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Abstract: Oyster mushroom spherical virus (OMSV) is a mycovirus with a positive-sense single-
stranded RNA genome that infects the edible mushroom Pleurotus ostreatus. OMSV is horizontally
transferred from an infected strain to a cured strain via mycelia. The infection results in significant
inhibition of mycelial growth, malformation of fruiting bodies, and yield loss in oyster mushrooms.
This study successfully transferred OMSV from P. ostreatus to Pleurotus pulmonarius. However,
transmission was not successful in other Pleurotus species including P. citrinopileatus, P. eryngii, P.
nebrodensis, and P. salmoneostramineus. The successful OMSV infection in P. pulmonarius was further
verified with Western blot analysis using a newly prepared polyclonal antiserum against the OMSV
coat protein. Furthermore, OMSV infection reduced the mycelial growth rate of P. pulmonarius.
The OMSV-infected strain demonstrated abnormal performance including twisted mushrooms or
irregular edge of the cap as well as reduced yield of fruiting bodies in P. pulmonarius, compared to the
OMSV-free strain. This study is the first report on the infection and pathogenicity of OMSV to the
new host P. pulmonarius. The data from this study therefore suggest that OMSV is a potential threat
to P. pulmonarius.

Keywords: oyster mushroom spherical virus; Pleurotus pulmonarius; co-culturing; horizontal
transmission

1. Introduction

Mycoviruses are widespread in most fungi, including edible fungal species [1]. Most
mycoviruses contain double-stranded RNA (dsRNA) genomes, while some have single-
stranded RNA (ssRNA), single-stranded DNA (ssDNA), or double-stranded DNA (dsDNA)
genomes [2]. In many cases, mycovirus alter the host fungus phenotype. Mutualism is
also common between mycoviruses and their hosts [3,4]. Many edible mushroom species
are infected with mycoviruses, including Agaricus bisporus, Lentinula edodes, Pleurotus os-
treatus, Flammulina velutipes, Pleurotus eryngii, Agrocybe aegerita, Boletus edulis, Volvariella
volvacea, Grifola frondose, Armillaria species., Auricularia heimuer, Bondarzewia berkeleyi, Pi-
coa juniperi, Leucocybe candicans, Cordyceps chanhua, and Pleurotus citrinopileatus [1,5–19].
These mycoviruses can enhance or diminish various symptoms in the host fungi, includ-
ing changes in morphology, sporulation, pigmentation, radial growth, and/or biomass
production [20,21].

Mycoviruses lack an extracellular phase for invading new hosts, as they are usu-
ally horizontally transmitted via hyphal anastomosis or vertically via asexual and sexual
spores in nature [22]. Mycoviruses can only infect the same or closely related vegetative
compatibility groups [23]. However, some mycoviruses can be vertically transmitted via
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basidiospores such as La France isometric virus (LIV) in A. bisporus, and in L. edodes, the
Lentinula edodes negative-stranded RNA virus 1 (LeNSRV1), Lentinula edodes spherical
virus (LeSV), and Lentinula edodes partitivirus 1 (LePV1) [6,24–26]. In the laboratory,
Cryphonectria parasitica and other Cryphonectria species were co-cultured, and a very strong
vegetative incompatibility barrage was detected between the colonies. However, six out
of the ten Cryphonectria species isolates tested were successfully infected by Cryphonec-
tria hypovirus 1 (CHV-1) from C. parasitica via hyphal anastomosis [27]. Cornejo et al.
(2021) demonstrated that the Cryphonectria naterciae fusagravirus 1 (CnFGV1) can spread
not only within species but also via cross-species transmission. CnFGV1 can be easily
transmitted in Cryphonectria. naterciae via asexual spores to the next generation of the
experimentally-infected Cryphonectria species [28]. In A. bisporus, the mushroom virus
X (MVX) can spread horizontally via hyphal anastomosis from an infected strain to five
other virus-free strains [29]. Recently, a novel mycovirus Cordyceps chanhua partitivirus 1
(CchPV1) in C. chanhua was reported to be transmitted horizontally from strain RCEF5997
to strain RCEF5833 [18]. In our previous studies, OMSV was transmitted horizontally from
an OMSV-infected strain to the cured strain [30]. Therefore, further investigation of the
cross-species virus transmission of OMSV was necessary.

