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Abstract: Tinnitus is originally derived from the Latin verb tinnire, which means “to ring”. Tinnitus,
a complex disorder, is a result of sentient cognizance of a sound in the absence of an external auditory
stimulus. It is reported in children, adults, and older populations. Patients suffering from tinnitus
often present with hearing loss, anxiety, depression, and sleep disruption in addition to a hissing and
ringing in the ear. Surgical interventions and many other forms of treatment have been only partially
effective due to heterogeneity in tinnitus patients and a lack of understanding of the mechanisms
of tinnitus. Although researchers across the globe have made significant progress in understanding
the underlying mechanisms of tinnitus over the past few decades, tinnitus is still deemed to be a
scientific enigma. This review summarises the role of the limbic system in tinnitus development and
provides insight into the development of potential target-specific tinnitus therapies.

Keywords: tinnitus; auditory system; limbic system; synaptic plasticity; hippocampus; amyg-
dala; pharmacology

1. Introduction

Tinnitus and tinnitus disorder are the two main classifications used to describe tin-
nitus and tinnitus-related distress. While tinnitus is the conscious perception of a tone or
composite noise that has no corresponding external auditory source, tinnitus disorder can
include cognitive impairment, emotional discomfort and functional disability [1]. Tinnitus
is a frequent auditory disorder associated with various disease conditions (both otological
and non-otological) [2] and affects millions of people worldwide. Over 70 million people in
Europe and more than 50 million in the United States are affected by tinnitus [2–4]. At least
0.5 million Australians [5] and 0.2 million New Zealanders (>14 years old) have experienced
audible tinnitus at some stage during their lives [6]. The common risk factors for tinnitus
are noise exposure [7,8], Meniere’s disease, head injury or other trauma, ear infection,
lifestyle issues, psychological problems and ageing [9,10] (Figure 1). Due to the inclusion
of people with self-reported tinnitus and high phenotypic variation in large genomic stud-
ies, the extent of genetic involvement in severe tinnitus is still unknown [11]. However
recent studies have identified rare genes that are associated with severe tinnitus [12,13].
Approximately 10% of patients suffering from tinnitus develop mild or severe impair-
ment. Severe tinnitus is strongly linked to anxiety, sleeplessness, difficulties concentrating,
poor psychological well-being and poor quality of life [14,15]. Consequently, tinnitus is
becoming more of a burden on healthcare systems [16] and produces a negative impact
on economic growth due to a compromised workforce [17]. Moreover, tinnitus patients
worldwide try a range of possible treatment options, hence the healthcare cost involved
is significant [18,19]. While some medications, such as certain antidepressants [20,21] and
anticonvulsants [22,23], may help reduce the severity of tinnitus symptoms, the lack of

Int. J. Mol. Sci. 2023, 24, 9889. https://doi.org/10.3390/ijms24129889 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms24129889
https://doi.org/10.3390/ijms24129889
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-7401-4355
https://orcid.org/0000-0003-1961-7118
https://doi.org/10.3390/ijms24129889
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms24129889?type=check_update&version=1


Int. J. Mol. Sci. 2023, 24, 9889 2 of 20

an FDA (Food and Drug Administration, USA)-approved drug indicates that none of the
drugs tested completely abolished tinnitus. In addition to drugs, an increasing number
of both invasive and non-invasive techniques, such as cochlear implants [24,25], removal
of the vestibulo-cochlear nerve [26], surgical decompression of the auditory nerve from
the compressed veins [27], transcranial magnetic stimulation (TMS) [28,29], transcranial
electrical stimulation (TES) [30], bi-modal stimulation [31,32] and others [33–35], have
been used in the treatment of tinnitus. However, there is no sufficient evidence support-
ing the effectiveness of these interventions. Tinnitus disorder highlights the condition’s
all-encompassing character and its profound effects on people’s well-being.
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in turn causes hyperactivity in the dorsal cochlear nucleus (DCN) [37,38], inferior collicu-
lus [39,40] and auditory cortex [41,42], as well as tonotopic map reorganization in the cen-
tral auditory system [42–45]. Although the mechanism for this is not fully investigated, a 
possible explanation could be an alteration in the balance of excitatory and inhibitory neu-
rotransmission in the auditory and associated networks. A study consisting of 10 tinnitus 
patients suggested that the alterations in the degree of neuronal activity in the DCN are 
correlated with modifications in tinnitus perception [46]. In animal behavioural experi-
ments, a significant association between the peak level of DCN activity and the behav-
ioural measures of tinnitus was discovered [47]. Moreover, the long-term effects of acous-
tic over-exposure resulted in increased burst firing and synchrony in the inferior colliculus 
[48]. Noise trauma has been shown to enhance spontaneous firing rates (SFRs) and burst-
ing activity in the auditory cortex in a variety of animal models of tinnitus, in both acute 

Figure 1. Risk factors contributing to tinnitus. Tinnitus induction is heterogeneous in nature as the
onset can occur due to neurological issues (e.g., migraine, epilepsy), psychological issues (e.g., de-
pression, anxiety), physical trauma, excessive noise exposure, sensorineural hearing loss, presbycusis
(age-related), lifestyle (e.g., excess smoke and alcohol consumption) and ototoxic medications.

