5 representative drugs (Afatinib, 5-Fluorouracil, Oxaliplatin, 
Cisplatin, and Dasatinib) between the two risk groups. (**, p < 0.01; ***, p < 0.001). TMB: tumor mu-
tational burden; IC50: half-maximal inhibitory concentration. 

The above results revealed that risk grouping can help distinguish the mutation of 
certain genes and determine TMB levels. Mutational signatures are considered markers of 
drug sensitivity in cancer [20]. Next, we calculated and compared the drug sensitivity 
(IC50) between the two risk groups. As shown in Figure 6D–G, the commonly used 
chemotherapeutic and targeted therapeutic drugs analyzed herein, including Afatinib, 5-
Fluorouracil, Oxaliplatin, and Cisplatin, may be candidate drugs for patients with low 

Figure 6. Cancer-related gene mutation and drug sensitivity in the risk model. (A,B) Waterfall plots
showing the mutation information in the low-risk group (A) and high-risk group (B). (C) Violin plot



Int. J. Mol. Sci. 2023, 24, 10625 9 of 20

showing the difference in TMB between the two risk groups. (D–H) Box plots depicting the mean
differences in estimated IC50 values of 5 representative drugs (Afatinib, 5-Fluorouracil, Oxaliplatin,
Cisplatin, and Dasatinib) between the two risk groups. (**, p < 0.01; ***, p < 0.001). TMB: tumor
mutational burden; IC50: half-maximal inhibitory concentration.

The above results revealed that risk grouping can help distinguish the mutation of
certain genes and determine TMB levels. Mutational signatures are considered markers
of drug sensitivity in cancer [20]. Next, we calculated and compared the drug sensitiv-
ity (IC50) between the two risk groups. As shown in Figure 6D–G, the commonly used
chemotherapeutic and targeted therapeutic drugs analyzed herein, including Afatinib,
5-Fluorouracil, Oxaliplatin, and Cisplatin, may be candidate drugs for patients with low
risk scores. Furthermore, Dasatinib may be appropriate for patients with high risk scores
(Figure 6H). Significantly, in the 71-drug screening, the low-risk group was more sensitive
to 65 types of drugs. The analyses of other drugs are shown in Supplementary File S5.

2.6. Estimation of Immune Cell Infiltration and the Immune Response Using the Prognostic Risk
Signature

Because the prognostic MRG signature was identified based on M2 macrophage
infiltration, we subsequently explored relationships between the prognostic signature and
characteristics of the immune microenvironment in GC. First, we calculated the proportions
of infiltrating immune cells in the samples using the CIBERSORT method (Figure 7A). We
then compared the proportions of each immune cell between the two risk groups. As shown
in Figure 7B, some immune cells, including monocytes, M2 macrophages, and resting mast
cells, were more enriched in the high-risk group, whereas activated CD4+ memory T cells
and resting NK cells were more enriched in the low-risk group. We further calculated the
correlation coefficients between the risk score and tumor-infiltrating immune cells using
seven methods. Risk scores showed a significant positive association with most immune
cells in the TME, such as M2 macrophages, cancer-associated fibroblasts, CD4+ T cells,
and CD8+ T cells (Figure 7C). However, risk scores were negatively correlated with some
recognized anti-tumor immune cells, such as activated CD4+ and CD8+ effector memory
T cells.

High expression levels of immune checkpoint genes can directly inhibit the activation
of specific immune cells and contribute to immune escape in cancer cases. Immune check-
point expression provides clues for evaluating the efficacy of immunotherapies targeting
immune checkpoints [21]. We explored the correlation between immune checkpoint gene
expression and risk scores. The expression levels of twenty-six checkpoint genes were
significantly correlated with the patients’ risk scores. Among these, most genes exhibited
positive correlations in terms of expression, such as CD200, CD48, CD80, CD86, and CD276
(p < 0.05, Figure 7D).