Pleurotus ostreatus (oyster mushroom) is a widely cultivated edible saprophytic ba-
sidiomycete [31]. Several mycoviruses infecting this mushroom have been previously
identified, including the dsRNA viruses Pleurotus ostreatus virus 1 (PoV1), Pleurotus
ostreatus spherical virus (POSV), oyster mushroom isometric virus (OMIV), Pleurotus
ostreatus virus ASI2792 (PoV-ASI2792), Pleurotus ostreatus virus Shin-Nong (PoV-SN), and
the only positive-sense (+) ssRNA virus, oyster mushroom spherical virus (OMSV) [5,32–36].
OMSV is closely related to the mushroom die-back disease and first was detected in Korea
infecting P. ostreatus mushroom crops in 2003. The spherical virion is 27 nm in diameter and
has a genome size of 5784 nucleotides with seven open reading frames (ORFs). The RNA-
dependent RNA polymerase (RdRP) and coat protein (CP) are encoded by ORF1 and 2,
respectively [5]. Previously, an OMSV-China strain was identified from the P. ostreatus 8129
strain, which negatively affects mycelial growth, distorts fruiting bodies, and decreases
mushroom yield [30].

This study aimed to identify if OMSV could infect and threaten other Pleurotus species.
Co-cultivation assays demonstrated that OMSV can horizontally transfer from P. ostreatus
to P. pulmonarius but not to P. eryngii, P. citrinopileatus, P. nebrodensis, or P. salmoneostramineus.
Furthermore, OMSV infection reduced the mycelial growth rate of P. pulmonarius, and
the OMSV-infected mushrooms displayed abnormal performance. Moreover, the OMSV
infection reduced the yield of fruiting bodies in P. pulmonarius. The current study is the
first to report the details of the OMSV infection in the new host P. pulmonarius. The results
of this study demonstrate that OMSV is a potential threat to P. pulmonarius and possibly to
other Pleurotus species.

2. Results
2.1. OMSV Infects the New Host Pleurotus pulmonarius across the Species Barrier

Previous research has shown that OMSV can horizontally transfer to a virus-cured
isogenic strain [30]. In order to test if the OMSV transmission could occur between different
Pleurotus species, we collected the strains of P. eryngii, P. citrinopileatus, P. nebrodensis, P.
pulmonarius, and P. salmoneostramineus. By the multiplex RT-PCR detection, all the stains
were negative for OMSV, OMIV, POSV, or PoV1 (Figure S1). Then, the OMSV-infected P.
ostreatus 8129 strain was used as a donor and co-cultivated with the five recipient strains
on potato dextrose agar (PDA) plates. Following several days of co-cultivation, a strong
and clear barrage line between donor and recipient strains was observed (Figure 1A). One
inoculum from the region of the donor culture and two from the recipient culture were
then sub-cultivated. After seven days of culture, the presence or absence of OMSV in all
strains was detected using reverse transcription (RT)-PCR. OMSV was positive only in the
P. pulmonarius and negative in the other four Pleurotus species under the same conditions
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(Figure 1B). Thus, the results suggest that the OMSV was successfully transferred from P.
ostreatus to P. pulmonarius.
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Figure 1. Co-cultivation of OMSV-positive (+) Pleurotus ostreatus and OMSV-free (−) Pleurotus spp.
(A) Co-culture of the donor strain with replicate C1021 of P. eryngii, replicate Y055 of P. citrinopileatus,
replicate BN18 of P. nebrodensis, replicate XH2208 of P. pulmonarius, and replicate TH20901 of P.
salmoneostramineus. (B) RT-PCR detection of OMSV in different inocula. OMSV-free strains were used
as negative controls (N). M, DNA Marker2000.

