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Abstract: Nutraceuticals are bioactive compounds present in foods, utilized to ameliorate health,
prevent diseases, and support the proper functioning of the human body. They have gained attention
due to their ability to hit multiple targets and act as antioxidants, anti-inflammatory agents, and
modulators of immune response and cell death. Therefore, nutraceuticals are being studied to prevent
and treat liver ischemia–reperfusion injury (IRI). This study evaluated the effect of a nutraceutical
solution formed by resveratrol, quercetin, omega-3 fatty acid, selenium, ginger, avocado, leucine, and
niacin on liver IRI. IRI was performed with 60 min of ischemia and 4 h of reperfusion in male Wistar
rats. Afterward, the animals were euthanized to study hepatocellular injury, cytokines, oxidative
stress, gene expression of apoptosis-related genes, TNF-α and caspase-3 proteins, and histology. Our
results show that the nutraceutical solution was able to decrease apoptosis and histologic injury.
The suggested mechanisms of action are a reduction in gene expression and the caspase-3 protein
and a reduction in the TNF-α protein in liver tissue. The nutraceutical solution was unable to
decrease transaminases and cytokines. These findings suggest that the nutraceuticals used favored
the protection of hepatocytes, and their combination represents a promising therapeutic proposal
against liver IRI.

Keywords: nutraceuticals; liver; ischemia–reperfusion injury; apoptosis

1. Introduction

Nutraceuticals are natural bioactive or chemical compounds which, in addition to
playing a nutritional role, enhance health, cure illnesses, or have preventive properties [1,2].
They are dietary supplements, and from the nutritional point of view, nutraceuticals are a
source of nutrients (lipids, carbohydrates, vitamins, proteins, minerals) and non-nutrients
(prebiotics, probiotics, phytochemicals, enzymatic regulators) [1,3]. Nutraceuticals can
be extracted from both vegetal and animal foods, concentrated, and administered in a
suitable pharmaceutical form, with the aim of improving health, in dosages that exceed
those obtainable from normal foods [4,5].

In vitro and in vivo studies have provided evidence that nutraceuticals have antiox-
idant, anti-inflammatory, antibacterial, antiviral, and antifungal activities, as well as evi-
dence that they act as modulators of immune response, angiogenesis, and cell death [4,6–8].
These effects are possible due to the multi-target reach of nutraceuticals: endogenous
glutathione, interleukins, cytokines, tumor necrosis factor, transcription factor nuclear
factor-κB, growth factors, caspases, hepatocyte intracellular neutral lipids, etc. [9–11].

By reaching all these targets, nutraceuticals are able to prevent several diseases, such
as diabetes mellitus, obesity, cardiovascular diseases, cancer, eye disorders, neurologic
diseases, and liver IRI [12,13]. The latter is caused by a limited blood supply and subsequent
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blood supply recovery during surgical procedures, including management of liver trauma,
hepatic resection, and liver transplantation [14–16]. It represents the main underlying
cause of primary graft dysfunction or non-function and liver failure post-transplantation,
in addition to being an important risk factor for acute and chronic rejection [15,17].

Hepatic IRI remains a major unresolved problem in clinical practice [15]. Nutraceuti-
cals are a rising therapy due to their nutritional and therapeutic benefits, as well as safety
profile [12]. Some of them have already been studied and exhibited promising results, such
as resveratrol, quercetin, omega-3 fatty acids, selenium, ginger, and avocado [18–24].

Currently, attention has been focused on the synergistic effects of nutraceutical com-
binations [25,26]. The “synergism concept” was introduced by Liu et al. [27,28]. In this
regard, the combination of polyphenols and vitamins is extremely effective in preventing
osteoporosis, cardiovascular diseases, cancer, diabetes mellitus, and neurodegenerative
diseases [29].

This study aimed to formulate a nutraceutical solution comprising resveratrol, quercetin,
omega-3 fatty acids, selenium, ginger, avocado, leucine, and niacin to target the various
signaling pathways of liver IRI and decrease its effects. We studied hepatocellular injury,
inflammatory mediators, apoptosis by TUNEL, gene expression of apoptosis-related genes,
TNF-α and caspase-3 proteins in liver tissue, and histology. We compared the results
between five groups: CONTROL—no intervention; IR—rats submitted to liver IRI; NU-
TRACEUTICALS + IR (NUT + IR)—rats that received the nutraceutical solution by gavage
for 7 days and underwent liver IRI; NUTRACEUTICALS (NUT)—rats that received the
nutraceutical solution for 7 days; and SHAM—rats submitted only to hepatic manipulation.