Human leukocyte antigen (HLA) genes encode proteins primarily involved in antigen
presentation and launch subsequent immune responses [22]. We also found that risk scores
were positively correlated with the expression of a series of HLA genes, such as HLA-DOA,
HLA-DRA, and HLA-DPA1 (p < 0.05) (Figure S2A–L). Overall, risk score severity can be
used to evaluate the abundance of infiltrating immune cells and the immune responses
of patients.

2.7. Single-Cell-Sequencing (scRNA-seq) Analysis of Prognostic Genes

We reconstructed a single-cell atlas (GSE183904) comprising 26 GC samples to explore
the expression and distribution of the aforementioned MRGs in the TME. After quality
control and data merging, 24,907 cells were eventually processed using the Seurat algorithm.
We then performed Principal Component Analysis (PCA) dimension reduction followed
by clustering and Uniform Manifold Approximation and Projection (UMAP) analysis. All
cells were clustered into thirty subgroups (Figure S3A). Cell type annotation was then
performed based on previously published studies and using the “Single R” method. The
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thirty subgroups were further divided into ten categories of cell types, including fibroblasts,
tissue stem cells, mast cells, endothelial cells, epithelial cells, macrophages, T cells, B cells,
smooth muscle cells, and NK cells (Figure 8A). The expression and distribution of the
12 prognostic genes are depicted in this single-cell atlas (Figure 8B,C). The expression of
the gene DYNLL1 was ubiquitous in the TME of GC, whereas SRI, FUT2, and SMPD3 were
moderately expressed in GC epithelial cells. Moreover, ABCA1 was primarily expressed in
macrophages.
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Figure 7. Estimation of immune cell infiltration and immune responses using the prognostic risk
signature. (A) Bar plot showing the proportion of tumor-infiltrating immune cells in the GC samples
from TCGA. (B) Violin plots concerning the differences in abundance of immune cells between
the two risk groups. (C) Correlation coefficients between immune cell proportions and risk scores
determined using seven methods. (D) Correlation between expression of checkpoint genes and risk
scores in the TCGA-STAD cohort. The color of each unit represents the correlation degree. *, p < 0.05;
**, p < 0.01; ***, p < 0.001. GC: gastric cancer; TCGA: The Cancer Genome Atlas.
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after dimension reduction (GSE183904). (B) Dot plot representing relative expression of 12 prognostic
genes in the different cell categories. (C) UMAP plots showing the distribution of 12 prognostic
genes in the single-cell tumor microenvironment atlas. UMAP: Uniform Manifold Approximation
and Projection.

2.8. Experimental Validation of SRI Function in the GC Immune Microenvironment

Based on the aforementioned analysis, the prognostic MRGs associated with M2
macrophage infiltration may be critical targets for ameliorating the outcomes of patients
with GC. Bulk RNA sequence (RNA-seq) and scRNA-seq profiling revealed that among the
MRGs, SRI was significantly overexpressed in GC cells (Figures 8B,C and S3B). High SRI
expression indicated a poor prognosis for GC in both The Cancer Genome Atlas (TCGA)
and Gene Expression Omnibus (GEO) datasets (Figure S3C,D). Subsequently, we examined
whether the SRI in GC cells regulated the M2 polarization of macrophages in the TME,
which accelerates cancer progression.

