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Abstract: A sound assessment of in silico models and their applicability domain can support the
use of new approach methodologies (NAMs) in chemical risk assessment and requires increasing
the users’ confidence in this approach. Several approaches have been proposed to evaluate the
applicability domain of such models, but their prediction power still needs a thorough assessment.
In this context, the VEGA tool capable of assessing the applicability domain of in silico models is
examined for a range of toxicological endpoints. The VEGA tool evaluates chemical structures and
other features related to the predicted endpoints and is efficient in measuring applicability domain,
enabling the user to identify less accurate predictions. This is demonstrated with many models
addressing different endpoints, towards toxicity of relevance to human health, ecotoxicological
endpoints, environmental fate, physicochemical and toxicokinetic properties, for both regression
models and classifiers.

Keywords: in silico models; new approach methodologies (NAMs); toxicological endpoints; applicability
domain (AD); VEGA tool

1. Introduction

Confidence in using (quantitative) structure–activity relationship ((Q)SAR) models is a
critical issue to increase their acceptability as new approach methodologies (NAMs) in next
generation risk assessment (NGRA). The difficulty is establishing whether a given (Q)SAR
model can be used for a specific substance of interest. A model is based on the information
within its training set, and one may expect that a model built from specific substance
classes may poorly predict properties for substances belonging to other classes. Thus, if
a model has been developed for anilines, it is not reasonable to apply it to alcohols. The
problem arises in the case of modern models, which are often built up on heterogeneous
classes using a training set that may seem diverse but will never cover all possible chemical
differences. Furthermore, there are often families of chemicals that are difficult to predict.
One of the reasons for this is that some substances have a peculiar behavior that is poorly
represented in the training set, so the model cannot obtain suitable information representing
these substances’ particular effect, which is masked within the larger set of substances.
Therefore, regulatory authorities require evaluating the applicability domain (AD) of the
model, as in the European legislation on industrial substances (the Registration, Evaluation,
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Authorisation and Restriction of Chemicals—REACH—regulation) [1] and in the OECD
principles for (Q)SAR [2].

From a chemometric point of view, the task of defining the AD depends on whether
the prediction is an interpolation or an extrapolation [3,4]. Several approaches to evaluate
the AD of (Q)SAR models have been presented [5–9]. Usually, the information on the
training set is used to characterize the chemical diversity of the target substance and to
verify whether the substance to be predicted is similar or not; chemical descriptors are
used for this purpose [3]. Outliers related to the chemical space have been identified, also
providing tools for building (Q)SAR models that cover the AD [6]. In some cases, the
SMILES format is used to examine rare features of the molecule [10,11].

Some software programs for AD provide a binary outcome, so that the predictions
are identified as either inside or outside the AD. This is the case of the Danish (Q)SAR
Database [12]. The Toxicity Estimation Software Tool (T.E.S.T.) of the US Environmental
Protection Agency (US-EPA) applies a similar binary outcome and filters predictions by
considering whether the (Q)SAR predictions are inside or outside the AD. These two plat-
forms and other commercial ones, such as Leadscope, feature a checklist of considerations
for the AD [13,14]. In some cases, the AD is addressed specifically in relation to specific
toxicity alerts [15].

Since different methods are used to measure the AD, the percentage of substances
outside the AD varies, and in some cases, it can be as low as 2% [14,16].

The VEGAHUB [17] includes VEGA, which is a platform providing more than
100 (Q)SAR models, and other tools for prioritization, risk assessment, and read-across;
users can download the software as an open-access resource. Over the last few years,
the VEGAHUB has been used by the European Chemical Agency (ECHA) for screening
substances that have been pre-registered under REACH [18]. VEGAGHUB is linked to the
OECD QSAR Toolbox version 4.4 and is also available as a stand-alone tool for predictions
within other platforms, such as AMBIT [19] and CCLIC [20].