2. Results
2.1. Hepatocellular Injury

The rats of the IR group exhibited a significant increase in serum levels of aspartate
transaminase (AST) and alanine transaminase (ALT) compared to the CONTROL and NUT
groups. The NUT + IR group presented a significant increase in serum levels of AST and
ALT compared to the CONTROL group (Figure 1).
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Figure 1. Serum levels of transaminases of each group: (a) AST—aspartate 
aminotransferase; (b) ALT—alanine aminotransferase. The data shown are mean ± SEM; 
* p < 0.05 vs. CONTROL group; Δ p < 0.05 vs. NUT group. 

Figure 1. Serum levels of transaminases of each group: (a) AST—aspartate aminotransferase;
(b) ALT—alanine aminotransferase. The data shown are mean ± SEM; * p < 0.05 vs. CONTROL
group; ∆ p < 0.05 vs. NUT group.

2.2. Inflammatory Mediators

There was no difference in terms of IL-1β, IL-6, and IL-10 among the groups. The
serum TNF-α level was significantly increased in the IR group compared with the SHAM
group (Figure 2).
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Figure 2. Inflammatory mediators: (a) IL-1β, (b) IL-6, (c) IL-10, and (d) TNF-α. The data shown are
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2.3. Lipid Peroxidation

The CONTROL group exhibited a significantly higher level of MDA in the liver tissue
when compared to the IR, NUT + IR, and SHAM groups. The same was also observed in
the NUT group compared to the NUT + IR group (Figure 3).
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2.4. Gene Expression of Apoptosis: BAX, BCL-2, CASPASE 8, and CASPASE 3

The gene expression of BAX and BCL-2 was significantly higher in the NUT + IR group
compared to the CONTROL and SHAM groups and similar to the NUT and IR groups. The
latter group exhibited a significant increase in the gene expression of BAX compared to the
CONTROL, NUT, and SHAM groups. Among the gene expression of CASPASES, there was
only one difference with CASPASE 3. The gene expression of CASPASE 3 was significantly
lower in the NUT + IR group than in the IR group, which in turn had a significantly higher
gene expression compared to the CONTROL and SHAM groups (Figure 4).
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2.5. Immunohistochemistry: Apoptosis, Cleaved Caspase-3, and TNF-α Proteins in the Liver
2.5.1. Apoptosis—TUNEL Assay

The TUNEL assay was used to determinate the apoptosis of the liver cells. The
NUT + IR group exhibited a significant decrease in percentage of apoptosis compared to
the IR group. Moreover, the IR group had a significantly higher percentage of apoptosis
than the CONTROL, NUT, and SHAM groups (Figure 5).
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2.5.2. Cleaved Caspase-3 Protein

The immunohistochemistry analysis showed that the cleaved caspase-3 protein in
liver tissue was significantly lower in the NUT + IR group than in the IR group. This means
that the nutraceutical solution was able to decrease both gene expression and caspase-3
protein in IR injury. The IR group had a significantly higher cleaved caspase-3 protein level
compared to the CONTROL and SHAM groups (Figure 6).

