
Citation: Li, M.; Yang, Z.; Liu, J.;

Chang, C. Wheat Susceptibility Genes

TaCAMTA2 and TaCAMTA3

Negatively Regulate Post-Penetration

Resistance against Blumeria graminis

forma specialis tritici. Int. J. Mol. Sci.

2023, 24, 10224. https://doi.org/

10.3390/ijms241210224

Academic Editor: Andreas Burkovski

Received: 22 May 2023

Revised: 12 June 2023

Accepted: 14 June 2023

Published: 16 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Wheat Susceptibility Genes TaCAMTA2 and TaCAMTA3
Negatively Regulate Post-Penetration Resistance against
Blumeria graminis forma specialis tritici
Mengmeng Li †, Zige Yang †, Jiao Liu and Cheng Chang *

College of Life Sciences, Qingdao University, Qingdao 266071, China
* Correspondence: cc@qdu.edu.cn
† These authors contributed equally to this work.

Abstract: Blumeria graminis forma specialis tritici (B.g. tritici) is the airborne fungal pathogen that causes
powdery mildew disease on hexaploid bread wheat. Calmodulin-binding transcription activators
(CAMTAs) regulate plant responses to environments, but their potential functions in the regulation of
wheat–B.g. tritici interaction remain unknown. In this study, the wheat CAMTA transcription factors
TaCAMTA2 and TaCAMTA3 were identified as suppressors of wheat post-penetration resistance
against powdery mildew. Transient overexpression of TaCAMTA2 and TaCAMTA3 enhanced the
post-penetration susceptibility of wheat to B.g. tritici, while knockdown of TaCAMTA2 and TaCAMTA3
expression using transient- or virus-induced gene silencing compromised wheat post-penetration sus-
ceptibility to B.g. tritici. In addition, TaSARD1 and TaEDS1 were characterized as positive regulators
of wheat post-penetration resistance against powdery mildew. Overexpressing TaSARD1 and TaEDS1
confers wheat post-penetration resistance against B.g. tritici, while silencing TaSARD1 and TaEDS1
enhances wheat post-penetration susceptibility to B.g. tritici. Importantly, we showed that expressions
of TaSARD1 and TaEDS1 were potentiated by silencing of TaCAMTA2 and TaCAMTA3. Collectively,
these results implicated that the Susceptibility genes TaCAMTA2 and TaCAMTA3 contribute to the
wheat–B.g. tritici compatibility might via negative regulation of TaSARD1 and TaEDS1 expression.

Keywords: wheat; CAMTA transcription factor; Blumeria graminis forma specialis tritici; SARD1; EDS1

1. Introduction

As one of the most widely grown small-grain cereal crops, bread wheat (Triticum aes-
tivum L.) has served as a major staple food for thousands of years and provided about 20%
of the calories consumed by humans [1]. With the increase in the global population, the
demand for wheat grains is rapidly growing [1]. However, wheat production is seriously
threatened by attacks from adapted pathogens and pests [2]. Powdery mildew is a devas-
tating disease of wheat that is caused by the obligate biotrophic fungal pathogen Blumeria
graminis forma specialis tritici (B.g. tritici), leading to 5–50% yield losses [3,4]. To date, the
safest, most economical, and most effective strategy to control this epidemic is breeding
B.g. tritici-resistant wheat cultivars [3,4]. Therefore, it is critical to elucidate the molecular
interaction between wheat and B.g. tritici and identify key regulators of wheat resistance
against powdery mildew disease.

In general, plants employ two classes of immune receptors to detect adapted pathogens
and initiate defense responses [5–7]. The pattern recognition receptors (PRRs) residing
on the plant cell surface recognize the conserved pathogen-associated molecular pattern
(PAMP) to initiate PAMP-triggered immunity (PTI) [8–12]. Upon detection of pathogen
effectors, plant resistance proteins activate effector-triggered immunity (ETI) [13–16]. Al-
though PTI and ETI are activated by distinct immune receptors and display different
amplitudes and durations, they are both associated with massive transcriptomic repro-
gramming governed by transcription factors [17,18].
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As Ca2+-loaded calmodulin binding (CaMB) transcription factors, calmodulin-binding
transcription activators (CAMTAs) play important roles in regulating plant growth, de-
velopment, and responses to environmental stresses [19–21]. For instance, expressions
of six CAMTA genes differentially respond to environmental cues like drought, salinity,
and extreme temperatures in the model plant Arabidopsis thaliana [22–26]. Arabidopsis mu-
tant camta1 exhibited hypersensitivity to cold and drought stress, and AtCAMTA1 was
shown to regulate the expression of cold and drought-responsive genes like AtRD26,
AtERD7, AtCBF2, and AtRAB18 [22–26]. 4- to 11-day-old Arabidopsis mutant camta6 exhib-
ited hypersensitivity to NaCl treatment, and AtCAMTA6 was demonstrated to regulate
expression of salt resilience-related genes, including HIGH-AFFINITY K+ TRANSPORTER1,
SALT OVERLY SENSITIVE1, and Na+/H+ ANTIPORTER [27]. In addition, CAMTA tran-
scription factors get involved in the regulation of plant defense against pathogens. For
instance, Arabidopsis AtCAMTA3 was shown to function in concert with AtCAMTA1 and
AtCAMTA2 in suppressing plant defense responses [28–32]. However, whether and how
CAMTA transcription factors regulate wheat disease resistance against B.g. tritici remains
largely unknown.