To further confirm that OMSV can stably replicate in P. pulmonarius, polyclonal an-
tiserum against OMSV-CP was prepared. The amplified OMSV CP gene was subcloned
into the pDB.His.MBP vector to obtain the pDB.His.MBP-CPOMSV recombinant vector. The
predicted His-MBP-CPOMSV fusion protein was 67 kDa in size. After prokaryotic expression
and purification, sodium dodecyl sulfate–polyacrylamide gel (SDS-PAGE) electrophoresis
showed a clear band near the 70 kDa protein marker (Figure 2A). Western blot analysis
with His-tag rabbit polyclonal antibody demonstrated the presence of the signal at the same
position (Figure 2B), suggesting that the MBP-CPOMSV fusion protein was successfully pu-
rified. The specific antiserum against CPOMSV was obtained via rabbit immunization using
the purified protein. To further investigate if the antiserum was OMSV specific, the total
protein extracts of the OMSV-free and OMSV-infected P. pulmonarius mycelia were used
for Western blotting using the CPOMSV polyclonal antibody. The antiserum was positive in
reactions with OMSV-infected P. pulmonarius mycelia which had a specific protein band at
approximately 24 kDa, but no reaction was observed in the OMSV-free strain (Figure 2C).
These results suggest that the developed antiserum effectively detected the OMSV. The titer
of the CPOMSV antiserum was then detected using Western blotting with OMSV-infected P.
pulmonarius mycelia at the ratio range from 1:500 to 1:100,000 (Figure 2D). A clear protein
band of 24 kDa was detected down to a dilution of 1:100,000, suggesting that the prepared
OMSV CP antiserum displayed high sensitivity.

Taken together, RT-PCR and serological detection co-cultivation tests confirmed that
OMSV can persistently infect P. pulmonarius across the incompatibility barrier.

2.2. OMSV Infection Slows the Mycelial Growth Rate of P. pulmonarius

To investigate if OMSV infection affects P. pulmonarius mycelial growth, OMSV-free
and OMSV-infected isogenic strains were cultured on PDA plates (Figure 3A). The OMSV
infection in the P. pulmonarius mycelia was detected using RT-PCR (Figure 3B) and Western
blot (Figure 3C). Following the seven-day incubation, the virus-infected strain exhibited a
reduced mycelial growth rate compared with the virus-free strain (Figure 3A). To confirm
this finding, the mycelial growth rate was monitored by measuring the colony diameter
every other day for seven days. The OMSV-infected strain grew at approximately 0.89 times
slower rate than the OMSV-free strain at 7 DPI (days post-inoculation) (Figure 3D).
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and (B) Western blot. Lane M, molecular weights of protein marker; lanes 1–3, purified recombinant
protein with concentrations of 0.5, 1.0, and 5.0 mg/mL, respectively. The arrow indicated the
recombinant protein. (C) Specificity analysis of OMSV-CP antiserum using Western blotting. The
left lane shows the negative control, and the right contains proteins extracted from OMSV-infected
P. pulmonarius mycelia. (D) Titer determination of OMSV-CP antiserum. The antiserum was used
at eight different dilutions (1:500, 1:1000, 1:2000, 1:5000, 1:10,000, 1:20,000, 1:50,000, and 1:100,000)
against OMSV. The bands corresponding to the samples in (C) are presented.
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Figure 3. Morphology of isogenic strains of Pleurotus pulmonarius after 7 days of incubation. (A)
Healthy P. pulmonarius with regular morphology. OMSV-infected stain showing some extreme
sectoring. (B) RT-PCR detection of OMSV used to verify the virus transmission. N, negative control,
the healthy P. pulmonarius strain; M, DNA Marker2000. (C) A Western blot of OMSV used to verify
the virus presence. Lane M, molecular weights of protein marker. (D) The growth rate of OMSV-free
and OMSV-infected isogenic strains of P. pulmonarius. The independent sample t-test was performed
between the OMSV-free and OMSV-infected isogenic strains (ns, not significant; * p < 0.05; ** p < 0.01).
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2.3. Effects of OMSV Infection on the Phenotype of the Fruiting Bodies in P. pulmonarius

