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Abstract: Non-small cell lung cancer (NSCLC) is a major contributor to cancer-related deaths, but
early detection can reduce mortality. NSCLC comprises mainly adenocarcinoma (AC) and squamous
cell carcinoma (SCC). Circulating microRNAs (miRNAs) in plasma have emerged as promising
biomarkers for NSCLC. However, existing techniques for analyzing miRNAs have limitations, such
as restricted target detection and time-consuming procedures. The MiSeqDx System has been shown
to overcome these limitations, making it a promising tool for routine clinical settings. We investigated
whether the MiSeqDx could profile cell-free circulating miRNAs in plasma and diagnose NSCLC.
We sequenced RNA from the plasma of patients with AC and SCC and from cancer-free smokers
using the MiSeqDx to profile and compare miRNA expressions. The MiSeqDx exhibits high speed
and accuracy when globally analyzing plasma miRNAs. The entire workflow, encompassing RNA
to data analysis, was completed in under three days. We also identified panels of plasma miRNA
biomarkers that can diagnose NSCLC with 67% sensitivity and 68% specificity, and detect SCC with
90% sensitivity and 94% specificity, respectively. This study is the first to demonstrate that rapid
profiling of plasma miRNAs using the MiSeqDx has the potential to offer a straightforward and
effective method for the early detection and classification of NSCLC.
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1. Introduction

Lung cancer is the second most commonly diagnosed cancer and the leading cause
of cancer-related deaths worldwide [1]. Non-small cell lung cancer (NSCLC) constitutes
85% of all types of lung cancer cases [2]. Adenocarcinoma (AC) and squamous cell cancer
(SCC) are two major histological types of NSCLC. Patients with early stage lung cancer
have a better prognosis compared to those with advanced-stage lung cancer, who lose the
opportunity to receive effective treatments including radical surgery. For patients with
regional disease, the 5-year survival rate is 33%, while in patients with distant metastasis,
it is only 6% [2]. Hence, early detection is crucial in improving the prognosis of lung
cancer. Currently, low-dose CT (LDCT) screening is the gold standard in diagnosing early
stage lung cancer. However, LDCT is limited as it cannot distinguish between benign
and malignant pulmonary nodules. For instance, only 4% of patients with pulmonary
nodules detected via LDCT are eventually diagnosed with early stage lung cancer, while
the remaining 96% have benign nodules. Although bronchoscopy can accurately diagnose
the abnormal area, it is an invasive and harmful procedure. Therefore, there is an urgent
need for new, noninvasive methods to diagnose lung cancer accurately and efficiently at
the curable stages.

MicroRNAs (miRNAs) are a class of small non-coding RNAs with a length of
~22 nucleotides. miRNAs are mainly involved in suppressing gene expression at the
post-transcriptional level, while under certain circumstances, miRNA can upregulate gene
expression and regulate gene transcription [3–7]. Furthermore, miRNAs play important
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roles in regulating physiological and pathological processes, such as developmental timing,
cell proliferation, apoptosis, aging, cancer, etc. [8–11]. In addition, miRNAs can be secreted
into extracellular fluids and transported to remote targeting cells via vesicles or by bind-
ing to proteins [12,13]. Previous studies including our own have shown that circulating
microRNAs in plasma can be promising biomarkers for lung cancer diagnosis [14–21].

Techniques such as polymerase chain reaction (PCR) and whole genome next-generation
sequencing (WGS) are commonly used to detect miRNAs. PCR is a cost-effective and rapid
method for measuring miRNA expression levels; however, it only covers a limited number
of targets at once. WGS allows for the evaluation of whole genomes, and thus generates
large amounts of data for high-throughput analysis [22]. However, it is expensive, techni-
cally complex, and requires extensive data analysis. It may also have limited sensitivity
and generate false positives, restraining its applicability in routine clinical settings [22].
New techniques that can rapidly and sensitively quantify a large number of miRNAs while
remaining cost-effective are urgently needed.