2.5.3. TNF-α Protein

In relation to TNF-α protein in liver tissue, the NUT group presented the highest
significant percentage compared to all other groups. The IR group had a significantly
higher TNF-α percentage compared to the NUT + IR and SHAM groups (Figure 7).
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Figure 5. TUNEL assay of hepatic tissues from the different groups: (a) data shown are mean ± SEM;
* p < 0.05 vs. CONTROL group; ∆ p < 0.05 vs. NUT + IR group; � p < 0.05 vs. NUT group;
• p < 0.05 vs. SHAM group. Arrows and highlighted boxes indicate TUNEL positive cells in each
group: (b) CONTROL; (c) IR; (d) NUT + IR; (e) NUT; and (f) SHAM. All images were obtained with
50× magnification and highlighted boxes with 400× magnification, with scale bars of 500 µm and
50 µm, respectively.
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Figure 6. Immunohistochemistry. Cleaved caspase-3 protein in liver tissue from the different groups:
(a) data shown are mean ± SEM; * p < 0.05 vs. CONTROL group; � p < 0.05 vs. NUT + IR group;
∆ p < 0.05 vs. SHAM group. Arrows and highlighted boxes indicate cleaved caspase-3 positive cells
in each group: (b) CONTROL; (c) IR; (d) NUT + IR; (e) NUT; and (f) SHAM. All images were obtained
with 50× magnification and highlighted boxes with 400× magnification, with scale bars of 500 µm
and 50 µm, respectively.
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Figure 7. Immunohistochemistry. TNF-α protein in liver tissue from different groups: (a) data shown
are mean ± SEM; * p < 0.05 vs. IR group; ∆ p < 0.05 vs. NUT group; • p < 0.05 vs. CONTROL group;
� p < 0.05 vs. SHAM group. Arrows and highlighted boxes indicate TNF-α positive cells in each
group: (b) CONTROL; (c) IR; (d) NUT + IR; (e) NUT; and (f) SHAM. All images were obtained with
50× magnification and highlighted boxes with 400× magnification, with scale bars of 500 µm and
50 µm, respectively.

2.6. Liver Histological Injury

According to the liver histological score used, the IR group (score 37) had a significantly
higher level of liver injury when compared to the NUT + IR group (score 25). It was also
observed that the immunohistochemical analysis of caspase-3 showed a marked presence
in the related field to IR injury by hematoxylin–eosin (HE), demonstrating a correlation
between histological and immunohistochemical findings (Figure 8).
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Figure 8. Histological and immunohistochemical analysis: (a) total liver histology score from different
groups; * p < 0.05 vs. IR group. (b) HE (Hematoxylin–eosin—600×): photomicrograph of hepatic
parenchyma showing ischemic changes (ballooning, apoptosis, destrabeculation, and sinusoid con-
gestion). (c) Caspase-3 (Immunohistochemistry—600×): photomicrograph of hepatic parenchyma
showing positivity in the cytoplasm (intracytoplasmic brown granular pattern).

3. Discussion

Preexisting nutritional status affects post-operative metabolism, liver function, inflam-
mation, and liver regenerative capacity [30,31]. Therefore, the patient’s condition plays an
important role in predicting postoperative complications [13]. Particularly in hepatic IRI,
preexisting nutritional status is a major determinant of hepatocyte injury [32].

Several dietary components significantly benefit health, presenting antioxidant or
anti-inflammatory properties [31,33]. Hence, the re-establishment and maintenance of
correct nutritional status by these nutraceuticals before, during, and/or after surgery could
lead to improvements in complications related to IRI. Thus, they represent a potential
approach alone or in combination with other therapies to improve patient outcomes [13].

Our nutraceutical solution was unable to decrease the transaminases and cytokines
released by liver IRI. One of the probable reasons for that result is the fact that this study
was conducted only in the early phase of IRI, not in the late phase when the peak of
transaminases and necrosis occur [34,35]. Moreover, the inflammatory mediators reach
their peaks at different moments: TNF-α peaks between 30 min and 2 h after reperfusion;
IL-1β after 8 h; IL-6 after 12 h; and IL-10 between 30 min and 3 h after reperfusion [36–40].
Therefore, it is necessary to conduct further work to study the effect of nutraceutical
solutions on the inflammatory process of hepatic IRI on a timeline.

During liver IRI, Kupffer cells produce reactive oxygen species (ROS) [41]. ROS play a
dual role in IRI: they promote apoptosis and stimulate inflammatory mediators, as well
as facilitate cell survival under hypoxic conditions and induce antioxidant defenses [42].
In a healthy liver, in response to IRI, levels of PGC-1α, which is a transcriptional co-
activator that controls the expression of metabolic pathways, which allow for cellular
adaptation to limited nutrient availability, are stimulated, and this stimulation results
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in increased antioxidant defenses of the cell [43,44]. Supporting this fact, Fukai et al.
demonstrated increased total glutathione and reduced glutathione after IRI [45]. This
increased antioxidant capacity in non-lethal oxidative stress is one of the mechanisms of
the protective effect of ischemic preconditioning [46] and may be the reason why rats in the
IR and NUT + IR groups exhibited lower levels of MDA than those in the CONTROL and
NUT groups, respectively.