To examine if OMSV infection influenced P. pulmonarius fruiting body phenotype, the
OMSV-free and OMSV-infected isogenic strains were subjected to cultivation experiments,
and the average cultivation period from inoculation to harvest of the first flush mush-
rooms was calculated. There was no significant difference in the period from inoculation
to harvest between OMSV-free and OMSV-infected strain (Table 1). We also observed the
morphology of the fruiting bodies and found that the OMSV-infected strain produced ab-
normal mushrooms with a twisted stem or irregular cap edges (Figure 4A). In contrast, the
OMSV-free strain grew normal mushrooms without any detectable symptoms (Figure 4A).
To confirm the presence of OMSV in the fruiting bodies, the deformed fruiting bodies
were randomly collected and screened with RT-PCR (Figure 4B). Sequence progeny for
OMSV in the fruiting bodies was determined by amplicon sequencing. Furthermore, a
high accumulation of OMSV-CP in the fruiting bodies of the OMSV-infected P. pulmonarius
strain was detected with Western blot analyses (Figure 4C). In contrast, no OMSV-CP
accumulation was detected in the OMSV-free P. pulmonarius strain (Figure 4C).

Table 1. The influence of OMSV infection on Pleurotus pulmonarius measured in the cultivation test.

Strains
Period from

Inoculation to
Harvest (day)

1st Flush Yield
(g/bag)

2nd Flush Yield
(g/bag)

OMSV-free 29.66 ± 1.52 173.9 ± 12.33 136.62 ± 10.19
OMSV-infected 32.00 ± 1.00 122.76 ± 6.58 ** 105.42 ± 11.16 *

* p < 0.05 indicates that differences are statistically significant; ** indicates a significant difference (p < 0.01) between
OMSV-free and OMSV-infected strains.
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Figure 4. The performance of fruiting bodies affected by OMSV infection in Pleurotus pulmonarius. (A)
Morphological observation and comparison of fruiting bodies of the OMSV-free and OMSV-infected
strains. RT-PCR (B) and Western blot (C) detection of OMSV in fruiting bodies of both strains.
Numbers 1–6 represent six biological replicates. The healthy P. pulmonarius sample was used as
negative control (N). Lane M (B), DNA Marker2000. Lane M (C), molecular weights of protein marker.

2.4. OMSV Infection Reduced Fruiting Body Yield in P. pulmonarius

In order to further investigate the possible effects of OMSV infection on the yield of
the fruiting bodies of P. pulmonarius, the first and second flushes of the fruiting bodies
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were harvested to calculate the average yield (Table 1). By the first flush, P. pulmonarius
yield exhibited a significant difference between OMSV-free and OMSV-infected strains.
The cultivated fruit body average yield of the OMSV-free strain was 173.9 g/bag, which
was 1.42-fold higher than that of the OMSV-infected strain (122.76 g/bag). By the second
flush, the OMSV-infected strain had an average yield of 105.42 g/bag, which was 0.77-fold
lower than that of the OMSV-free strain (136.62 g/bag) (Table 1). These data suggest that
the OMSV infection reduced the P. pulmonarius fruiting body yield.

2.5. Carboxymethyl Cellulase and Laccase Activity in P. pulmonarius Mycelia

As a member of white-rot fungi, P. pulmonarius uses extracellular enzymes to degrade
lignocellulose providing nutrients for mycelial growth. The activity of carboxymethyl cellu-
lase (CMCase) and laccase during P. pulmonarius mycelial growth was therefore measured
(Figure 5). CMCase activity in the OMSV-free strain peaked on the tenth day and the ninth
day in the OMSV-infected strain. The OMSV-infected strain demonstrated a significantly
lower CMCase activity than that in the healthy strain (Figure 5A). Laccase activity of the
OMSV-infected strain was low for the first eight days but then suddenly increased on the
ninth day. General trends are observed that are consistent with what is expected from the
OMSV-free strain (Figure 5B).
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3. Discussion