The Food and Drug Administration granted marketing authorization for the first high-
throughput next-generation sequencing (NGS) instrument, Illumina’s MiSeqDx [23,24]. The
MiSeq utilizes Illumina’s sequencing-by-synthesis technology, which involves the cyclic
addition and detection of fluorescently labeled nucleotides. It is a benchtop sequencer that
enables for targeted resequencing, metagenomics, small genome sequencing, amplicon
sequencing, and other applications. The MiSeq instrument offers a relatively compact and
cost-effective solution for laboratories that require medium-throughput sequencing. Fur-
thermore, it can process a range of sample types, from DNA extracted from cells or tissues
to amplicons generated via PCR amplification. The system provides flexibility in terms
of read lengths and can generate data outputs suitable for various downstream analysis
applications. In addition, designed specifically for the clinical laboratory environment, the
MiSeqDx instrument offers a small footprint, an easy-to-use workflow, and data output tai-
lored to the diverse needs of clinical labs. Compared with conventional PCR, the MiSeqDx
instrument has several advantages, including the ability to analyze multiple targets at once,
lower cost per sample, higher throughput, and more comprehensive data output [22]. Com-
pared to WGS, the MiSeqDx instrument offers cost-effectiveness and a faster turnaround
time, making it suitable for clinical applications. Moreover, the MiSeqDx System has a high
sensitivity for detecting low-abundance molecules and a high specificity for reducing false
positives, which are both desirable qualities in an analytical technique [23]. Additionally,
the MiSeqDx instrument has been used as in vitro diagnostic (IVD) testing assays in the
clinical laboratory by detecting the disease-related DNA mutations [24]. Yet, the use of the
MiSeqDx instrument in the analysis of circulating miRNAs for cancer diagnosis remains to
be investigated.

Our objective was to examine if the MiSeqDx instrument would be capable of profiling
cell-free circulating miRNAs in plasma and being used as a potential tool for the diagnosis
of lung cancer.

2. Results
2.1. The Assessment of Hemolysis in Plasma

Hemolysis of blood samples can cause the release of red blood cell-derived miRNAs
into plasma, leading to non-specific and low-reproducibility outcomes in the quantifica-
tion of cancer-related miRNAs [25]. To determine if the plasma samples have hemolysis
of blood cells, we tested hemolysis-associated miRNA markers (miR-23a-3p and miR-
451a) in the plasma samples by using qRT-PCR. These microRNAs are enriched in red
blood cells and are released into the plasma when red blood cells are lysed [25]. The
difference in qPCR quantitative cycles (Cq) values between the two miRNAs is known
to increase in the presence of hemolysis, which can be used as an indicator of hemolysis
in plasma samples. The specimens with ∆Cq (miR-23a-3p–miR-451a) higher than 8.0
are considered to have hemolysis [25]. In this study, all plasma specimens exhibited
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≤∆Cq 8.0 values, indicating the absence of hemolysis. Subsequently, these specimens
underwent processing for MiSeq NGS.

2.2. Small RNA Sequencing, Quality Control, and Annotation

To evaluate the sequencing quality, we conducted an analysis of the raw reads obtained
from the sequenced libraries of the plasma samples. The total reads of the samples ranged
from 4.2 to 8.3 million (Supplementary Table S1). Furthermore, the base calling accuracy
was high, with the average Phred quality score (Q score) of the Unique Molecular Index
(UMI) reads being at least 38. In addition, the majority of the plasma specimens had a Q
score above 40. Therefore, despite the variability in the number of UMI reads across the
samples, the high-throughput MiSeq sequencing of multiple samples provided sufficient
and accurate data to allow for detailed analysis [26]. Other key quality control metrics,
including the number of discarded reads, UMI groups, merged UMI groups, average Q
score of UMI reads, and average reads per UMI (Supplementary Table S2) also indicated
that the resulting UMI reads were of high quality and suitable for subsequent analysis.

We then mapped the raw reads to a human genome. A total of 1917 annotated miRNAs
in humans were listed by miRbase. The annotated miRNAs identified in the samples ranged
from 422 to 953, with a median of 706. The number of reads annotated with miRBase ranged
from 210,569 (27.64%) to 2,881,601 (79.49%) (Supplementary Tables S3–S5). Therefore, the
MiSeq sequencing approach was able to detect a large number of miRNAs and provided a
useful resource for interpretation of the sequencing data.

Principal component analysis (PCA) was then utilized to evaluate both the inter- and
intragroup variability of miRNA expression in the plasma of the cancer patients and cancer-
free controls. The resulting plots exhibited different miRNAs profiles among the patient
groups and control group (Supplementary Figure S1). Furthermore, some of the miRNAs
were also found to be associated with patients’ demographic characteristics, such as age,
gender, race, and smoking status, as determined via an ANOVA test (Supplementary
Table S6). In addition, the streamlined workflow of the MiSeqDx could process RNA
samples with high efficiency, generate data, and perform final data analysis all within a
timeframe of fewer than three days.