We first evaluated the expression level of SRI in normal gastric epithelial cells and
GC cell lines. It was determined that SRI expression was relatively high in the GC cells,
especially in AGS and HGC-27 (Figure 9A). Then, we silenced SRI expression using specific
siRNAs in these two cell lines and verified the high silencing efficiency (Figure 9B,C). Con-
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trol or SRI-knockdown GC cells were co-cultured with PMA-induced THP-1 macrophages
in a transwell system (Figure 9D). Flow cytometry analysis revealed that the proportion of
M2 macrophages (CD206 as a marker) was significantly reduced after co-culturing with
SRI-knockdown GC cells (Figure 9E,F). The qRT-PCR results also showed that SRI-depleted
GC cells enhanced the expression levels of M1 biomarkers (TNF-α and CD86) and down-
regulated M2 biomarker expression (CD163 and CD206) in macrophages (Figure 9G,H).
This indicated an important role of SRI in promoting macrophage polarization to the
M2 phenotype.
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Figure 9. Experimental validation of the role of SRI in the GC immune microenvironment. (A) qRT-
PCR analysis of SRI mRNA expression in GC cell lines (AGS, HGC-27, and MKN-25) and GES-1 cell
lines. (B,C) qRT-PCR analysis of relative SRI mRNA expression levels after transfection with siRNA in
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HGC-27 (B) and AGS (C) cell lines. (D) Schematic diagram illustrating the design of a co-culture
system for THP-1-derived macrophages and GC cells. Φ symbol represents co-culturing conditions.
(E,F) Flow cytometry analysis of M2 macrophages (CD206 as a marker) after co-culturing with control
or SRI-knockdown GC cells for 48 h. (Φ: co-culturing conditions; Φ si-Ctrl: Control; Φ si-SRI#2:
co-cultured with SRI-siRNA#2-infected GC cells). (G,H) Relative mRNA expression of TNF-α, CD86,
CD206, and CD163 in THP-1-derived macrophages detected via qRT-PCR after being co-cultured
with control or SRI-knockdown GC cells. (Φ: co-culturing conditions; Φ si-Ctrl: Control; Φ si-SRI#1:
co-cultured with SRI-siRNA#1-infected GC cells; Φ si-SRI#2: co-cultured with SRI-siRNA#2-infected
GC cells). (I,J) Transwell assays showed the migratory and invasive potential of GC cells cultured in
corresponding CM from treated macrophages. Scale bar: 100 µm. (K,L) Incucyte live-cell-imaging
analysis showed the cell proliferation potential of GC cells cultured in corresponding CM from treated
macrophages. Data represent findings from three independent experiments and are shown as the
mean± SD of three replicates (**, p < 0.01; ***, p < 0.001). GC: gastric cancer; CM: conditioned medium.

Furthermore, we investigated whether SRI-mediated macrophage polarization to the
M2 phenotype contributed to cancer progression. After the co-culturing of macrophages
and SRI- knockdown/control GC cells, the conditioned medium (CM) was collected from
the treated macrophages and then cultured with GC cells. The CM from the macrophages
cultured with the SRI-knockdown groups inhibited the proliferation, migration, and in-
vasion of GC cells (Figure 9I–L). These findings indicate that the knockdown of SRI in
GC cells inhibited the M2 polarization of macrophages in the TME, thereby suppressing
malignant GC progression.

3. Discussion

An increasing number of studies have recognized that metabolic reprogramming in the
TME drives the M2 polarization of TAMs, thereby accelerating cancer development [23–25].
However, the MRGs that influence M2 macrophage infiltration and their clinical value
remain unknown. Large-scale transcriptome data and recently developed computational
tools can help to explore these questions. To the best of our knowledge, this study is the first
to identify MRGs associated with M2 macrophages using in-depth transcriptome analysis.
Notably, based on these MRGs, we developed a novel prognostic signature with promising
clinical applications.

Our results indicate that the infiltration level of M2 macrophages is a negative prognos-
tic factor with respect to GC [26]. Interestingly, differences in multiple metabolic pathways
were observed between the high- and low-infiltration groups. Previous studies have re-
ported the construction of prognostic models using metabolism-related characteristics.
For example, after analyzing RNA-seq data and corresponding clinical data from a GC
cohort, Luo et al. identified a group of survival-related MRGs, based on which an effective
prognostic model was constructed for risk stratification in relation to GC [27]. Chen et al.
divided patients with hepatocellular carcinoma into three energy metabolism-related sub-
types with different prognoses. Among the subtypes, further analysis indicated differently
expressed energy MRGs, which were subsequently used to establish an effective prognostic
model [28]. Although recent studies have identified some prognostic MRGs of cancer,
most of these studies have not considered the TME factor in their models and have thus
barely revealed the important mechanistic links between an immunosuppressive TME and
prognosis. In our study, the prognostic MRG model not only showed good reliability with
respect to predicting patient outcomes but also provided novel insights into the evolution
of the TME from the perspective of M2 macrophage infiltration. The MRGs associated
with M2 macrophage infiltration were identified using both TCGA and GEO datasets. As
expected, the constructed risk score showed a significant positive correlation with the
infiltration of M2 macrophages. Risk scores were also positively correlated with the infil-
tration of CD4+ T cells and CD8+ T cells, whereas they were negatively correlated with
the infiltration of anti-tumor CD4+ effector memory T cells and CD8+ effector memory T
cells in the TME. As M2 macrophages exert strong immunosuppressive effects [29], we
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can reasonably speculate that the increasing abundance of immune cells does not overrule
the effect of the immunosuppressive phenotypes of immune cells [30]. The prognostic
MRGs manipulated M2 macrophage infiltration, thereby leading to the development of an
immunosuppressive TME and increasing prognostic risk. Further analysis revealed that
the patients’ risk scores were positively associated with the expression of certain immune
checkpoint proteins. This also suggests that a higher prognostic risk indicates a significantly
immunosuppressive TME.