In this research, two CAMTA transcription factor genes, TaCAMTA2 and TaCAMTA3,
were characterized as Susceptibility (S) genes contributing to wheat–B.g. tritici compatibil-
ity. Transient overexpression of TaCAMTA2 and TaCAMTA3 resulted in enhanced wheat
post-penetration susceptibility to B.g. tritici, while transient silencing of TaCAMTA2 and
TaCAMTA3 led to attenuated wheat post-penetration susceptibility to B.g. tritici. Fur-
thermore, overexpressing TaSARD1 and TaEDS1 could confer wheat post-penetration
resistance against powdery mildew, while silencing TaSARD1 and TaEDS1 enhanced wheat
post-penetration susceptibility to B.g. tritici. Moreover, TaCAMTA2 and TaCAMTA3 were
demonstrated to negatively regulate the expression of the defense genes TaSARD1 and
TaEDS1. These results strongly support that S genes TaCAMTA2 and TaCAMTA3 partially
redundantly suppress wheat post-penetration resistance against B.g. tritici presumably via
the negative regulation of expressions of defense genes TaSARD1 and TaEDS1.

2. Results
2.1. Homology-Based Identification of TaCAMAT2 and TaCAMTA3 in Bread Wheat

Previous studies revealed that the Arabidopsis CAMTA transcription factor AtCAMTA3
plays a vital role in the regulation of plant immunity [29–32]. In this study, we are interested
in exploring the function of the wheat homolog of AtCAMTA3 in the wheat–B.g. tritici
interaction. To this end, we first searched the reference genome of the hexaploid bread
wheat by using the amino acid sequence of Arabidopsis AtCAMTA3 (At2g22300) as a query
and obtained TaCAMAT2 and TaCAMTA3, the most closely related homologs of AtCAMTA3,
in bread wheat. Three highly homologous sequences of TaCAMAT2 genes separately lo-
cated on chromosomes 4A, 4B, and 4D were obtained from the genome sequence of the
hexaploid wheat and designated as TaCAMTA2-4A (TraesCS4A02G407100), TaCAMTA2-
4B (TraesCS4B02G306300), and TaCAMTA2-4D (TraesCS4D02G304500). Similarly, three
highly homologous sequences of TaCAMAT3 genes separately located on chromosomes
2A, 2B, and 2D were obtained from the genome sequence of the hexaploid wheat and des-
ignated as TaCAMTA3-2A (TraesCS2A02G163000), TaCAMTA3-2B (TraesCS2B02G188800),
and TaCAMTA3-2D (TraesCS2D02G169900).

As shown in Figure 1A, these predicted TaCAMTA2-4A, TaCAMTA2-4B, TaCAMTA2-
4D, TaCAMTA3-2A, TaCAMTA3-2B, and TaCAMTA3-2D proteins shared about 46% iden-
tity with Arabidopsis AtCAMTA3. In addition, TaCAMTA2-4A, TaCAMTA2-4B, TaCAMTA2-
4D, TaCAMTA3-2A, TaCAMTA3-2B, and TaCAMTA3-2D proteins all contain a conserved
CG-1 DNA-binding domain at their N-terminal parts, a transcription factor immunoglobulin-
like (TIG) DNA-binding domain, several ankyrin repeats (ANK) in the middle parts, as well
as two IQ CaMB motifs (IQXXXRGXXXR) at their C-termini (Figure 1B). The coding regions
of these allelic TaCAMAT2 and TaCAMTA3 genomic sequences all contained 13 exons and
12 introns (Figure 1C).
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genes in the leaf epidermal cells of the B.g. tritici-susceptible wheat cultivar Yannong 999. 
After inoculation of conidia from the virulent B.g. tritici isolate E09, the formation of fun-
gal haustoria in the transformed wheat cells was statistically analyzed. As shown in Figure 
2A, the B.g. tritici haustorium index (HI%) increased from 56% for the empty vector (OE-
EV) control to above 70% on wheat cells overexpressing TaCAMTA2 or TaCAMTA3 genes. 
These results suggested that overexpression of TaCAMAT2 and TaCAMTA3 could signifi-
cantly enhance wheat post-penetration susceptibility to B.g. tritici. 