2.3. Differently Expressed Plasma miRNAs between NSCLC Patients and Cancer-Free Smokers

Eight miRNAs had a fold change (FC) of at least 2 with a p-value ≤ 0.0001 between
NSCLC patients and controls (Table 1 and Figure 1, Supplementary Figure S2).

Table 1. The differentially expressed miRNAs between patients with NSCLC and controls.

miRNAs FC p-Value

miR-1246 2.32 3.62 × 10−4

miR-129-5p 8.93 1.34 × 10−7

miR-1299 −3.19 3.06 × 10−4

miR-205-5p 2.55 2.30 × 10−4

miR-215-5p −2.33 2.64 × 10−5

miR-31-5p −4.17 8.08 × 10−5

miR-483-3p −5.2 5.28 × 10−9

miR-483-5p −3 2.56 × 10−5

FC, fold change.

From the eight miRNAs, we identified four miRNAs (miRs-215-5p, 1299, 205-5p, and
1246) as the best combination in classifying NSCLC patients from non-cancer controls using
LASSO regression (Supplementary Figure S3). The predicting algorithm of NSCLC from
the non-cancer controls was as follows: Log (probability of NSCLC/probability of non-
cancer control) = 0.4718 + 0.00129 * miR-1246 − 0.02465 * miR-1299 + 0.00896 * miR-205-5p
− 0.03244 * miR-215-5p. Combined analysis of the four miRNAs yielded 0.8013 AUC
p = 0.0001 (Figure 2). As a result, the four miRNAs used in combination created 66.67%
sensitivity and 68.18% specificity in diagnosing NSCLC. miRNA-205-5p is associated with
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the stage of lung tumors, with higher plasma expression levels in advanced-stage lung
cancer (p = 0.003, ANOVA test) (Supplementary Table S6). However, combining the four
miRNAs as a panel of biomarkers did not show a significant association with tumor
stage (p > 0.05). The results suggest that the plasma miRNA biomarker panel may have
potential for the early detection of NSCLC. Pearson correlation analysis of the four miRNAs
indicated no significant collinearity among these miRNAs (Supplementary Table S7 and
Figure S4), further implying that the integration of the different miRNAs biomarkers
provides complementary diagnosis of NSCLC.
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Figure 2. Receiver Operating Characteristic (ROC) curve analysis of the combined four plasma miR-
NAs in distinguishing patients with NSCLC from non-cancer controls. The ROC curve demonstrates
the performance of the panel of four plasma miRNAs in distinguishing between NSCLC patients and
controls, with the area under the curve (AUC) value indicating the overall diagnostic accuracy. The
analysis shows that the panel of four plasma miRNAs have 0.80 AUC, with a sensitivity of 66.7% and
specificity of 68.2%.
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2.4. Differently Expressed Plasma miRNAs between SCC Patients and Cancer-Free Smokers

Eleven miRNAs displayed abnormal expression levels in the plasma of SCC patients
in comparison to cancer-free smokers (Table 2 and Figure 3) (Supplementary Figure S5) (all
p < 0.0001).

Table 2. The differentially expressed miRNAs between patients with SCC and controls.