The OMSV China strain (OMSV-Ch) has been previously reported to have the ability
to be horizontally transferred from an infected P. ostreatus strain to a virus-cured strain via
mycelia [30]. This discovery ignited our curiosity about whether OMSV could infect other
Pleurotus species. In the current study, there were obvious barrage lines between two strains
during the co-culturing of P. ostreatus and other Pleurotus species. Interestingly, OMSV
was able to transfer from the original host to the recipient strain of P. pulmonarius. These
results demonstrated that the OMSV is therefore capable of infecting new hosts across the
species barrier. Similarly, the Cryphonectria naterciae fusagravirus 1 (CnFGV1) can be hori-
zontally transferred from C. naterciae to Cryphonectria carpinicola and Cryphonectria radicalis
by co-cultivation. Cryphonectria nitschkei chrysovirus 1 (CnCV1) infects three different
Cryphonectria species by co-culturing, virion transfection, and protoplast fusion [37]. Cry-
phonectria carpinicola fusagravirus 1 (CcFGV1) in C. carpinicola could be introduced into
the C. carpinicola and C. parasitica strains via virion transfection [38]. Moreover, the OMSV
failed to transfer to P. eryngii, P. citrinopileatus, P. nebrodensis, and P. salmoneostramineus. The
failed OMSV transmission to these four species may be due to the limited number of strains
in the test. Furthermore, the possibility that a strong transmissibility barrier between the
two test strains exists cannot be discounted. According to the phylogenetic studies of
species in the Pleurotus genus, P. ostreatus clusters with P. pulmonarius, and they have a
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closer relationship than with other species (P. eryngii, P. citrinopileatus, P. nebrodensis, or P.
salmoneostramineus) [39], suggesting a stronger interspecies transmission barrier between
the two non-transmissible species.

Although most mycovirus infections are latent with no detectable symptoms, sev-
eral mycoviruses cause deleterious effects in the host [22,40–42]. Infection by several
mycoviruses has been previously reported to cause phenotypic aberrations and yield loss in
cultivated mushrooms including P. ostreatus, A. bisporus, and L. edodes [20,43,44]. Previously,
OMSV was reported to be a causative agent of the difficult-to-control oyster mushroom die-
back disease [5]. In our previous study, an OMSV China strain was identified in deformed
fruiting bodies of the P. ostreatus 8129 strain, and the OMSV-Ch-cured isogenic P. ostreatus
strain was obtained [30]. However, there was no clear evidence to confirm the etiology of
OMSV. To elucidate this, the OMSV-Ch was back-introduced into the virus-cured subculture
via co-culture [30]. Recent studies have shown that the OMSV-Ch-newly infected strain
demonstrated inhibited mycelial growth, caused malformation symptoms, and reduced
the fruiting body yield of the edible mushroom P. ostreatus 8129 strain (unpublished data).
In the current study, the effect of OMSV infection on P. pulmonarius was also investigated.
Similarly, the OMSV-infected P. pulmonarius strain exhibited phenotypic changes and yield
loss of the fruiting bodies, suggesting that OMSV has the potential to be the major pathogen
causing yield loss in P. pulmonarius. As extracellular enzyme activity consequently enhances
mycelial growth and fruiting body production, they are crucial to obtaining the highest
yield of cultivated mushrooms. As reported, mycovirus infection reduces the growth of
their fungal host associated with a decrease in the activity of laccase and cell wall degrading
enzymes [45–47]. The infection of the dsRNA PoV in P. ostreatus affects spawn growth
and fruiting body formation by directly reducing gene expression and then impairing the
activity of some extracellular enzymes [43]. In the present study, OMSV infection reduced
CMCase and laccase activity in the P. pulmonarius strain. This may therefore be the cause of
mycelial growth inhibition and fruiting body malformation. However, few studies have
focused on the interaction between the mycovirus and its host, specifically in edible fungi.
Therefore, these results combined with transcriptome sequencing data that explore other
host factors and pathways have the potential to further elucidate the underlying molecular
mechanisms of OMSV pathogenicity.