Commonly used anti-cancer drugs, including platinum-based agents, often target
DNA synthesis or DNA damage repair. Thus, mutational signatures in cancer are consid-
ered potential markers of drug sensitivity. Our results indicated significant gene mutation
frequency and TMB value differences between the two risk groups. In addition, the risk
grouping effectively predicted the patients’ sensitivity to multiple targeted drugs and
chemotherapeutic agents. The patients in the low-risk group were more sensitive to most
therapeutic drugs (such as Afatinib, 5-Fluorouracil, Oxaliplatin, and Cisplatin). This finding
also explained why patients with advanced GC exhibit limited responses to conventional
drug therapy. The drugs for which the high-risk group exhibited good sensitivity may be
candidates for the treatment of patients with advanced GC. In addition, emerging evidence
shows that GC patients with high TMB values tend to respond better to immune checkpoint
blockade therapy such as anti-PD1 therapy [31,32]. A greater number of mutations in tumor
cells provide a greater number of new antigens that can be recognized and targeted by the
immune system [33]. Our risk model effectively distinguished between TMB levels and
may also help predict the efficacy of immunotherapy with respect to GC.

The study used bulk RNA-sea and scRNA-sea analyses to determine the molecular
characteristics of the crucial prognostic MRGs, and in vitro experiments were conducted to
verify them further. We focused on the SRI gene as an example. SRI is highly expressed in
certain cancer cells. The TCGA data analyses demonstrated that SRI was highly expressed
in GC tissues, and patients with high SRI expression had a poor prognosis. The ScRNA-seq
results further indicated that SRI is expressed at high levels in GC-derived epithelial cells.
Currently, only a limited number of studies have reported that SRI inhibits cancer cell
apoptosis, thereby contributing to the development of GC [34]. Additionally, the role of
SRI in the TME has not been revealed. Analysis based on RNA-seq data showed that M2
macrophage infiltration is associated with SRI expression in GC tissue. TAMs are highly
plastic and can be induced into the M2 phenotype by tumor cells [4]. We speculated whether
the high expression of SRI in GC cells induces the M2 polarization of macrophages in the
TME of GC. Subsequent cell experiments confirmed this speculation. In terms of metabolic
function, SRI protein can bind to PPP1R3G to form a complex, thus contributing to the
regulation of glucose homeostasis and lipid metabolism [35]. The interaction between SRI
expression and the M2 polarization of macrophages supports the notion that there is close
dependence between GC cell metabolism and immune response in the TME. The prognostic
MRGs identified in this study may represent promising targets for future investigations on
immunotherapy, leading to novel insights that are yet to be fully elucidated.