miRNAs FC p-Value

miR-1299 −7.37 1.55 × 10−7

miR-141-3p −2.39 1.27 × 10−3

miR-200a-3p −4.1 2.66 × 10−6

miR-200b-3p −2.95 4.52 × 10−4

miR-200b-5p −3.81 9.06 × 10−4

miR-205-5p 3.69 8.16 × 10−6

miR-215-5p −2.75 2.99 × 10−5

miR-31-5p −6.44 3.85 × 10−5

miR-429 −3.47 1.69 × 10−4

miR-483-3p −6.03 1.08 × 10−7

miR-483-5p −3.68 2.89 × 10−5

FC, fold change.
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From the eleven miRNAs, we identified a set of five miRNAs (miRs-205-5p, 1299, 215-
5p, 141-3p and 200b-5p) as the best combination in classifying SCC patients from non-cancer
controls using LASSO regression (Supplementary Figure S6). The prediction algorithm
with the five miRNAs was formulated as follows: Log (probability of SCC/probability
of non-cancer control) = 0.8825 + 0.03495 * miR-205-5p − 0.1203 * miR-1299 − 0.06752
* miR-215-5p − 0.02708 * miR-141-3p − 0.6753 * miR-200b-5p. Combined analysis of
the five miRNAs yielded 0.948 AUC with 90.00% sensitivity and 93.75% specificity in
diagnosing SCC (p = 0.0001) (Figure 4). Furthermore, integrating the five miRNAs as
a panel of biomarkers did not demonstrate a significant association with tumor stage
(p > 0.05), suggesting the potential for the early detection of SCC. No significant collinearity
was observed among the miRNAs (Supplementary Figure S7 and Table S8), indicating that the
integration of different miRNA biomarkers provides complementary diagnostic information.
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with a sensitivity of 90.0% and specificity of 93.8%.

2.5. Differently Expressed Plasma miRNAs between AC Patients and Cancer-Free Smokers

Four miRNAs with an FC greater than 2 (a p-value ≤ 0.0001) were identified as
differentially expressed between the AC group and the control group (Table 3, Figure 5,
Supplementary Figure S8).

Table 3. The differentially expressed miRNAs between patients with AC and controls.

miRNAs FC p-Value

miR-105-5p 15.79 4.93 × 10−5

miR-129-2-3p 8.79 7.12 × 10−5

miR-129-5p 17.4 3.82 × 10−11

miR-483-3p −4.54 1.05 × 10−5

FC, fold change.
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The heatmap shows only those miRNAs with an FC greater than 2 and an FDR p-value ≤ 0.1. The
color scale bar represents the relative expression of the miRNAs, with red indicating upregulation
and blue indicating downregulation.
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Two miRNAs, miR-105-5p and miR-129-2-3p, were excluded from further analysis as
they were expressed in less than half of the plasma samples from either cancer patients or
non-cancer controls. We conducted a comparison of miR-129-5p and miR-483-3p expression
levels between cancer patients and non-cancer controls. These two miRNAs exhibited
an AUC ≥ 0.5 for discriminating AC patients from non-cancer controls (Supplementary
Figure S9). However, the statistical power of miR-129-5p and miR-483-3p in discriminating
between AC patients and non-cancer controls did not reach significance with p ≤ 0.05.
Therefore, none of the plasma miRNAs analyzed in this study demonstrated potential for
diagnosing patients with AC.

2.6. Differently Expressed Plasma miRNAs between AC Patients and SCC Patients

Nine miRNAs were identified as downregulated in SCC compared to AC, with a fold
change greater than 2 (p ≤ 0.0001) (Table 4, Figure 6, Supplementary Figure S10).

Table 4. The differentially expressed miRNAs between patients with AC and SCC.

Name FC p-Value

miR-105-5p 18.95 2.18 × 10−4

miR-129-2-3p 7.72 4.96 × 10−4

miR-129-5p 21.39 2.27 × 10−10

miR-141-3p 4.1 3.08 × 10−6

miR-200a-3p 3.36 3.14 × 10−4

miR-200b-3p 3.63 1.66 × 10−4

miR-200c-3p 2.64 5.66 × 10−5

miR-218-5p 5.9 1.52 × 10−4

miR-375-3p 4.29 2.04 × 10−6

FC, fold change.
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Figure 6. Heatmap of differentially expressed miRNAs in the plasma of patients with AC and SCC.
The heatmap shows only those miRNAs with an FC greater than 2 and an FDR p-value ≤ 0.1. The
color scale bar represents the relative expression of the miRNAs, with red indicating upregulation
and blue indicating downregulation.

Using LASSO regression, we identified miR-200a-3p and miR-218-5p as the best
combination of miRNAs for classifying AC from SCC (Supplementary Figure S11). The
logarithm of the probability is 1.614 − 0.05023 * miR-200a-3p − 0.09593 * miR-218-5p.
The panel of two miRNAs showed a predictive capacity for distinguishing SCC from
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AC patients, resulting in an AUC of 0.78 (p = 0.001) with 66.7% sensitivity and 83.33%
specificity (Figure 7).
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Figure 7. An ROC curve analysis was performed to evaluate the performance of a combination of
two plasma miRNAs in distinguishing patients with SCC from AC. The ROC curve demonstrates the
overall diagnostic accuracy of the panel of two miRNAs, with the AUC value indicating the degree
of separation between SCC and AC patients. The analysis showed that the panel of two miRNAs had
an AUC of 0.78, with a sensitivity of 66.7% and specificity of 83.3% for distinguishing between SCC
and AC patients.