It is well recognised that tinnitus may be generated from cochlear damage that causes
aberrant activity in the cochlear nerve [36] at the periphery of the auditory system, which
in turn causes hyperactivity in the dorsal cochlear nucleus (DCN) [37,38], inferior col-
liculus [39,40] and auditory cortex [41,42], as well as tonotopic map reorganization in the
central auditory system [42–45]. Although the mechanism for this is not fully investigated,
a possible explanation could be an alteration in the balance of excitatory and inhibitory
neurotransmission in the auditory and associated networks. A study consisting of 10 tinni-
tus patients suggested that the alterations in the degree of neuronal activity in the DCN
are correlated with modifications in tinnitus perception [46]. In animal behavioural experi-
ments, a significant association between the peak level of DCN activity and the behavioural
measures of tinnitus was discovered [47]. Moreover, the long-term effects of acoustic over-
exposure resulted in increased burst firing and synchrony in the inferior colliculus [48].
Noise trauma has been shown to enhance spontaneous firing rates (SFRs) and bursting
activity in the auditory cortex in a variety of animal models of tinnitus, in both acute [41]
and chronic conditions [49]. Therefore, the contribution of neuronal hyperactivity in the
auditory pathways to the development of tinnitus has been well-accepted [36,44,50].
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2. Tinnitus: Theoretical Models and Role of the Limbic System
2.1. Current Theoretical Models of Tinnitus

Traditionally, tinnitus was considered to be a pure otological disorder, but modern
theories have challenged this and proposed that tinnitus is a group of illnesses with multiple
physiological mechanisms.

The most common attribute of tinnitus is a constant phantom sound (either a pure
tone, hissing or roaring) in the ears in the absence of the corresponding external auditory
stimulus [51,52]. This phantom sound is more noticeable in silent environments and
hence an array of studies has compared the brain activity in tinnitus patients and healthy
controls in silent environments to investigate the abnormal brain activity linked to tinnitus
using electrophysiological (e.g., EEG) or magnetoencephalographic (MEG) recordings.
Abnormal spontaneous activity, such as elevated gamma oscillations [53–56] and reduced
alpha [51,57,58] activity, has been reported in the auditory brain regions of tinnitus patients.
Interestingly, a spectral examination of the brain activity in a salicylate-induced animal
model of tinnitus also showed a significant decrease in alpha and an increase in gamma
band activity in the auditory cortex [59], which is consistent with neuromagnetic recordings
in humans with acute tinnitus, reported by Lorenz et al., 2009 [60]. Therefore, it was
generally thought that synchronised gamma-band activity links sensory events into a
single cohesive conscious perception [61], and the ongoing gamma-band activity in the
auditory cortex is necessary for tinnitus to occur [54]. The theoretical foundation of these
observations forms the basis of the thalamocortical dysrhythmia (TCD) model [62] and
the synchronization by loss-of-inhibition model (SLIM) of tinnitus [63]. The TCD model
identifies the establishment of increased spontaneous firing of thalamic fibres as a crucial
component of the development of tinnitus [62]. In particular, due to the reduced excitatory
sensory stimuli from the damaged inner ear to thalamic relay cells, the hyperpolarised cell
membrane induces the relay cells to fire low-threshold calcium spike bursts in a slow-wave
form [62]. The formation of this slow-wave rhythm in the cortical neurons is subsequently
brought on by thalamocortical feedback loops, which are detectable as continuous delta
activity on the scalp. Tinnitus patients exhibit a decrease in delta activity in the cortical
area [64]. The SLIM model hypothesises that the rise in the gamma frequency range
may potentially be caused by a reduction in lateral inhibition processes in the auditory
cortex as a result of the reduced activation of inhibitory neurons such as those which
are GABAergic [63]. Increased gamma activity could also be due to hearing loss-related
reduction in sensory input, which in turn reduces alpha-mediated inhibition. This leads to
heightened gamma activity, as alpha band activity ordinarily suppresses gamma activity
and hence results in increased neuronal synchrony, which is thought to play a role in the
cause of tinnitus [52]. Thus, this discrepancy between cortical suppression and excitation
offers a theoretical explanation for the alpha-up, delta-down pattern commonly observed
in the resting-state non-invasive magneto- and electroencephalography (M/EEG) data of
tinnitus patients [65]. In summary, based on the TCD and SLIM models, hearing loss may
cause tinnitus by interfering with the coherent oscillatory activity between the thalamus
and cortex. Although the mechanism which connects hearing loss with tinnitus remains
unclear, both are well-known and mutually related medical conditions [66,67].