Following the line of not altering the inflammatory process, the nutraceutical solution
was able to decrease apoptosis, which is a non-inflammatory subtype of cell death during
hepatic IRI [47]. Apoptosis is a form of cell death that is critical in regulating tissue home-
ostasis, and it is considered the key mechanism of injury during the early phase of hepatic
IRI in both experimental and human grafts [48–50]. During liver transplantation, apoptosis
is involved in cellular injury in acute rejection, as well as in ductopenia seen in chronic
rejection [51]. In addition, apoptosis of the donor’s liver is an important predictive factor
for early graft dysfunction, and its high rate is associated with shorter graft survival [52].

Furthermore, the histological evaluation adapted from Quireze et al.’s score [53]
showed that the nutraceutical solution was also able to significantly reduce tissue in-
jury caused by hepatic IRI. This finding is in accordance with the literature, which has
demonstrated that inhibition of apoptosis can decrease IRI in liver grafts [50,54].

After seeing the effect of the nutraceutical solution on apoptosis, we investigated
its possible mechanism of action and found that it causes a decrease in gene expression
and the caspase-3 protein in liver tissue. These facts may characterize the nutraceutical
solution as a caspase inhibitor, which involves a novel target to protect the liver from IRI [55].
In this regard, there are some compounds being studied such as IDN-6556 and F573.
The pan-caspase inhibitor IDN-6556 inhibits caspase-3 activation and reduces sinusoidal
endothelium cell apoptosis when used as an additive in the University of Wisconsin
storage solution during the preservation period of rat livers [56]. Moreover, when it is
administered in cold storage and flush solutions during human liver transplantation, it
provides local therapeutic protection against IR injury and apoptosis [48]. IDN-6556 also
protects both murine and human islets in culture and after transplantation, slows down
the aminotransferase activity in HCV patients, and lowers portal pressure in patients with
compensated cirrhosis and severe portal hypertension [57–59].

The other pan-caspase inhibitor F573, in turn, also mitigates liver IRI by reductions in
the cytokine TNF-α, apoptosis, and the ALT level [60]. Another application of this caspase
inhibitor was shown with the reduction in apoptosis of human and mouse pancreatic islets
in vitro and an improvement in their function when they are transplanted into the portal
vein [61].

Besides our nutraceutical solution working as a caspase inhibitor, it was also able to
decrease the TNF-α protein level in the liver tissue, which is another mechanism of action
that may have contributed to decreasing apoptosis. In this regard, Ben-Ari et al. showed
that treatment with an anti-TNF-α monoclonal antibody before ischemia is able to mitigate
apoptosis by inhibiting the activity of caspases -9 and -3 [62].

There are many other diseases such as inflammatory disorders (psoriasis, arthritis,
sepsis), neurologic diseases (Alzheimer’s, epilepsy), metabolic diseases (obesity, diabetes,
nonalcoholic liver fatty disease), and cancer that are strongly associated with abnormal
activity of caspases and apoptosis [63–66].

All these studies broaden our horizons and make us think about other possibilities for
the clinical use of our nutraceutical combination, in addition to liver IRI. However, before
that, there is a need for further studies to establish all the mechanisms of action and the
effects of this nutraceutical combination.

Despite the fact that nutraceuticals often pose a challenging pharmacological pro-
file [67], their pharmacokinetic and pharmacodynamic properties are being extended,
allowing interpolating results from animals to humans. In this regard, some nutraceutical
combinations have already been studied to treat liver steatosis in patients with nonalcoholic
liver fatty diseases, showing promising results [68,69].
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In addition, these clinical trials are also showing that nutraceutical combinations are
being well tolerated and safe [68,69]. Even so, their real efficacy and safety need to be
confirmed in future randomized clinical trials.

4. Materials and Methods
4.1. Animals

Thirty-seven male Wistar rats (245–345 g) were obtained from the Institute of Medical
Sciences of the University of São Paulo and housed in LIM37 from the University of São
Paulo Medical School. They were placed at room temperature between 20◦C and 22 ◦C, in
a 12 h light/dark cycle. The rats were fed with commercial Nuvilab CR-1 Irradiated feed
(Nuvital Nutrientes, Colombo, Paraná, Brazil) and hydrated with filtered water ad libitum.
The experimental protocol was approved by the Ethics Committee on the use of animals at
our institution (909).