Furthermore, no significant correlation was found between miRs-200a-3p and 218-
5p, indicating the synergetic effect of their combination in differentiating SSC from AC
(Supplementary Figure S12 and Table S9).

3. Discussion

Although PCR is an easy technique for assessing plasma miRNAs, it only covers a
limited number of targets at once. On the other hand, WGS allows for the evaluation of
whole genomes, producing vast amounts of data for high-throughput analysis. However, it
is technically complex and involves extensive data analysis. In this study, we demonstrated
that the MiSeqDx platform exhibited exceptional performance, allowing for the generation
of data within a remarkably short timeframe of less than three days. The MiSeqDx instru-
ment can significantly reduce the turnaround time compared to with WGS demanding at
least 10 days, making it a highly valuable tool for research and clinical settings that require
rapid results. Furthermore, the high-throughput MiSeqDx sequencing of multiple samples
provided sufficient and accurate data to allow for detailed analysis of a large number
of miRNAs. Therefore, the MiSeqDx platform has the advantage of rapidly quantifying
multiple miRNAs simultaneously, overcoming the limitations of PCR and WGS platforms.
Additionally, as the MiSeqDx platform has already been utilized as an IVD testing assay in
the clinical laboratory to detect disease-related DNA mutations [24], it may be developed
as an IVD assay to identify disease-related miRNAs in the clinical laboratory.

While the primary goal of this study was to investigate the benefits of MiSeqDx for
future clinical applications, we have also made an exciting discovery in plasma miRNA
biomarkers. Using LASSO regression analysis of the MiSeqDx data, we identified three
panels of plasma miRNAs biomarkers for diagnosis and classification of NSCLC: a panel of
miRs-215-5p, 1299, 205-5p, and 1246 that can detect NSCLC with 67% sensitivity and 68%
specificity; a panel of miRs-205-5p, 1299, 215-5p, 141-3p, and 200b-5p that can detect SCC
with 90% sensitivity and 94% specificity; and a panel of miRs-200a-3p and 218-5p that can
distinguish SCC from AC with 67% sensitivity and 83% specificity. Furthermore, Pearson
correlation analysis revealed no significant correlation between the plasma miRNAs in
each panel of the biomarkers, implying that their diagnostic values were complementary
to each other. In addition, the plasma miRNAs used in each panel showed independent
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diagnostic values across different tumor stages, indicating their potential effectiveness in
detecting and grouping the major types of NSCLC at early stages. Therefore, rapid profiling
of plasma miRNAs using the MiSeqDx method may provide an efficient method for the
early diagnosis and classification of lung cancer.

MiR-205-5p is increased in lung cancer, particularly in squamous cell carcinoma
(SCC) of the lung, and promotes tumor growth and metastasis by regulating cell signaling
pathways [27,28]. Elevated levels of miR-205-5p are associated with poor prognosis and
reduced overall survival in lung cancer patients. Previous studies, including our own, have
suggested that miR-205-5p could serve as a potential biomarker for the early detection
of lung cancer and classification of different types of NSCLC [29–31]. miR-215-5p has
been suggested to act as a tumor suppressor by regulating cell proliferation, invasion, and
migration [32]. Low expression of miR-215-5p in tumor tissues has been associated with
poor prognosis and reduced overall survival rates, indicating its potential as a diagnostic
biomarker for breast cancer [27]. miRNA-1246 can suppress the proliferation and migration
of renal cell carcinoma through targeting CXCR4 [28] and has potential as a circulating
biomarker for multiple myeloma [33]. miR-1299 has both tumor-suppressive and oncogenic
roles in different types of cancers [34]. It has been shown to inhibit cancer cell proliferation,
invasion, and migration in some cancers, such as colorectal cancer, but promote these
processes in other cancers, such as breast cancer [34]. Low expression of miR-1299 has
been associated with poor prognosis and reduced overall survival rates in colorectal cancer,
while high expression has been linked to poor prognosis in breast cancer [34]. miR-141-
3p could inhibit cancer cell proliferation, invasion, and migration in prostate cancer, but
could promote these processes in breast cancer as well as act as a potential biomarker for
gastric cancer [35]. miR-200b-5p and miR-200a-3p act as tumor suppressors or oncogenes,
depending on the cancer type [36]. Targeting miR-200b-5p and miR-200a-3p has been
shown to inhibit cancer cell growth and metastasis in preclinical studies [36]. miR-218-5p
functions as a tumor suppressor by inhibiting cancer cell growth and metastasis [37]. It has
been shown to target genes involved in epithelial–mesenchymal transition and angiogenesis
in lung cancer and hepatocellular carcinoma [38]. Furthermore, miR-218-5p affects lung
adenocarcinoma progression through targeting endoplasmic reticulum oxidoreductase
1 alpha [39]. Our findings of the differential levels of the miRNAs in the plasma of NSCLC
patients not only confirm their significant roles in lung carcinogenesis, but also provide
compelling evidence for their potential as circulating biomarkers for the diagnosis and
classification of lung cancer.