In summary, cross-species transmission of OMSV between P. ostreatus and Pleurotus
species was investigated. OMSV was transmitted horizontally to the P. pulmonarius XH2208
strain via hyphal contact. Additionally, OMSV-induced traits in P. pulmonarius included
inhibited mycelial growth, induced dysmorphic symptoms in fruiting bodies, reduced
mushroom yield, and decreased enzymatic activity of CMCase and laccase. To the best of
our knowledge, this is the first report detailing OMSV cross-species transmission in edible
fungi. The results of this study can provide a better understanding of the potential threat
posed by OMSV to P. pulmonarius and other Pleurotus species.

4. Materials and Methods
4.1. Horizontal Transmission of OMSV

To investigate whether OMSV can be transmitted across species, we conducted hor-
izontal transmission experiments. P. ostreatus strain 8129 (OMSV-infected; donor) and P.
eryngii strain C1021, P. citrinopileatus strain Y055, P. nebrodensis strain BN18, P. pulmonarius
strain XH2208, and P. salmoneostramineus strain TH20901 (OMSV-free; recipient) were co-
cultivated separately on PDA at 25 ◦C for 6–8 days, and all strains were deposited in the
Fungarium of the Ludong University. Following contact, the mycelial agar plugs from two
inocula of the recipient were sub-cultured onto PDA medium. Horizontal transmission of
OMSV was detected by RT-PCR amplification using special OMSV primers.

4.2. RNA Extraction and Reverse Transcription PCR

About 0.1 g of fresh mycelium was collected and ground in liquid nitrogen. Total
RNAs were extracted using RNA Easy Fast Plant Tissue Kit (Tiangen, Beijing, China). For
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the RT reaction, 10 µL of RT master mixture containing 6 µL ddH2O, 3 µL 5× RT-PCR buffer,
1 µL dNTP mix, 0.5 µL reverse primer (OMSV-R), 0.25 µL M-MLV reverse transcriptase,
and 0.25 µL RNase Inhibitor was added to 5 µL RNA. Reverse transcription was carried
out at 37 ◦C for 90 min. The final volume of PCR was 15 µL, containing 0.2 µM each
primer (OMSV-F/OMSV-R), 1× Taq PCR MasterMix II (Tiangen, Beijing, China), and 2 µL
cDNA template. PCR cycling was performed as follows: 95 ◦C for 3 min, then 34 cycles of
amplification with 95 ◦C for 30 s, 53 ◦C for 50 s, and 72 ◦C for 30 s, and a final extension
at 72 ◦C for 10 min. For multiplex PCR, the program was set as follows: 95 ◦C for 5 min,
followed by 30 cycles of 3 steps including 95 ◦C for 30 s, 62 ◦C for 30 s, 72 ◦C for 60 s, and a
final extension at 72 ◦C for 10 min [48]. Amplification products were electrophoresed at
125 V for 40 min in 1% agarose gel.

4.3. Prokaryotic Expression and Preparation of Polyclonal Antiserum

The OMSV-CP gene was amplified by PCR with primers CPNdF/CPSaR (Table S1)
and ligated with a prokaryotic expression vector pDB.His.MBP to obtain pDB.His.MBP-
OMSV-CP. The recombinant plasmid was transformed into Escherichia coli BL21 (DE3)
and induced by 0.1 mM isopropyl-beta-D-thiogalactopyranoside (IPTG). Cultures were
grown at 16 ◦C with shaking for 16 h. Then, the cells were collected by centrifugation at
4000× g for 10 min, resuspended in high-salt buffer (20 mM Tris-HCl, 500 mM NaCl, pH
8.0), and disrupted by sonication. The supernatants were applied to a Ni-affinity column,
and the recombinant protein was eluted with elution buffer (20 mM Tris-HCl, 150 mM
NaCl, 100 mM imidazole, pH 8.0). The purified protein was analyzed through SDS-PAGE
electrophoresis.

After purification, the recombinant protein was concentrated to 2 mg mL−1, and 5 mg
protein was used to immunize a rabbit for preparation of the polyclonal antiserum in
Beijing Huada Protein Research & Development Center Co., Ltd. (Beijing, China).