4.2. Preparation of the Nutraceutical Solution

For the nutraceutical formulation, carboxymethyl cellulose (CMC) syrup 0.5% (Bio
Idêntica Manipulation Pharmacy, São José, Santa Catarina, Brazil) was used as a vehicle [70,71].

In the preparation of the nutraceutical solution, omega-3 powder (Natural Products
& Technologies, São Bernardo, São Paulo, Brazil) was weighed and transferred to a
porcelain mortar, in which 0.5 mL of sunflower oil was added for its solubilization. Then,
each remaining component was weighed separately, in the following order: resvera-
trol, quercetin, chelated selenium, dry ginger extract, avocado powder, leucine, and
nicotinamide (Infinity Pharma, Campinas, São Paulo, Brazil). They were mixed with the
solubilized omega-3 (Table 1).

Table 1. Amount of each nutraceutical.

Nutraceuticals mg/kg mg/mL Amount (g) in 100 mL

Resveratrol 2.96 0.74 0.074
Quercetin 3.56 0.89 0.0908

Chelated selenium 1.76 0.44 2.6831
Omega-3 2.0 0.50 0.05

Ginger extract 3.24 0.81 0.081
Avocado powder 5.08 1.27 0.127

Leucine 4.44 1.11 0.111
Nicotinamide 20.0 5.0 0.5

The concentration of each nutraceutical ingredient was calculated for a rat with an
average weight of 250 g and in a 100 mL solution, without exceeding the toxic limits of
each one (Table 1).

The administration of the nutraceutical solution was made at a dose of 1.0 mL, once a day,
by gavage (with a BD-12 stainless steel curved gavage needle of 1.2 mm diameter × 41.2 mm
length; Ciencor Scientific Ltd., São Paulo, Brazil) for seven consecutive days before the
experiment [72–75].

4.3. Anesthesia and Surgical Procedures

The rats were anesthetized with 5% ketamine hydrochloride (Ketalar® Cristália,
São Paulo, Brazil) 100 mg/kg and 2% xylazine hydrochloride (Rompum® Bayer, Leverkusen,
Germany), at a dose of 10 mg/kg, intraperitoneally. The animals were submitted to oro-
tracheal intubation with a Jelco 16 catheter (Jelco® Descarpack, São Paulo, Brazil) and
ventilated with a tidal volume of 0.08 mL/g of weight, a respiratory rate of 60 cycles/min,
and a FiO2 of 0.21 (Small Animal Ventilator model 683, Harvard Apparatus, Holliston,
MA, USA).

A midline laparotomy was performed, and the pedicles of the left lateral and median
hepatic lobes were occluded with a 2.5 mm microvascular clamp, inducing the ischemia
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of approximately 70% of the total liver volume for 60 min [76,77]. The abdominal incision
was closed with a continuous 4.0 nylon suture during this period of ischemia to prevent
dehydration and hypothermia in animals.

After 60 min of ischemia, the abdomen of the rats was opened again and the clamp
was removed to allow for 4 h of liver reperfusion [76,77]. The incision was closed again,
and the animals returned to individual cages.

Following the reperfusion time, rats were anesthetized again, and a new midline
laparotomy with median thoracotomy was performed. A blood sample was collected
through cardiac puncture. Then, the left ventricle was punctured with a Jelco 16 catheter
and connected to a 250 mL 0.9% saline solution; the rats were euthanized, and their organs
were carefully washed with saline solution [78].

After the liver had been washed homogeneously, a partial hepatectomy of previously
ischemic lobes was performed.

4.4. Experimental Design

The rats were allocated into five groups. In the CONTROL group (n = 8), the rats did
not undergo any surgical procedure. In the IR Group (n = 8), the animals were submitted
to hepatic IR. In the NUT + IR group (n = 8), the rats received a nutraceutical solution
for seven consecutive days before hepatic IR was performed. In the NUT group (n = 8),
the animals received a nutraceutical solution for seven consecutive days. Additionally,
in the SHAM group (n = 5), the rats underwent midline laparotomy, and the liver was
manipulated without pedicled clamping.