Our findings were based on large-scale bulk RNA-seq and scRNA-seq cohorts. Bulk
RNA-seq is a powerful and extensively used tool with regard to tumor biomarker discov-
eries, disease diagnosis, and optimizing treatment [36,37]. Significant infiltration of the
stroma and immune cell populations in a tumor results in a highly heterogeneous TME,
whereas heterogeneity is only limitedly revealed by bulk RNA-seq. This problem catalyzed
the recent development of scRNA-seq. ScRNA-seq has unprecedented utility in revealing
the intra-tumor heterogeneity at a single-cell resolution in multiple cancers, including
GC [38]. However, scRNA-seq data can only be used to obtain a few thousand types of tran-
scripts from a single cell, which is far fewer than a bulk RNA-seq profile. ScRNA-seq and
bulk RNA-seq data cannot provide spatial information, thereby limiting the understanding
of pathological changes. Due to these limitations, the intra-tumor immune microenviron-
ment could not be completely assessed. Spatial RNA sequencing (spRNA-seq) is emerging
as a transformative technology. SpRNA-seq combines bulk transcriptome analysis and in
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situ hybridization, thus providing RNA-seq data with spatial locations. Understanding
such complex spatial information helps us tremendously with respect to clarifying how
cells communicate with each other and how differently expressed genes relate to immune
and pathological features [39]. spRNA-seq is still in its infancy, and the future goal is to
develop an applicable spatial multiomics technology at single-cell resolution [40]. Owing
to the capacity of spRNA-seq to dissect intercellular subpopulations of the TME sensitively
and spatially, future studies should be able to elucidate a more detailed mechanism by
which metabolic reprogramming closely interacts with the macrophage population and
macrophage plasticity in the TME.

4. Materials and Methods
4.1. Data Acquisition

RNA-seq data and corresponding clinical information were obtained from the STAD
cohort in The Cancer Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov/;
accessed on 13 November 2022) (n = 371) and the GSE84437 dataset (n = 433) in the Gene
Expression Omnibus (GEO) public database (https://www.ncbi.nlm.nih.gov/geo; accessed
on 13 November 2022). The scRNA-seq data were downloaded from the GSE183904 dataset
(n = 26; accessed on 28 November 2022) in the GEO. The abovementioned datasets complied
with the access rules of TCGA and GEO data.

4.2. Identification of M2 Macrophage Infiltration

The CIBERSORT method was adopted to calculate the proportions of M2 macrophage
infiltration in each sample using the “CIBERSORT” package [41]. CIBERSORT is a decon-
volution algorithm that can transform gene expression matrix data into a corresponding
immune cell infiltration matrix. The standard p-value of <0.05 was used to filter samples.

4.3. Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA)

GSEA and GSVA were applied to evaluate pathways associated with M2 macrophage
infiltration based on the KEGG and GO gene sets from the MSigDB (p < 0.05). All analyses
were performed using R software (ver 4.2.1) (University of Auckland, Auckland, New
Zealand), and the R packages utilized in these operations included the org.Hs.eg.db,
clusterProfiler, enrichplot, GSEABase, GSVA, and limma packages.

4.4. Identification of MRGs Associated with M2 Macrophage Infiltration

A total of 1980 MRGs (including glucose-, lipid-, ATP-, and amino-acid-metabolism-
related genes) were obtained from the MSigDB [42,43]. The detailed genes are listed in
Supplementary File S1. Then, the Spearman method was used to calculate correlation
coefficients between MRG expression and the abundance of infiltrating M2 macrophages in
the TCGA-STAD and GSE84437 datasets, and all the MRGs associated with M2 macrophage
infiltration were identified (|cor| > 0.1 and p < 0.05).

The R packages used in these operations were the tidyverse, ggplot2, ggpubr, and
ggExtra packages.

4.5. Functional Enrichment Analysis

GO and KEGG analyses were performed to explore the functional categories of the iden-
tified MRGs (p < 0.05). The R packages used in these operations were ggplot2, org.Hs.eg.db,
circlize, RColorBrewer, dplyr, ComplexHeatmap, clusterProfiler, and enrichplot.