In addition to the above, reduced alpha activity is correlated with a desynchronised
neuronal network that is often linked with auditory attention [68,69]. However, the source
of alpha activity and whether it is induced by inhibitory activity or some other network-
generated factors, remains elusive. Given that only 10% of synchronously activated neurons
can generate an amplitude that is around 10-fold greater than that of unsynchronized
neurons [70], and that approximately 10–15% of cortical neurons are GABAergic [71],
EEG alpha activity, in theory, could be due to periodic fluctuations in the activity of
inhibitory neurons. Therefore, one can speculate that tinnitus may be associated with a
problem in areas of the brain where irrelevant incoming information from sensory regions
of the human brain is actively suppressed under normal conditions [72,73], i.e., the “noise
cancellation” model.
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As proposed by Rauschecker, et al. [74], in a non-tinnitus case, unwanted repetitive au-
ditory information is cancelled out at the level of the thalamus (medial geniculate nucleus;
MGN), whereas in tinnitus, the cancellation mechanism i.e., the auditory gating mechanism,
is compromised, which causes the MGN to become uninhibited, and eventually results
in the perception of tinnitus sound [74,75]. Anatomically, the auditory gating system is
thought to involve the auditory cortex, thalamus, prefrontal cortex, and limbic and paralim-
bic areas. The thalamus is innervated by the serotonergic fibres originating from limbic and
paralimbic structures [76,77] and plays a role in auditory-limbic interactions. It has been
speculated that at least certain limbic areas work as a component of a feedback circuit to
the auditory system that plays an “inhibitory gating role” for auditory perception [78]. To
predictably adjust and enhance auditory performance, auditory gating may also act as an
adaptive process to filter out unnecessary event-based or temporal information [79]. Thus,
the limbic system determines which noises are unimportant and blocks them before they
draw our attention. However, in the case of tinnitus, it is hypothesised that this gatekeeping
function may be weakened so that the tinnitus sound is allowed to reach the auditory cortex
for conscious perception [74].

Indeed, mounting pieces of evidence over the years have suggested that tinnitus is
associated with functional and structural alterations in brain regions involved in emotional
regulation, presumably as a result of consciously or subconsciously evaluating the con-
tinuous noise negatively, and failing to acclimate to it [80]. Functional imaging studies
in tinnitus-affected humans and animals demonstrated activation of regions, both inside
and outside the auditory systems. To explain this, one of the proposed hypotheses is
that the abnormal filtering of auditory information by the limbic regions may play an
exclusive role in tinnitus generation/perception. In the late 1980s, a study proposed a
cross-talk between tinnitus and the emotional state of patients by showing that treating
the comorbid major depression may lessen tinnitus disabilities [81]. It was later recognised
by other groups that the limbic system may be actively involved in modulating or perpet-
uating tinnitus [36,82,83]. For example, the limbic and primary auditory areas showed
dynamic linkages between tinnitus-related abnormalities, highlighting the significance
of auditory-limbic interactions in tinnitus [84]. Functionally, the limbic system is an area
of the brain that controls learning, memory development and storage, and emotions [85].
The hippocampus, amygdala, basal ganglia, cingulate cortex, and subcallosal area, among
other limbic structures, are thought to contribute to a generalised “distress circuit” that can
be triggered by real or phantom stimuli related to auditory, nociceptive, or other sensory
stimuli [86,87].