4.5. Serum Biochemical Analysis

Serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were
used as indicators of liver injury. AST and ALT activities were assayed 4 h after reperfusion
by ultraviolet kinetic method (COBAS C111, Roche, Indianapolis, IN, USA) according to
the International Federation of Clinical Chemistry. The results are expressed in units per
liter (U/L).

The following inflammatory mediators were also evaluated: interleukin 1 beta (IL1-ß),
interleukin 6 (IL-6), interleukin 10 (IL-10), and TNF-α. Plasma specimens were prepared
for analysis in a 96-well plate utilizing a kit of 13-cytokine Milliplex MAP Human Cy-
tokine/Chemokine Magnetic Bead Panel (Millipore Corp., Billerica, MA, USA) following
the manufacturer’s recommendations.

Concentrations of cytokines were determined from a standard curve of the mean
fluorescence intensity versus pg/mL.

4.6. Oxidative Stress

The MDA concentration was determined by reverse-phase High-Performance Liquid
Chromatography (HPLC) according to Hong et al. [79]. Liver tissue homogenate (1/40 PBS
v/v) (0.05 mL) was submitted to alkaline hydrolysis with 12.5 µL of 0.2% butylated hydrox-
ytoluene in ethanol and 6.25 µL of a 10 M sodium hydroxide aqueous solution. This mixture
was incubated at 60 ◦C for 30 min, and 750 µL of 7.2% TCA aqueous solution containing
1% KI was added. The samples were kept on ice for 10 min and centrifuged at 10,000× g for
10 min. The supernatant (500 µL) was mixed with 250 µL of 0.6% TBA and heated at 95 ◦C
for 30 min. After cooling, the MDA was extracted from the solution with 750µL of n-butanol
and analyzed by HPLC (Agilent Technologies 1200 series; Santa Clara, CA, USA). The
TBA–MDA conjugate derivative (50 µL) was injected into a Phenomenex reverse-phase C18
analytical column (250 × 4.6 mm; 5 µm, Phenomenex, Torrance, CA, USA) with an LC8-D8
pre-column (Phenomenex AJ0-1287) and was quantified using fluorometric detection at
excitation and emission wavelengths of 515 and of 553 nm, respectively [79].

The analysis was run under isocratic conditions, using a mobile phase of 60% phosphate-
buffered saline (PBS) (50 mmol, pH 7.1) + 40% methanol at a flow rate of 1.0 mL/min. A stan-
dard curve (15–80 µmol MDA, r = 0.9981) was prepared using 1,1,3,3-tetraethoxypropane.
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The protein concentration was measured by the BCA method using the Pierce BCA
kit (Thermo Fisher Scientific, Waltham, MA, USA) as per the manufacturer’s instruc-
tions and a solution of bovine serum albumin as standard for the calibration curve
(0.025–2.00 mg ptn/mL, r = 0.9969) [79]. Samples were analyzed using a Synergy HT Spec-
trophotometer (BioTek, Winooski, VT, USA) with Gen5 software version 3.0 (BioTek). The
results are expressed as µg MDA/mg protein.

4.7. Gene Expression of Apoptosis

Liver tissue from animals in each group was collected, immediately frozen in liquid
nitrogen, and stored at −80 ◦C until RNA extraction was performed. For the extraction of
total RNA, TRIZOL™ reagent (Life Technologies Carlsbad, Carlsbad, CA, USA) was used
according to the protocol proposed by the manufacturer.

The RNA concentration was determined by the NanoDrop ND-1000 spectrophotome-
ter. The degree of RNA purity was evaluated by a 260/280 nm ratio, using only those whose
ratio was ≥1.8. The integrity profile of extracted RNA was evaluated by electrophoresis to
verify the presence of bands corresponding to 18S and 28S ribosomal RNAs. The quantified
RNA was stored at −80 ◦C until use.

The design of oligonucleotides was conducted with the Primer 3 program
(http://primer3.ut.ee accessed on 22 September 2022). Analysis of the expression of
mRNA levels of BAX, Bcl-2, CASPASE 3, and CASPASE 8 genes was performed on a
Rotor-Gene RG-3000 thermocycler (Corbett Research, Sydney, Australia). The commercial
kit SuperScript™ III Platinum® SYBR Green One-Step qRT-PCR (Life Technologies Cor-
poration, Carlsbad, CA, USA) was used. The beta-actin gene was used as a normalizer of
qRT-PCR reactions. The 2-Delta Delta CT method was used for relative quantification of
gene expression (Livak & Schmittgen, 2001).