There are limitations in the present study. (1) The sample size is small. Furthermore,
this single and retrospective cohort of cases and controls may produce selection bias. To
diminish the bias, we will perform pivotal evaluation of the diagnostic assay in a large
cohort by using a prospective-specimen collection and retrospective-blinded evaluation
design [40]. (2) A panel of five plasma miRNAs can diagnose SCC with 90% sensitivity and
94% specificity. However, a panel of four plasma miRNAs has only 67% sensitivity and 68%
specificity for diagnosing NSCLC, which may not provide sufficient diagnostic significance
in clinical settings. Cell-free circulating tumor DNA and DNA methylation status of gene
promoters have been studied as potential liquid biopsy tests for lung cancer [41–43]. Our
current endeavors are to compare and integrating plasma miRNA biomarkers with cell-free
DNA biomarkers in order to enhance the early detection of lung cancer. (3) In this study, our
primary objective was to evaluate the efficiency, speed, and broad measurement capabilities
of the MiSeqDx method in analyzing miRNA expressions in plasma. We are conducting a
new study that involves a direct comparison of the MiSeqDx system with PCR and WGS.
This comparative analysis will utilize positive and negative control samples to evaluate
the analytic performance of the MiSeqDx system for plasma miRNA analysis, including
parameters such as limit of detection and specificity.
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4. Materials and Methods
4.1. Participants and Plasma Preparation

The study protocol was approved by the Institutional Review Boards of the University
of Maryland Baltimore. The surgical pathologic staging was determined according to
the TNM classification of the International Union Against Cancer with the American
Joint Committee on Cancer and the International Staging System for Lung Cancer [44].
Histopathologic classification was determined according to the World Health Organization
classification [45]. Altogether, we recruited 39 patients with NSCLC and 32 cancer-free
controls (Table 5). Blood samples were collected with the written informed consent from
participants and obtained before therapeutic intervention using BD Vacutainer® Venous
Blood Collection Tubes (Becton, Dickinson and Company, Franklin Lakes, NJ, USA). The
blood samples were immediately processed for plasma preparation via centrifugation at
3000 rpm (1900× g) for 10 min at 4 ◦C within less than 2 h after collection, as previously
described in our published works [14–21].

Table 5. Characteristics of the cohort of NSCLC patients and cancer-free smokers.

AC Cases (n = 19) SCC (n = 20) Controls (n = 32) p-Value

Age 65.5 (SD, 7.8) 67.0 (SD, 6.4) 60.9 (SD, 11.2) 0.0877
Sex 0.2872

Female 9 5 14
Male 10 15 18

Race 0.8261
African Americans 6 7 12
White Americans 13 13 19

Hispanic 0 0 1
Smoking pack years
(median) 30 50 14 0.0051

Stage
Stage I 2 3
Stage II 1 1
Stage III 5 2
Stage IV 1 3

Unknown 10 11
Histological type

NSCLC, non-small cell lung cancer; AC, adenocarcinoma; SCC, squamous cell cancer; SD, standard deviation. Age
and smoking pack years of cases and control were compared via one-way ANOVA. Sex and race were compared
via chi-squared test.