2.2. The Hippocampus and Tinnitus

The hippocampus is situated medio-temporally in each hemisphere of the brain, and
its role in mediating spatial memory and memory consolidation is substantially investi-
gated and widely acknowledged [88–91]. The hippocampus receives auditory information
primarily through the entorhinal cortex and is responsible for the temporal processing
of the information [92,93]. The hippocampus also projects directly from area CA1 to the
auditory association cortex and even to the primary auditory cortex [94] and plays a role in
language, music processing and the development of long-term auditory memories [95,96].
For example, auditory recognition tests show very poor results in patients with extensive
bilateral hippocampal loss [97], and research on monkeys suggests that auditory cues
may be involved in spatial memory formation mediated by the hippocampus [98]. Using
resting-state functional Magnetic Resonance Imaging (MRI), several studies have reported
structural alterations such as significant loss of grey matter in the hippocampus of noise-
induced tinnitus patients [99]. In addition, hippocampal activity and cognitive changes
in human patients were found to be linked with the unpleasantness of tinnitus [100,101].
These findings suggest anatomical and functional connections between the hippocampus
and tinnitus perception and/or tinnitus-related distress. Genetic factors have recently
been associated with severe tinnitus, such as an increased occurrence of rare variants in
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ANK2 and TSC2 synaptic genes, which exhibit high expression in the hippocampus and
cortex [12]. Furthermore, one study reported an increased occurrence of specific genetic
changes such as missense and large structural variants in regions of the genome that are
highly conserved. They identified CACNA1E, NAV2 and TMEM132D as potential genes
that may play a role in contributing to severe tinnitus [13]. However, additional research is
necessary to establish a definitive genetic linkage between tinnitus and the hippocampus.

Interestingly, noise exposure and listening to music have also been shown to cause
structural and molecular changes in the hippocampus. For example, noise-exposed animals
exhibited elevated mitochondrial areas inside the hippocampal neurons [102], possibly
due to the variations in synaptic transmission that trigger presynaptic mitochondria’s
ultrastructural plasticity to respond to the metabolic demand. Noise-exposed animals also
exhibited a significant reduction in the optical density of Nissl bodies [103], a reduced
postsynaptic density and outspread synaptic clefts [104] in the hippocampus, indicative of
impaired synaptic transmission and neural activity.

Overall, these studies suggest that hearing loss produces a negative impact on hip-
pocampal anatomy and function (Figure 2). However, the link between tinnitus and hip-
pocampal function, especially the relationship between tinnitus and hippocampal synaptic
plasticity, remains to be elucidated.
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2.3. The Basal Ganglia and Tinnitus

The basal ganglia consist of a group of subcortical nuclei, such as the striatum, sub-
thalamic nuclei, substantia nigra and globus pallidus. They are situated at the top of the
midbrain and the base of the forebrain and are primarily involved in controlling voluntary
movements such as eye movements, aiding in balance, and supporting posture [105]. In the
last two decades, the striatum (a nucleus present in the basal ganglia, critical for motor and
reward systems) was found to not only mediate sensory information transmission to the
cerebral cortex but may also play a role in tinnitus [106,107]. Studies in monkey [108,109],



Int. J. Mol. Sci. 2023, 24, 9889 6 of 20

cat [110], rat [111] and human [112] demonstrate a functional and anatomical link between
the caudate nucleus and auditory cortex. A case report of tinnitus cessation following
a cerebrovascular accident that lesioned both the caudate nucleus and putamen (dorsal
striatum) revealed the clinical viability of striatal neuromodulation to reduce tinnitus [113].
Over the years, a few studies have reported that deep brain stimulation (DBS) of the stria-
tum can significantly suppress symptoms in patients suffering from tinnitus [114–116].
DBS of the striatum has also been tested in an animal model of tinnitus, where electrical
stimulation of the caudate nucleus attenuated cluster neuronal firing in the auditory cor-
tex and suppressed tinnitus-like behaviour [117]. Overall, the caudate nucleus may be
involved in tinnitus; however, the mechanisms through which it regulates the disorder
remains poorly understood.

The basal ganglia also have a limbic sector which consists of the ventral pallidum,
nucleus accumbens (NAcc) and ventral tegmental area (VTA) [118,119]. The NAcc is
strongly associated with addiction and depression [120–122]. The projection from the
anterior cingulate cortex to the NAcc-VTA region has been found to mediate the effects of
unpleasant sound [123], music [124], as well as tinnitus [125]. According to high-resolution
magnetic resonance imaging studies in the brain, tinnitus patients exhibit structural and
functional abnormalities such as a decrease of gray matter in the NAcc [87,125]. Recent
research has also demonstrated that the severity of tinnitus and hyperacusis is linked to
aberrant neuronal excitability in the NAcc, which results in emotional alterations to a
sound stimulus [126–128]. Therefore, the NAcc has been suggested to be implicated in
tinnitus and may contribute to changes in the limbic-auditory connections [129]. However,
it remains unclear how the NAcc might be involved in the perception of tinnitus.