For each (Q)SAR model, VEGA employs quantitative measurements to address the AD,
composed of multiple factors. Basically, besides checking the chemical similarity between
the target substance and the substances in the training set, VEGA makes additional checks,
specific to the endpoint and the algorithm. In practice, several checks are performed and the
algorithm provides quantitative results. Predictions on the most similar substances are used
to assess whether the prediction is reliable for the target substance. The ad hoc software
checks whether the predictions of substances similar to the target one are correct. The
experimental values for the most similar substances are then compared with the predicted
value of the target substance. In this case, the software compares the agreement between
the two values and any potential inconsistencies are indicated to the user. This is intended
to help the user specifically address certain points; since the process is automated, it allows
to filter out predictions with doubts related to the AD. Specific features regarding AD
measurements within VEGA have been discussed elsewhere in several studies [21–29].

Overall, the AD tool within VEGA has been shown to provide satisfactory results.
In this work, the assessment of the AD tool within VEGA was applied to a range of
models of relevance to human health, ecotoxicity, environmental fate, physicochemical and
toxicokinetic properties for both regression models and classifiers [30].

2. Results

The use of the (Q)SAR models is still limited and one of the reasons behind such
limited use lies in the fact that users are not always confident in the prediction reliability of
such in silico models. Notwithstanding, several means are available to assess the reliability
of (Q)SAR model predictions. The first approach includes statistics related to the model
outputs based on the whole set of available compounds (including training and test sets)
used to build the model. This assessment provides an optimized evaluation of the model; it
is probable that when the model is applied to new substances, predictions may not perform
as well as the results based on the whole set, particularly because the results based on the
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substances in the training set are “facilitated” since they are inside the model. Furthermore,
such a generic evaluation is based on a population of substances; however, predictions for
the target compound may be different from the average results for the whole population.

A second approach is to assess the results of the test set and to constitute a sounder
procedure, since the statistical outputs reflect predictions for substances that are external to
the training set; this case is closer to the practical use of the model. Appropriate measure-
ments using internal validation procedures are also a useful complimentary procedure. In
this case, more confidence in the results can be obtained; still, uncertainty in the prediction
performance for the target substance may arise. The third approach relies on the use of a
tool that allows the assessment of the AD of the model, filtering results that are outside the
AD; this method is available in some in silico platforms.

One key issue is to assess how effective these tools are for AD evaluation so that the
most reliable predictions can be identified. In this case, the evaluation requires classifying a
substance as either inside or outside the AD, while the algorithm at the basis of these tools
refers to a distance, which is not a categorical entity; thus, arbitrary thresholds are applied.

The fourth method relies on applying a quantitative measurement of the AD (such as
the Applicability Domain Index, ADI) and refers to the one described and discussed here
for the VEGA tool (see Section 4. “Materials and Methods”). The aim is to assess whether
the tool implemented in VEGA for the measurement of the AD can identify predictions
which may be inconsistent. Here, the ADI is calculated using a set of substances never
used to build up the model. Finally, a fifth approach is also available to assess prediction
accuracy and relies on full evaluation of all elements provided by VEGA, such as similar
substances and information on the mechanism(s) associated with predicted endpoints;
currently, this process requires manual implementation.

The use of the ADI tool within VEGA has a range of advantages as follows:

1. Allowing the identification of issues related to prediction accuracy and providing the
user with an opportunity for thorough analysis.

2. Allowing identification of mechanisms associated with structural features of the
substances.

3. Analyzing similar substances through a read-across approach.
4. Filtering substances with more reliable predictions, to be used in batch mode for a

range of substances.

The first three advantages refer to the use of in silico models within a weight-of-
evidence (WoE) approach following the scheme provided in the EFSA Guidance on
WoE [31] and further detailed for non-testing methods elsewhere [32]. The user should
evaluate all three lines of evidence specified in the first three points discussed above: the
prediction, the reasoning, and the experimental evidence. What VEGA provides should
be evaluated in an integrated way. If the ADI value is low due to the presence of similar
substances with conflicting results that affect the ADI but are irrelevant because they con-
tain fragments of an adverse effect absent in the target substance, the user may disregard
these substances and consider the prediction reliable, even if the ADI tool serves warnings.
Conversely, if there is a very similar substance with a property value conflicting with the
predictions, this may over-rule such prediction and the ADI will automatically indicate
the issue.