4.8. Immunohistochemistry
4.8.1. Apoptosis

For the in situ detection of apoptosis in a single cell, the final identification deoxynu-
cleotidyl transferase (TdT) test was used (TUNEL; Boehringer Mannheim, Germany) [80,81].
According to the standard established by the Laboratory of Histomorphometry and Lung
Genomics at the University of São Paulo Medical School, 3–4 µm thick sections of liver
tissue were made and placed on silanized slides (Sigma Chemical Co.; St. Louis, MO, USA)
on a suitable support, as previously described by Souza et al. [82].

4.8.2. Cleaved Caspase-3 and TNF-α Proteins

Subserial sections from paraffin blocks were used for immunohistochemistry. The an-
tibodies used were caspase-3 and TNF-α (Table 2). Immunohistochemistry was performed
according to the manufacturer’s instructions.

Table 2. Immunohistochemical markers.

Antibody Concentration Brand Code Clone

Caspase 3 1:200 Novocastra NCL-CPP32 -
TNF-α 1:200 Santa Cruz sc-1348 -

Briefly, after the deparaffinization process and the hydration of the liver tissue sections,
the recovery of antigenic sites was performed at high temperature in citrate pH 6 for caspase-
3 and TRIS-EDTA pH 9 for TNF-α. Endogenous peroxidase blocking was performed with
10 v (3%) oxygenated water four times for 5 min for caspase-3 and for TNF-α with methanol
and oxygenated water, volume by volume, two times for 10 min. In the latter two antibodies,
protein blots were made, and then the slides were washed in tap water, followed by distilled
water, and left in TBS buffer at pH 7.4.

http://primer3.ut.ee
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The antibodies were diluted at concentrations shown in the table below (Table 2). The
slides were incubated overnight at 4 ◦C in a humid chamber. Subsequently, incubation was
performed with the secondary antibody (ABC Elite, Vector Laboratories Inc, Newark, CA,
USA) specific for each species, and the antibody was produced for 30 min in an incubator
at 37 ◦C. Diaminobenzidine (DAB) (Sigma-Aldrich Chemie, Steinheim, Germany) was used
as the chromogen. Then, counterstaining was performed with Harris’ Hematoxylin (Merck,
Darmstadt, Germany).

4.9. Histology

Samples from the median and left anterolateral liver lobes were collected 4 h after
reperfusion and fixed in 10% formalin for standard hematoxylin and eosin (HE) staining. A
single-blinded pathologist performed the histologic evaluation.

The histologic injury was evaluated according to the scoring system proposed by
Quireze et al. [53], which was adapted based on the presence and intensity of the following
alterations: ballooning, steatosis, apoptosis, loss of hepatic trabeculae, and necrosis. Those
lesions were graded according to the absence (grade 0) or presence of minimal (grade 1),
moderate (grade 2), or severe (grade 3) alterations, as determined by the pathologist.

4.10. Data Processing

Data were statistically analyzed using GraphPad Prism software (version 9.5.1). One-
way analysis of variance (ANOVA) was used to assess differences between tested groups,
followed by Tukey’s multiple comparison tests. The non-parametric results of transami-
nases and gene expression were analyzed by the Kruskal–Wallis test, followed by Dunn’s
test. Categorical data of liver histological injury were analyzed using the Chi-square statis-
tic. The results are presented as means ± standard errors of means (SEM). A p-value less
than 0.05 was considered statistically significant.

5. Conclusions

In summary, we proposed a nutraceutical solution that was able to decrease apoptosis
and histologic injury caused by liver IRI. Its suggested mechanisms of action are a reduction
in gene expression and the caspase-3 protein, as well as a reduction in TNF-α protein in
liver tissue. These findings suggest that the nutraceutical combination used favors the
protection of hepatocytes and represents a promising therapeutic proposal against liver IRI.

Besides transplantation, hepatocyte apoptosis also occurs in chronic liver diseases that
affect 1.5 billion persons globally. All these patients can be helped by controlling apoptosis.
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