One critical structure of the basal ganglia, the subthalamic nucleus (STN), which is not
directly linked to the auditory system, but is connected to the NAcc, has also been found to
play a role in tinnitus [130]. For example, DBS in the STN of a tinnitus patient significantly
improved tinnitus handicap inventory (THI) scores compared to the situation prior to
DBS [115], suggesting that DBS of the STN may have a beneficial effect in the treatment of
tinnitus. All of this evidence indicates the possibility that the STN contributes to tinnitus
mechanisms, however, the exact nature of this connection still requires further investigation.

2.4. The Amygdala and Tinnitus

The amygdala is a key mediator of the emotional and other behavioural responses
to sensory stimuli, across all senses, and is connected to the limbic, executive, and other
sensory areas of the forebrain [131]. Anatomical investigations in different animal species
have shown relatively consistent networks of projections to the nuclear complex of the
amygdala from auditory and auditory-associated regions [110,132–135]. Importantly, there
is a second pathway from the basolateral amygdala to the principal inhibitory nucleus in
the thalamus, the thalamic reticular nucleus (TRN; Figure 3) [136]. The TRN consists of a
layer of inhibitory GABAergic neurons present between the thalamus and neocortex and
produces inhibition of the sensory thalamocortical relay neurons [137]. The cortex and
thalamus simultaneously send excitatory collaterals to the TRN [138]. These connections
put the TRN in the role of a gatekeeper, regulating the flow of sensory information from
the thalamus to the cortex by evaluating sensory stimuli based on their behavioural rele-
vance [139–141]. Using a computational model of thalamocortical circuitry, it was found
that the stimulation of the basolateral amygdala inputs to the TRN results in decreased
spontaneous thalamic activity [142]. Thus, the amygdala may play an important role in reg-
ulating auditory gating functions. Furthermore, resting-state fMRI investigations in tinnitus
patients demonstrated an abnormal functional connection between the auditory cortex and
the amygdala [143,144], which may be related to tinnitus-related distress given that the
auditory cortex projection to the amygdala play a potential role in mediating auditory fear
conditioning, and hence connects emotion with tinnitus perception [74,145]. Interestingly,
a study reported that salicylate administration into the amygdala can significantly enhance
sound-evoked local field potentials in the auditory cortex, changes indicating heightened
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perception and emotional salience of the tinnitus [146]. Thus, one can speculate that the
functional connections between the “amygdala-TRN-auditory cortex” may play a potential
role in auditory gating mechanisms, that may further contribute to tinnitus perception and
tinnitus-related distress.
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Figure 3. (A) Schematic figure of the auditory pathway from the cochlea to the auditory cortex and
its interaction with the limbic system. Sound-evoked information is relayed from the cochlea via the
cochlear nerve (8th cranial nerve) to the cochlear nucleus present in the rostral medulla. The cochlear
nucleus sends neuronal projections to higher brain regions through three main pathways-the dorsal,
intermediate, and ventral acoustic stria. The ventral stria sends projections to the superior olivary
complex. Together with the axons from the cochlear nuclei, postsynaptic axons from the superior
olivary nucleus project to the inferior colliculus in the midbrain. The medial geniculate nucleus of the
thalamus receives axons from cells in the colliculus and projects its axons to the primary auditory
cortex for conscious perception. (B) The limbic areas such as the amygdala and pre-frontal cortices
receive the signal for the evaluation of sound content. It has been proposed that on the arrival of
unpleasant sound frequencies, the medial geniculate nucleus is inhibited by the thalamic reticular
nucleus (TRN) and thus acts as a noise-filtering system. Furthermore, the ventral tegmental area
(VTA) is also connected via the endocannabinoid system to the pre-frontal cortex and amygdala
which sends and receives information from other limbic regions such as the hippocampus, nucleus
accumbens (NAcc), subcallosal areas and others. (C) The outstanding factors that contribute to a
healthy or tinnitus brain are the interactions and plasticity in the limbic and subcallosal area, TRN
noise-filtering system and cannabinoid system.
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The significance of emotional memories is a major aspect of chronic tinnitus. Emotional
memories contribute to chronic tinnitus by causing a sustained level of hypervigilance,
thereby promoting a continuous level of awareness [147,148]. Sound-induced amygdala
responses are found to be sensitive to their emotional strength [149] and align with the
significance of sound in an individual’s sensory environment [150]. Overall, one possible
theory could be that the amygdala may deliver a significant negative emotional signal to
the auditory cortex, influencing the perception of acoustic information [151]. However,
there is a lack of understanding of the mechanisms involved and investigating the role of
the amygdala in mediating tinnitus induction or consolidation following noise exposure
may offer a better understanding of the condition.