In this study, the use of the ADI tool is described to identify more reliable predictions,
which is useful in addressing many substances. Supplementary Materials reports the
details of the calculations of all the statistical parameters. Below, we reported only the most
representative parameters for classification and regression models, to compare the overall
performance in a simplified way.

Figure 1 shows the statistical results, expressed as accuracy, for the substances in the
test set, according to the classification models towards human toxicity, ecotoxicity, and
environmental properties. In practice, the ADI can recognize potentially inconsistent results,
and predictions in AD have the highest values. Figure 1a illustrates the prediction accuracy
for human toxicological endpoints related to relevant in silico models. The predictions in the
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AD have the highest value; the only exception is the model for the molecular initiating event
for PPAR alpha. For the CORAL model predicting chromosomal aberration, satisfactory
results are shown for predictions that are also outside the AD. For two models, the CAESAR
model for developmental toxicity and carcinogenicity oral classification, the values outside
the AD are somehow better than the values of the predictions potentially outside the AD;
but regardless, the predictions in the AD are always the better ones. Overall, the predictions
potentially outside the AD are still satisfactory, while the predictions outside the AD are
often less reliable.
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Figure 1. Accuracy of the classification models for the substances in the test set for human toxicity,
ecotoxicity and environmental properties.

Figure 2 shows the R2 related to endpoint predictions of the test set for the quantitative
models towards human toxicity, ecotoxicity, environmental/toxicokinetic and physicochem-
ical properties. In this case too, the use of ADI can identify potential issues with prediction
correctness. As expected, quantitative models are generally more complex compared to
classifiers, and so the results are not always ideal, mainly for the most complex endpoints,
such as human toxicology and ecotoxicology. For many of these models for which no
robust support from an ADI perspective was concluded, the input data included tests on
few substances in the test set, and most often fewer than ten. This is the case for the three
(Q)SAR models predicting LOAEL/NOAEL relevant to human toxicity (Figure 2a). When
considering models predicting ecotoxicological properties (Figure 2b), predictions from the
zebrafish embryo toxicity model did not perform very well and this can be rationalized
by the fact that only seven molecules have been used. Hence, from a statistical point of
view, more substances would need to be tested. For the other models too, only a few
substances were used, and more substances would be required to get meaningful statistics.
Thus, results are poor for the COMBASE models, particularly towards Daphnia and the
EPISuite model for fish acute toxicity (as implemented in VEGA). Figure 2c illustrates the
results for the environmental and toxicokinetic properties in fish. In this case, the statistics
are satisfactory if the results are within the AD, with R2 values from 0.76 to 0.96. If the
predictions are potentially out of the AD, the prediction correctness is weaker, and worse if
the predictions are outside the AD. It is easier to model these properties because they are
associated with less complex processes compared to those discussed above.
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Figure 2d shows the prediction results for physicochemical properties and, for these
substances within the ADI, predictions are excellent since these properties are relatively
simple to model. These predictions are also satisfactory for substances potentially outside
the AD, but the performance is weaker when the predictions are outside the AD.

2.1. Examples

To show the use of the ADI, two examples are reported below, one with a high ADI
value and one with a low value. The outputs of the models are reported in the Supple-
mentary Materials (Trifluralin_NOAEL_LIVER_CORAL.pdf and Diethyl(nitroso)amine_
HENRY_OPERA.pdf).

2.1.1. Trifluralin

Trifluralin, an herbicide, was predicted with the Liver NOAEL (CORAL) 1.0.1 model
using the SMILES O=[N+]([O-])c1cc(cc(c1N(CCC)CCC)[N+](=O)[O-])C(F)(F)F. The model
predicts a NOAEL of 2.34 log units (around 221 mg/kg bw) with an ADI of 1.

Table 1 reports the parameters that compose the ADI. The similarity index is high
and, indeed, the two most similar chemicals found in the training set have a similarity
higher than 0.96. The third similar substance has a high similarity (0.895) too, but it was
not considered in the ADI calculation (which is based on the first two similar chemicals
only). Observing the predicted and experimental values of these two similar substances,
the second has the highest difference, but in general, they are around 0.5 log units. The
last two parameters indicate that Trifluralin has no rare or unknown groups and that the
descriptors’ values are in the range of the descriptors of the entire training set.