4.6. Construction and Validation of Prognostic Models

Univariate Cox regression analysis was performed to determine OS-MRGs. OS-MRGs
were screened using Lasso regression to minimize prediction errors. The best log lambda
value (corresponding to the minimum cross-validation error point) was calculated for
model fitting. The final OS-MRGs were identified as the prognostic signature with β values
using multivariate Cox regression, and the risk score of each patient was calculated using
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following the formula: ∑n
i=1 βI × PSI. The one-, three-, and five-year ROC curves were

generated to evaluate the accuracy of the prognostic model. The AIC value (the point on
the one-year ROC curve that was closest to the upper-left corner) was considered the cut-off
point for dividing patients into high- or low-risk groups. Kaplan–Meier curves of survival
and progression-free survival (PFS) were constructed to visualize differences between the
two risk groups. Furthermore, a nomogram was constructed to predict the OS and PFS of
patients. All analyses were performed using R (University of Auckland, Auckland, New
Zealand; ver 4.2.1), for which the following packages were employed: the survival, glmnet,
survival, timeROC, survminer, rmda, and rms packages.

Univariate and multivariate Cox regression analyses were used to evaluate the inde-
pendence of the risk scores, and the results were shown in forest plots. The Chi-square
test and Wilcoxon signed-rank test were conducted to analyze the relationship between
the risk score and clinicopathological characteristics, and a band diagram was used for
visualization. The R packages used in this respect were survival, forestplot, and pheatmap.

4.7. Identification of Mutated Genes and Drug Sensitivity Prediction

The Chi-square test and waterfall plots were performed and developed to analyze
and visualize the frequency and distribution of gene mutations in each group, respectively
(p < 0.05). The R package maftools was used to generate the waterfall plots.

We calculated the half inhibitory concentration (IC50) of common chemotherapies in
the two risk groups and showed differences between groups in the form of box plots by
performing the Wilcoxon signed-rank test. The R packages used in this procedure include
oncoPredict, parallel, limma, ggplot2, and ggpubr.

4.8. Assessment of Immune Cell Infiltration and Immune Microenvironment

We used seven methods (TIMER, CIBERSORT, XCELL, QUANTISEQ, MCP-counter,
EPIC, and CIBERSORT-ABS) to evaluate the abundance of immune cell infiltration among
the samples in the TCGA–STAD dataset. The correlation between the risk score and the
proportion of each immune cell was evaluated using the Spearman correlation analysis.
A lollipop diagram was constructed to present the correlation coefficients (p < 0.05). Fur-
thermore, linear correlation plots were developed to indicate the correlation between HLA
gene expression and risk scores via the Spearman correlation analysis. The R packages
involved in this regard were corrplot, scales, limma, ggplot2, and ggtext.

4.9. ScRNA-seq Analysis of Prognostic Genes

The “Seurat” R Package (https://satijalab.org/seurat/; accessed on 28 November 2022;
version 4.2.1) was used to analyze the scRNA-seq data. ScRNA-seq data were filtered using
the following criteria: 1000–6000 unique gene counts, <5% mitochondrial counts, and >300
genes. The “scTransform” and “harmony” methods were used for batch correction and sub-
sequent data integration, respectively. Then, principal component analysis (PCA), cluster
analysis, and uniform manifold approximation and projection (UMAP) for dimensionality
reduction and visualization purposes were used for the integrated dataset. The top 30 prin-
cipal components were selected, and a resolution of 0.8 was adopted for clusters. Clusters
were annotated according to known marker genes from previously published studies and
the “SingleR” method [44]. The R packages used in this regard included Seurat, dplyr,
tidyverse, patchwork, Matrix, scales, cowplot, harmony, data.table, stringr, and SingleR.

4.10. Cell Culture and Transfection

THP-1 cells were provided by the American Type Culture Collection (ATCC, Man-
assas, VA, USA). The Cell Resource Center of the Chinese Academy of Medical Sci-
ences (Beijing, China) provided AGS, MKN-45, and HGC-27 cells. For in vitro investi-
gations, RPMI-1640 (Gibco, Carlsbad, CA, USA) with 10% fetal bovine serum (Gibco)
and 1% penicillin–streptomycin solution were utilized to culture cells at 37 ◦C with 5%
CO2. Two distinct small interfering RNAs (siRNA) against SRI were designed and synthe-
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sized by Genepharma (Suzhou, China). The target sequences of siRNA for SRI were 5′-
GAUCCGCUGUAUGGUUACUTT-3′ (si-SRI#1) and 5′-GCCGGCUUAUGGUUUCAAUTT-
3′ (si-SRI#2). All transfections were performed according to the manufacturer’s protocols
using jetPRIME (Polyplus Transfection, New York, NY, USA).