2.5. Other Limbic Regions and Tinnitus

The cingulate cortex is another part of the limbic system and is primarily involved in
emotional responsivity [152,153], emotional processing and inhibitory control [154,155]. In-
terestingly, tinnitus discomfort has been associated with increased activity in the cingulate
cortex [156,157]. Reportedly, manipulations that induce tinnitus resulted in increased fos-
like immunoreactivity and Arc protein expression in the cingulate cortex of gerbils [158,159].
In contrast, one study reported no changes in the neuronal excitability or frequency re-
sponse in the cingulate cortex after tinnitus induction with salicylate [160]. Furthermore,
the subcallosal area (medial prefrontal cortex, orbitofrontal cortex, and anterior cingulate
areas) is an important hub linking limbic-affective systems with thalamocortical perceptual
systems. Using anatomical MRI [125], significant grey matter volume reductions in the
subcallosal region were found in tinnitus patients when compared to the controls. The
subcallosal areas, such as the ventromedial prefrontal cortex (vmPFC) and NAcc, demon-
strated a crucial function in the long-term habituation to persistently unpleasant noises
by sending feedback projections to the TRN, which in turn selectively inhibits the MGN
regions corresponding to the unpleasant sound frequencies [161] (Figures 2 and 3). In-
terestingly, a significant volume loss in the subcallosal area of tinnitus patients has been
reported [99,125]. The engagement of the subcallosal region, for example, is also modified
by pain anticipation and perception and responds to the unpleasant effects of discordant
music to variable degrees [162].

Overall, the limbic system occupies a critical role in elucidating the underlying molec-
ular causes of tinnitus, as tinnitus-related volume loss in the limbic regions such as the
hippocampus, amygdala, and subcallosal area is often due to atrophy of neurons and glial
cells, leading to impairment of synaptic plasticity mechanisms [163]. Thus, the limbic sys-
tem is well placed to play a crucial role in mediating tinnitus sounds from being perceived
and targeting and suppressing tinnitus signals at these subcortical levels before they reach
the primary auditory cortex may open new horizons for tinnitus treatments.

3. The Limbic System and Synaptic Plasticity in Tinnitus Development

One critical but less investigated area is synaptic plasticity in the auditory and limbic
areas during the development and consolidation of tinnitus. In the past two decades, it has
been demonstrated through animal studies that tinnitus might be a pathology of synaptic
plasticity in multiple brain areas, including the auditory and limbic systems [164,165]
(Figure 2). Synaptic plasticity refers to activity-dependent changes in the strength or
efficacy of synaptic transmission and is thought to play a key part in the brain’s ability
to convert fleeting experiences into enduring memory traces [166]. In terms of auditory
processing, synaptic plasticity can also be defined as a mechanism through which the neural
activity created by an event, such as music, alters brain function by modifying cellular
properties and synaptic transmission [167,168]. Synaptic plasticity is thought to play an
important role in the early development of healthy brain circuitry and altered synaptic
plasticity mechanisms are assumed to contribute to neuropsychiatric and other brain
disorders. For example, N-methyl-D-aspartate receptors (NMDA) are well recognised for
their role in mediating synaptic plasticity, such as long-term potentiation (LTP; a candidate
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mechanism for memory formation) in the hippocampus of the mammalian brain [169–173].
Altered NMDA receptor trafficking contributes to an impaired hippocampus and cognitive
functions [174], and other psychotic illnesses such as schizophrenia [175]. Interestingly,
the mammalian cochlea also expresses NMDA receptors which can be activated during
the regrowth process after excitotoxic injury [176], indicating the existence of NMDA
receptor-dependent synaptic plasticity in the peripheral auditory hair cells. In addition,
NR2B subunit-targeted inhibition of cochlear NMDA receptor activity by Ifenprodil (an
NR2B antagonist) was able to prevent noise-induced and salicylate-induced tinnitus in
rats [165]. NMDA receptor-dependent synaptic plasticity was also found in the central
auditory system, as in vivo LTP was found to be saturated at DCN synapses after 4–5
days of sound exposure that led to tinnitus-like symptoms in an animal model, which was
later reversed using an NMDA receptor antagonist [177]. Studies from our laboratory also
found that in vivo LTP was facilitated in the inferior colliculus of rats at five months after
acoustic trauma and the extent of LTP facilitation was similar to that observed following
the administration of a GABAA receptor antagonist picrotoxin in normal rats (unpublished
observations). This suggests that acoustic trauma may cause long-term enhancement of
synaptic plasticity in the inferior colliculus, which may be due to a loss of inhibition similar
to that observed following the inhibition of GABAA receptors. Therefore, there seems to
be a link between noise exposure and/or tinnitus and altered synaptic plasticity in the
auditory pathways.