Table 1. The details on the ADI for the two examples.

Parameters Trifluralin Diethyl(nitroso)amine

ADI 1.000 0.309
Similarity index 0.975 0.773
Accuracy index 0.486 0.452

Concordance index 0.470 1.860
Max error index 0.507 0.765

Descriptors range check True -
ACF index 1.000 0.400

The good reliability of this prediction is confirmed by the experimental value available
for Trifluralin: 2.19 log units (around 154 mg/kg bw).

2.1.2. Diethyl(nitroso)amine

Diethyl(nitroso)amine is an industrial chemical with a predicted Henry’s law constant
of −4.94 log atm-m3/mole (see Table 1 for details on the ADI).

In this case, the ADI is based on the first three similar chemicals, that have a sufficiently
high similarity (similarity between 0.76 and 0.803). They are correctly predicted (accuracy
index of 0.452), even if the first similar chemical has a moderate error (0.765). The prediction
for the Diethyl(nitroso)amine is not concordant with the experimental values of the similar
substances (especially similar 1 and 3). This may be due to the structural differences.
Indeed, none of the similar substances have the nitrosoamine group. The presence of
unknown fragments is also highlighted by the ACF index.

The experimental value confirms the low quality of this prediction (−5.44 log atm-
m3/mole).

3. Discussion

There are several AD tools available in the various software platforms. In this work, a
systematic process has been described and investigated their effectiveness with regards to
inconsistencies in predictions. The use of the ADI tool within VEGA allows supporting



Int. J. Mol. Sci. 2023, 24, 9894 7 of 12

expert judgment without replacing it and the three categories of ADI values (high, moderate,
and low) have different statistical qualities. Indeed, this is particularly helpful in the case
of prediction inaccuracies with a high ADI or when accurate predictions are reported
with a low ADI. However, the prevalence of these predictions inconsistencies is higher for
substances with a low ADI. Confidence in these results is related to linking predictions to
available information for the substances that are at the basis of the model, i.e., those in the
training set. The composite ADI tool proved efficient in capturing this information. The
AD should not be evaluated simply on the basis of the chemical information, and the ADI
tool can detect prediction issues resulting from the in silico model itself that is specific to a
certain endpoint.

The advantage of the ADI tool implemented in VEGA lies in the fact that it is conve-
nient to use VEGA for models available also within other platforms. For instance, VEGA
contains the same (Q)SAR model for mutagenicity (Ames test) implemented in Toxtree.
However, Toxtree does not provide an evaluation of the AD and the user cannot identify the
most similar substance, which is useful for evaluation and read-across procedures. Other
models include those available in EPISuite for BCF for which the AD must be analyzed
manually, which is quite a complex process.

This manuscript highlighted that it is possible to identify prediction accuracy for a
range of models resulting in a range of statistical quality, depending on the ADI value.
What is typically described for the results of a model are the statistical results, for instance
on the training and test sets which are provided at the level of the whole population of
chemicals. In our case, the statistical quality of the results for substances with a high ADI
was higher in most cases. Thus, if the ADI is high, the expectation is that the prediction
accuracy of the model will be higher than those observed on the whole population of
substances. In a few cases, the ADI does not improve prediction accuracy. In this case,
sound statistical values for prediction accuracy are reflected at the population level, or one
may expect even lower prediction accuracy for low ADIs. In cases where the prediction of
the (Q)SAR model is not satisfactory, applying read-across is recommended. This can be
performed by considering similar substances provided by VEGA using ToxRead as another
tool present in VEGAHUB and offering tens of modules for different endpoints, or using
the VERA tool [33].

4. Materials and Methods
4.1. Applicability Domain Index within VEGA

Since in silico models, including those available within the VEGAHUB, are constructed
on three pillars, namely endpoint, chemical information, and the algorithm providing
predictions, the applicability domain index (ADI) requires a thorough assessment on these
three components. Depending on the specific model, there are some specific components of
the ADI, for instance, if the model is a regression model or a classifier.