4.2. RNA Isolation and cDNA Synthesis

Total RNA, including small RNA, was extracted from 200 µL of plasma using the
miRNeasy Serum/Plasma kit (Qiagen, Hilden, Germany) following the manufacturer’s
protocol. The resulting RNA was eluted in a final volume of 14 µL and stored at −70 ◦C
until library construction.

4.3. MiRNA Library Construction, Quality Control, Sequencing, and RNAseq Data Analysis

The miRNA libraries were prepared using the QIAseq miRNA Library Kit (12) and
QIAseq miRNA 12 Index IL (12) (QIAGEN, Aarhus, Denmark) according to the manufac-
turer’s protocol. Briefly, RNA was ligated with 3′ and 5′ adapters, followed by reverse
transcription, cDNA amplification, and unique index sequence addition. Quality evaluation
of the constructed libraries was performed using the Bioanalyzer with the High-Sensitivity
DNA Analysis Assay (Agilent, Santa Clara, CA, USA), or by 8% TBE gel (Thermo Fisher Sci-
entific, Santa Clara, CA, USA) electrophoresis. Quantification of the prepared libraries was
performed using the Qubit™ 4 Fluorometer with Qubit® dsDNA HS Assay Kits (Thermo
Fisher Scientific). On the day of sequencing, four libraries were pooled in equimolar ra-
tios and supplemented with 10% PhiX Control v3 (Illumina, San Diego, CA, USA). The
sequencing libraries were then clustered at a final concentration of 15 pM in the flow
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cell and sequenced for 150 cycles using the MiSeq Reagent Kit v3 (150-cycle) on a MiSeq
System (Illumina). Libraries were subjected to single-ended strand-specific sequencing
with 75-bp-length reads, which resulted in approximately 4 to 7 million reads per sample.
The Fast Quality Control (FASTQ) files of the sequenced samples were uploaded and
analyzed using the Geneglobe RNAseq Analysis Portal 3.0 (QIAGEN) [46]. The sequenced
libraries were mapped to the human genome (Genome Reference Consortium GRCh38) and
annotated in reference to miRBase_v22, Homo sapiens (GRCh38.103). Secondary analysis
of the Geneglobe RNAseq Analysis Portal 3.0 was powered via the Qiagen CLC Genomics
Workbench and QIAGEN Ingenuity Pathway Analysis (IPA) (QIAGEN).

4.4. Quantitative Real-Time PCR (qRT-PCR) Analysis of Hemolysis in Plasma

To assess the hemolysis status of the sequenced plasma samples, we utilized a
previously described miRNA-qRT-PCR-based method [25,47]. The expression levels of
miR-23a-5p and miR-451a were detected using qRT-PCR. The miRNAs were reverse-
transcribed to cDNA using the miRCURY LNA RT Kit (Qiagen) and diluted 1:20 in H2O
for qRT-PCR quantification. The specific individual miRCURY LNA miRNA PCR Assays
(Qiagen) and miRCURY® LNA® miRNA SYBR® Green PCR Kit were used to determine
the expression levels of miR-23a-3p and miR-451a in each sample. All qPCR reactions
were performed in triplicate using the Bio-Rad CFX real-time PCR detection system
(Bio-Rad, Hercules, CA, USA).

4.5. Statistical Analysis

ANOVA analysis was employed to determine whether significant differences in
miRNA expression levels exist across various groups. The miRNAs were further ana-
lyzed using the least absolute shrinkage and selection operator (LASSO) to find the best
combination of miRNAs to be used as a panel of diagnostic biomarkers. The panel of
identified miRNAs was examined via Pearson’s correlation analysis to explore the presence
of collinearity, which may reduce predictive accuracy. The diagnostic power of these sets
of miRNAs was further explored using multiple variables binary logistic regression with
ROC (Receiver Operating Characteristic) and AUC (area under the curve) to obtain the
predicting algorithms, classification sensitivity, and specificity. Associations of miRNAs
with age, smoking pack years, and cancer stages were analyzed using one-way ANOVA.
Sex and race were compared using a chi-squared test.

5. Conclusions

Our study highlights that the MiSeqDx system can measure miRNA expression in
plasma in an efficient, rapid, and comprehensive manner. Furthermore, we have devel-
oped three panels of plasma miRNA biomarkers that can aid in the early detection and
histological classification of NSCLC. However, additional technology standardization and
a large, prospective study are necessary for validating the biomarkers and establishing
their clinical utility.
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