However, there is no evidence directly connecting tinnitus to changes in synaptic
plasticity in the limbic system, given that auditory gating in the CA3 region of the rat
hippocampus is disrupted following LTP stimulation (three trains of 250 Hz/1 s stimu-
lation) [178]. One study has linked the alteration of theta rhythm in the hippocampus to
the impairment of auditory gating mechanisms [179], however, more research is required
to look into the mechanisms contributing to alteration in theta rhythms. Theta rhythm is
widely recognized to have a role in the mechanisms of synaptic plasticity in the hippocam-
pus [180]. Given that an impaired auditory gating function is proposed to be involved in
tinnitus and changes in synaptic plasticity could disrupt auditory gating in the hippocam-
pus, it is conceivable that synaptic plasticity in the limbic areas would also be altered in
tinnitus. Studies have demonstrated the link between noise exposure and hippocampal
plasticity. For example, noise exposure has been shown to cause changes in the intrinsic
membrane properties of hippocampal pyramidal cells [181], resulting in impaired plasticity
and reduced phosphorylation of plasticity-related signalling molecules [182]. Intense noise
exposure also caused granule and pyramidal cell dysfunction [183] and significantly altered
place cell activity and hence hippocampal plasticity [184] (Figure 2). Moreover, long-term
exposure to high-intensity sound potentiated the amplitude of the inhibitory GABAergic
currents, indicating that high-intensity sound exposure may impair hippocampal inhibitory
transmission and, as a result, alter synaptic plasticity [185]. Indeed, LTP in the hippocampus
was found to be impaired following a single episode of the high-intensity sound expo-
sure [186]. Another study reported that noise exposure impairs hippocampal-mediated
learning and memory functions by reducing LTP induction and downregulating some
important LTP signalling molecules such as Ca2+/calmodulin-dependent protein kinase
(CaMKII) at the hippocampal synapses [182].

In addition to the hippocampus, fos-like immunoreactivity was significantly increased
in the amygdala of animals that were exposed to intense noise causing tinnitus [187]. The
amygdala nuclei respond substantially to sound (traumatic and non-traumatic) immedi-
ately, and over one month after sound exposure [187], which suggests that the amygdala
may undergo long-term plasticity in response to noise and/or tinnitus. Therefore, fur-
ther investigation is required to link tinnitus with changes in synaptic plasticity in the
limbic areas.
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4. Potential Molecular/Receptor Targets Mediating Tinnitus

Although there is ample evidence to suggest that the limbic system may be involved in
tinnitus through altered synaptic plasticity, the underlying molecular mechanisms remain
elusive, for example, the receptor subtypes and their associated downstream signalling
that produces the effects.

One potential target could be the endocannabinoids and their receptor subtypes, i.e.,
the CB1 receptor (cannabinoid receptor subtype 1) which is found primarily in the brain
and acts as a neuromodulatory receptor, and the CB2 receptor (cannabinoid receptor sub-
type 2) which is found primarily in immune-derived cells and produces anti-inflammatory
effects [188]. In the auditory cortex, neocortex, hippocampus, basal ganglia, cerebellum,
and brainstem, the CB1 receptor is present at high levels [189,190] and plays a critical role in
mediating synaptic plasticity [191]. The endocannabinoids in the auditory pathways have
been demonstrated to affect glutaminergic [192], glycinergic [193] and cholinergic [194]
signals, thereby modulating auditory function. For example, in the cochlear nucleus, CB1
receptors mediate depolarization-induced suppression of inhibition and excitation [193],
and long-term depression [195], indicating the involvement of the endocannabinoid system
in the modulation of plasticity in the area [196]. In rats, agonists at the CB1 receptor im-
paired auditory gating [197,198] and resulted in the impairment of hippocampal LTP [199]
and LTD [200] mechanisms. Studies have shown that long-term exposure to delta-9-
tetrahydrocannabinol (∆-9-THC), the main psychoactive component of Cannabis, reduced
input from the mPFC to the NAcc while increasing the input from the ventral hippocampus
and basolateral amygdala to the NAcc [201] (Figure 3). The CB1 receptor was significantly
down-regulated in the ventral region of the cochlear nucleus in a salicylate-induced animal
model of tinnitus [202], and an agonist at the CB1 receptor was found to promote the devel-
opment of tinnitus following the administration of salicylate [203]. However, CB1 receptor
activation has also been reported to suppress anxiety responses and amygdala reactivity to
unpleasant stimuli [204] which could be due to its role in modifying neuronal activity in
the basolateral amygdala upon activation [205]. Taken together, endocannabinoids may
play an important but complicated role in mediating tinnitus through their modulatory
effects on synaptic plasticity and more research into the pathophysiological significance of
the endocannabinoid systems in auditory and limbic areas using animal models of tinnitus
may open doors for better understanding of tinnitus.