The chemical information is assessed by considering the chemical similarity. This
is measured according to several parameters and provides values ranging from 0 to 1
(1 indicates identity) [34]. Such values can be used to assess how similar the substances
in the training set are. The chemical similarity, as in the case of all similarities, is not an
objective measurement, and there are many possible ways to measure it. For this reason,
VEGA provides images of the six most similar substances, so that users can weigh the
evidence depending on the context of the chemical assessment. Another parameter related
to the chemical information within the ADI is the chemometric check, which allows users
to assess whether the target substance has descriptors outside the range of the descriptor
values of the substances in the training set. In all cases, the range of the molecular weights
is checked, even if the molecular weight is not one of the available descriptors. In addition,
the software assesses whether there are rare fragments in the target substance; for this
purpose, VEGA uses atom-centered fragments.
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There are three components of the ADI related to specific endpoints, namely prediction
accuracy, concordance between the predicted value for the target substance and the experi-
mental values, and presence of fragments associated with outliers for a given fragment:

1. VEGA checks the accuracy of the predictions for similar substances. In this case, the
predicted value of the similar substance is compared with the experimental value. If
the value is a label, such as mutagenic or not, the comparison is provided instantly.
In the case of quantitative values, the software considers the quantitative differences
across substances and an additional factor reports whether the difference in the
prediction is very large or not.

2. Concordance between the predicted value for the target substance and the experi-
mental value of the similar compound is another very important parameter for the
ADI. In this case, the prediction (i.e., the prediction accuracy of the in silico model)
can be related to the “read-across” use of the VEGA output, showing the most similar
substances. In particular, if predictions are different from the experimental values of
similar substances, this poses a question, while if there is agreement, this increases the
ADI. If the model provides structural alerts, VEGA provides an additional check and
indicates whether for a similar substance, one or more structural alerts are present,
and if such a structural alert is present in the target substance too. This is a valuable
piece of information, highlighting to the user, for instance, that there is a structural
alert only for a similar substance. Thus, the user can decide to disregard such a similar
substance as non-relevant.

3. The last component of the ADI regarding the specific endpoint is the presence of
fragments associated with outliers for that endpoint. This component is present only
for a few models, where the model poorly predicted a particular chemical family.

In addition, two components are associated with the algorithm, namely uncertainty of
the model for specific endpoints and the sensitivity of the prediction for a given descriptor
reported for the target compound. VEGA modifies the descriptor value for a small value
and checks whether this causes a large difference in the predicted value.

Based on all these components, the overall ADI value is calculated, and VEGA reports
the values for each component of the ADI and the overall sum. To help the user, a graphical
symbol is shown and indicates warnings qualified as “no”, “moderate”, or “strong”.

The components are measured for the two or three most similar compounds, even
though the software shows the six most similar compounds.

4.2. Categories of ADI Values

An ADI serves as a continuous quantitative value and, to help the user, VEGA gives
an indication regarding the quality of this value, indicating whether the prediction seems
reliable, moderate or of low quality. The main purpose of the ADI should be to highlight
the sources of concern and the severity of those concerns rather than simply to identify
good predictions. A low ADI highlights that the user should carefully check the issues
indicated by the ADI. In contrast, a moderate ADI highlights that some issues require
further assessment. Overall, all predictions should be assessed thoroughly, including those
with satisfactory results, and the ADI provides a useful tool to the user to do this.

When many predictions are available, the ADI supports a classification of the results
according to their probable reliability. Thus, already in the summary of the output of the
prediction, VEGA provides the prediction and this evaluation, presented with one, two, or
three stars. In our experience, the ADI is high if it is >0.85, moderate if it is between 0.75
and 0.85, and low if it is <0.75. These are general values and may vary according to the
endpoint. All the threshold values for the ADI and its individual components, which are
model specific, are described in the model user guide.