4.4. Protein Extraction and Western Blot

The harvested mycelia were ground to powder in liquid nitrogen and then mixed
with 2× SDS loading buffer (100 mM Tris-HCl, 4% SDS, 0.2% bromophenol blue, and 20%
glycerol). The mixture was boiled at 100 ◦C for 10 min and centrifuged at 12,000 rpm
for 10 min. Protein samples were separated by 12.5% SDS-PAGE and then transferred to
a polyvinylidene fluoride membrane. To detect the His.MBP-OMSV-CP expression, the
membrane was incubated with His-tag rabbit polyclonal antibody followed by horseradish
peroxidase (HRP)-labeled goat anti-rabbit secondary antibody (Shanghai Epizyme Biomed-
ical Technology, Shanghai, China). For detection of OMSV, the membrane was incubated
with rabbit anti-OMSV CP polyclonal antiserum followed by HRP-labeled goat anti-rabbit
secondary antibody (Shanghai Epizyme Biomedical Technology). The antibody–antigen
interactions were visualized by using Omni-ECL™ Pico Light Chemiluminescence Kit
(Shanghai Epizyme Biomedical Technology) according to the manufacturer’s instructions.

4.5. Mycelial Growth Rate Measurement

To evaluate the effect of OMSV on colony morphology, OMSV-free and OMSV-infected
strains inoculated on the center of the PDA medium in a Petri dish with a diameter of
7.5 mm were incubated at 25 ◦C in the dark. After inoculation, mycelial radial growth was
measured from the middle of the fungal inoculum towards the side of the plate using a
ruler. The measurements were performed daily for seven days. Meanwhile, the mycelial
growth rate (mm/day) was calculated. Three biological replicates were assayed for each
sample.

4.6. Cultivation of P. pulmonarius

The active mycelium was cultivated on PDA. A sterilized cylindrical cutter was used
to knock off 7.5 mm of PDA plate culture for the inoculum. The inocula were cultivated
in potato dextrose broth (PDB) in the dark at 25 ◦C in a 500 mL Erlenmeyer flask and
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shaken for 8 days at 150 rpm. The basic culture substrates contained cotton-seed hull (80%),
wheat bran (18%), and lime powder (2%). Before blending the substrates, cotton-seed hulls
were soaked in clean tap water and left overnight at room temperature. The moisture
content was verified by squeezing the substrate in the palm until water was no longer
observed. Blended substrates, weighing 1.5 kg, were then filled into polypropylene bags
and autoclaved at 121 ◦C for 2 h followed by cooling at room temperature. After cooling,
each bag was inoculated with 25 mL of mycelia of P. pulmonarius grown in PDB. The top
opening of each bag was stuffed with cotton and placed in a dark spawn running room
at a temperature of 22–25 ◦C. When the bags were fully colonized by mycelia, they were
moved to a light room for fructification. Proper ventilation and 85–90% relative humidity
of the growth room were maintained by opening the door and using humidifiers. The
temperature of the fruiting room was maintained at 20–22 ◦C with an air conditioner.
The bags were then opened by gently pulling using a knife. Harvesting was performed
when the fruiting bodies were well-developed, 7 days following primordial initiation.
During the cropping period, the mushroom flushes were harvested twice, and a total
of 80 bags of P. pulmonarius yield were measured. The SPSS (version 20) was used for
statistical analysis. The independent sample t-test was used to analyze the significance of
the variation. Values were considered significant when the p-value < 0.05. The results were
presented as mean ± standard deviation.

4.7. Measurement of Enzyme Activity

The activity of CMCase was determined using the DNS method at 540 nm. One unit
(U) of enzyme was defined as the amount that releases 1 µmol of CMCase equivalents per
minute [49]. We used 2,2′-azino-bis (3-ethylbenzthiazoline-6-sulphonate) (ABTS) to deter-
mine the activity of laccase. The reaction mixture contained 0.3 mL of 10 mM ABTS, 3.5 mL
of 0.1 mol/L NaAc-HAc buffer (pH 4.6), and 0.2 mL of the supernatant liquid. Oxidation
of ABTS was followed by measuring the increase by 420 nm (ε = 36,000 M−1 cm−1). The
catalytic conversion of 1 µmol ABTS within 1 min was regarded as one unit of enzyme
activity [50].
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