In addition to the above, dopamine, a principal neurotransmitter of the basal ganglia
known to play a critical role in Parkinson’s Disease, motor control, psychological activity
and dependence [206–208], may also play a role in mediating tinnitus [209,210]. Mostly, the
dopaminergic neurons are found in the ventral tegmental region and substantia nigra [211],
and may have a role in influencing the auditory pathway’s afferent neurotransmission
between the limbic system and cochlea [212], indicating some networking between the two
regions. Dopaminergic pathways have been linked with tinnitus and its management, as it
is proposed to support the functional neuroanatomy of tinnitus perception. For example,
in a human trial involving 120 patients, sulpiride (a selective antagonist of dopamine D2,
D3 and serotonin 1A receptors) decreased tinnitus perception by 56%, melatonin (a free
radical scavenger) administration decreased it by 40%, and sulpiride along with melatonin
decreased it by 81% [213]. One reason behind the low success rate of clinical trials relating
to tinnitus could be due to the lack of identifying the primary target and its manipulation
through different drug dosages. Thus, more investigation is needed to better understand
the potential efficacy of dopaminergic drugs. Dopaminergic neurons in the ventral tegmen-
tal area (VTA) send projections to the limbic areas, and dopamine has been implicated in
modulating auditory sensory gating in both human [214] and animal [215–217] studies and
is an essential element in the brain reward system [218]. Given that direct injection of a
dopamine agonist into the NAcc significantly decreased auditory gating in the hippocam-
pus [217], it is conceivable that dopamine neurotransmission in the limbic system may be
crucial in keeping the auditory gating functional and its dysfunction may bring tinnitus



Int. J. Mol. Sci. 2023, 24, 9889 11 of 20

to conscious perception. Therefore, more studies for a better understanding of dopamine
involvement in tinnitus are needed.

Finally, most of the previous research has focused on neuronal changes in the brain,
but glial cells may be important as well. For example, noise-induced hearing loss causes
increased production of proinflammatory cytokines and microglial activation in the primary
auditory cortex, indicating neuroinflammation. Cytokines such as the tumour necrosis
factor (TNF) are also released from the astrocytes and microglia [219]. In TNF knockout mice
or during blockade of TNF expression pharmacologically, neuroinflammation is reduced
and the behavioural phenotype associated with tinnitus in animals is improved [220].
Furthermore, acoustic damage can elicit proinflammatory cytokines (TNF and interleukins)
in glial cells such as astrocytes and microglial cells [221], which are now well-recognised as
passive mediators of synaptic plasticity and neurotransmission [166]. Thus, investigating
the role of the proinflammatory molecules and glial cells in the auditory and limbic system
plasticity following noise trauma could yield unique information.

5. Effective Strategies and Future Directions

Despite using various drugs and other treatment strategies, effective treatments for
tinnitus are still lacking. This is probably because there is no effective approach to target
auditory and non-auditory (such as the limbic system) systems at the same time. Thus, ad-
dressing the system dynamics in tinnitus pathogenesis, especially the limbic component of
tinnitus persistence, will facilitate the development of a more comprehensive combination
of pharmaceutical therapies.

Furthermore, tinnitus is frequently linked with psychological stress, and certain types
of stress are known modifiers of epigenetic markers in both humans and animals, [222,223]
which indicates that tinnitus may also emerge from epigenetic modifications. Many stud-
ies have linked these epigenetic modifications to experimentally generated behavioural
changes that have also been reported in patients suffering from depression or anxiety [224].
It is also reported that the pattern of epigenetic changes differs in healthy versus hearing-
impaired patients [225,226]. Since tinnitus sufferers have a significantly higher rate of
hearing loss, it is reasonable to think that at least some epigenetic targets are shared
between the two disorders.

6. Conclusions

Although there is now mounting evidence from human neuroimaging studies for
tinnitus-related changes in both auditory and limbic system areas, the findings are limited,
and we are yet to develop a tool that can address converging or overlapping biological
pathways and distinct brain structural alterations associated with chronic tinnitus. Similarly,
our understanding of the biochemical underpinnings of tinnitus such as the molecular,
cellular, and system-level mechanisms is limited. The literature suggests that the limbic
system and adjacent areas may be involved in tinnitus development and hence these regions
may be critical for tinnitus treatment as well. Therefore, future tinnitus interventions will
benefit from a better knowledge of auditory–limbic interactions.
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