4.3. Modified ADI

Results from VEGA model predictions are used to exploit all three lines of evi-
dence: (1) prediction; (2) similar substances to be used for read-across; and (3) reasoning
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with regards to the potential mechanism of toxicity for a given endpoint, for instance,
structural alerts.

These lines of evidence have already been introduced above in an implicit manner
while discussing the accuracy of the prediction in the ADI, the concordance (evidence of
the experimental data used in the read-across strategy), and the reasoning, as indicated by
the presence of structural alerts. Since VEGA is a tool for the evaluation of chemicals, the
evidence of experimental data (all data, in the training and the test sets) is very important.
Thus, particularly for the purpose of read-across, VEGA shows the most similar substances
both in the training and test sets.

Other software systems use a different perspective. For instance, T.E.S.T., a valuable
platform, highlights the statistical quality of the results when considering the substances in
the training or the test set separately. The quality of the predictions for the substances in the
test set is valuable for evaluating the statistical quality of the model. The assessment within
VEGA is not focused on the (Q)SAR model itself, but uses all lines of evidence, including
read-across and reasoning [32]. However, for the purposes of this study, VEGA has been
modified, so that the ADI is calculated only for the training set. This made it possible to
calculate the results for new substances, avoiding the risk that the software finds the target
substance in the test set. Hence, only the substances in the training set are used in our
study for the AD assessment so that the results can be examined for substances that were
not used to build up the model.

4.4. Test Set

To assess the results of the (Q)SAR models in VEGA, only substances in the test set
were examined, as described in Section 4.3. However, some models in VEGA are not of
statistic nature, since they are not based on a training set, but on expert-based rules. For
instance, this is the case for models derived from Toxtree based on mutagenicity rules, or
on Cramer classes. For these reasons, we do not have the assessment based on the ADI for
all models.

In other cases, the number of substances in the test set was quite small, so we looked
for substances in other sources. For statistical analysis, only the molecules outside the
training set of each model were considered. This was the case for the assessment of the BCF
model performance (Arnot–Gobas) and the BCF model (KNN/Read-Across), for which
1129 compounds were collected from the literature as an external dataset [35].

For the skin sensitization models (CAESAR and IRFMN/JRC), a dataset of 623 com-
pounds was used with univocal local lymph node assay (LLNA) assessment. The data
were collected (removing duplicates) from several public sources [36–42].

For the mutagenicity (Ames) endpoint, the data were selected from a large dataset
(about 18,000 compounds) containing public and proprietary data [30,43].

4.5. Performance Parameters

The performance of the models was evaluated on the basis of accuracy or R2 for classi-
fier or regression models, respectively. More detailed information about these and other
parameters can be found in the Supplementary Materials (Supplementary_Material.xlsx).

5. Conclusions

This manuscript investigated the systematic use of the ADI from the VEGA tool to gain
confidence in using (Q)SAR models as part of NAM batteries within NGRA of chemicals.
This tool offers a powerful way to identify critical issues for the specific substance and
model. VEGA provides not only the predicted value, but also many more parameters
that should be thoroughly assessed. The information includes the prediction accuracy
itself, the presence of similar substances, and the elements for reasoning in relation to
mechanisms of toxicity. All these elements are provided and should be evaluated. The
ADI tool serves as a relevant tool to assess these multiple elements and provided reliable
results, increasing confidence in using such models. Overall, the ADI is a quantitative
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value, but for convenience, it can also be represented graphically as categories using
stars as a graphical metric of prediction reliability. The warning messages identified
through the ADI analysis help to identify the critical aspects that the user should carefully
assess. Finally, when the user is working in batch mode, the results with a higher ADI are
preferable, and this approach can be used to filter results. Since the tool is transparent,
sophisticated, and detailed, it provides a sound way to obtain accessible, intelligible, useful,
and assessable results.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijms24129894/s1, Supplementary_Material.xlsx (Table S1—Statistics
of regression models, Table S2—Statistics of binary classification models, Table S3—Statistics on multi-
class models); Trifluralin_NOAEL_LIVER_CORAL.pdf; Diethyl(nitroso)amine_HENRY_OPERA.pdf.
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