4.11. RNA Extraction and Quantitative Real-Time Polymerase Chain Reaction (qRT–PCR)

Total cellular RNA was extracted from cell lines using Total RNA Extraction Reagent
(R0027, Beyotime, Shanghai, China) following the standard protocol. The obtained
RNA was subsequently processed for cDNA using a cDNA synthesis kit (R233-01,
Vazyme, Nanjing, China). The cDNA was then subjected to real-time quantitative re-
verse transcription–polymerase chain reaction (qRT–PCR) assay on a CFX96 (Bio-Rad,
Hercules, CA, USA) using qPCR SYBR Green Master Mix (Q111-03, Vazyme, China). Rel-
ative mRNA expression was calculated using the 2−ddCt method and normalized to
GAPDH. All primers were synthesized by Sangon Biotech (Shanghai, China) and are listed
in Supplementary File S2.

4.12. Macrophage Polarization Experiments

THP-1 cells were treated with PMA (Sigma-Aldrich, St. Louis, MO, USA) for 24 h
to induce macrophage-like differentiation. The THP-1-derived macrophages were co-
cultured with GC (HGC-27 or AGS cells) in a co-culture transwell system (Corning,
New York, NY, USA). GC cells were placed in the lower chamber, and macrophages
were placed in the upper chamber. Co-cultured macrophages were harvested after 48 h.

4.13. Flow Cytometry

Macrophages were collected and washed twice using washing buffer (PBS with 1%
FBS). Macrophages were fixed with 4% paraformaldehyde at room temperature for 10 min
and blocked with 1% BSA in PBS for 1 h at room temperature. Macrophages were then in-
cubated with FITC anti-human CD206 Antibody (#321103; Biolegend, San Diego, CA, USA)
for 30 min at room temperature. Then, macrophages were analyzed using BD LSR-
Fortessa (BD Biosciences, Franklin Lakes, NJ, USA) and Flowjo software (Tree Star, Inc.,
Ashland, OR, USA).

4.14. Cell Migration and Invasion Assay

GC cells were collected and resuspended in a serum-free medium. Cells were then
plated on the upper chamber of the transwell system (Corning, New York, NY, USA). For
invasion assays, the upper chamber was pre-coated with Matrigel (#350234; Corning, New
York, NY, USA; 1:8 diluted with RPMI-1640). Cell growth medium (20% FBS) was added in
the chambers of 24-well plates. After incubating for 24 h (migration assay) or 48 h (invasion
assay), cells were fixed with 4% paraformaldehyde and stained with 0.1% crystal violet
solution (G1063, Solarbio, Beijing, China). Stained cells were visualized and recorded under
a microscope.

4.15. Incucyte Live-Cell-Imaging Analysis

Cell proliferation was measured by performing live-cell-imaging analysis (IncuCyte
ZOOM™; Essen Bioscience, Ann Arbor, MI, USA). Briefly, 5000 cancer cells were plated
onto a 96-well clear bottom plate. Nine images were captured in every well at the specified
time point. Cell proliferation was determined by calculating the total area occupied by cells
(% confluence).

5. Conclusions

In summary, this study is the first to evaluate the prognostic and applicational value
of MRGs with regard to cancer from the perspective of M2 macrophage infiltration. We
constructed and validated a convincing prognostic model based on independent training
and validation datasets. The prognostic signature identified herein can reflect the immune
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microenvironment of patients to some extent and can be applied to evaluate patients who
are more likely to benefit from cancer therapeutics. Our results highlight the existence of a
significant correlation between metabolic reprogramming and M2 macrophage infiltration,
thus providing a novel prognostic signature and promising therapeutic targets for GC.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijms241310625/s1.
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