To further verify the function of TaCAMAT2 and TaCAMTA3 in the regulation of 
wheat–B.g. tritici interaction, we employed transiently induced gene silencing (TIGS) as-
says to silence all endogenous TaCAMAT2 or TaCAMTA3 genes in the epidermal cell of 

Figure 1. Identification of wheat TaCAMTA2 and TaCAMTA3 based on homology with Arabidopsis
AtCAMTA3. (A) Protein sequence comparison of wheat TaCAMTA2, TaCAMTA3, and Arabidopsis At-
CAMTA3. Residues conserved in at least 4 of the 7 proteins are shaded in gray, while identical residues
among 7 protein sequences are shaded in dark. (B) Domain structure of wheat TaCAMTA2 and
TaCAMTA3 proteins. (C) Gene architectures of the wheat TaCAMTA2 and TaCAMTA3 genes.

2.2. TaCAMAT2 and TaCAMTA3 Contribute to the Wheat Susceptibility to B.g. tritici

To study the function of TaCAMAT2 and TaCAMTA3 in the wheat–B.g. tritici interaction,
we first employed transient gene expression assays to overexpress these TaCAMTA2-4A,
TaCAMTA2-4B, TaCAMTA2-4D, TaCAMTA3-2A, TaCAMTA3-2B, or TaCAMTA3-2D genes
in the leaf epidermal cells of the B.g. tritici-susceptible wheat cultivar Yannong 999. After
inoculation of conidia from the virulent B.g. tritici isolate E09, the formation of fungal
haustoria in the transformed wheat cells was statistically analyzed. As shown in Figure 2A,
the B.g. tritici haustorium index (HI%) increased from 56% for the empty vector (OE-EV)
control to above 70% on wheat cells overexpressing TaCAMTA2 or TaCAMTA3 genes. These
results suggested that overexpression of TaCAMAT2 and TaCAMTA3 could significantly
enhance wheat post-penetration susceptibility to B.g. tritici.
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Figure 2. Functional analyses of wheat TaCAMTA2 and TaCAMTA3 under B.g. tritici infection.
(A) Haustorial index analysis in wheat epidermal cells transiently overexpressing TaCAMTA2 (OE-
TaCAMTA2) and TaCAMTA3 (OE-TaCAMTA3). Haustorial formation on wheat epidermal cells
bombarded with empty vector (OE-EV) was statistically analyzed as a control. At least 100 wheat
cells were analyzed in each experiment. (B) Haustorial index analysis in wheat epidermal cells
transiently silencing TaCAMTA2 (TIGS-TaCAMTA2), TaCAMTA3 (TIGS-TaCAMTA3), or co-silencing
TaCAMTA2 and TaCAMTA3 (TIGS-TaCAMTA2 + TIGS-TaCAMTA3). Haustorial formation on wheat
epidermal cells bombarded with an empty vector (TIGS-EV) was statistically analyzed as a control.
(C) qRT-PCR analysis of TaCAMTA2 and TaCAMTA3 expression in wheat leaves infected with the
indicated BSMV vectors. BSMV-γ empty vector was employed as the negative control. (D) B.g. tritici
microcolony index analysis on wheat leaves silencing TaCAMTA2 (BSMV-TaCAMTA2as), TaCAMTA3
(BSMV-TaCAMTA3as), or co-silencing TaCAMTA2 and TaCAMTA3 (BSMV-TaCAMTA2as + BSMV-
TaCAMTA3as). At least 1000 wheat–B.g. tritici interaction sites were counted in one experiment for
each treatment. For (A–D), three independent biological replicates were statistically analyzed for
each treatment (t-test; * p < 0.05, ** p < 0.01).

To further verify the function of TaCAMAT2 and TaCAMTA3 in the regulation of wheat–
B.g. tritici interaction, we employed transiently induced gene silencing (TIGS) assays
to silence all endogenous TaCAMAT2 or TaCAMTA3 genes in the epidermal cell of the
B.g. tritici-susceptible wheat cultivar Yannong 999. After inoculation of conidia from
the virulent B.g. tritici isolate E09, the frequency of fungal haustorium formation in the
transformed plant cells was scored. As shown in Figure 2B, the silencing of TaCAMAT2
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or TaCAMTA3 genes resulted in a marked HI% decrease to about 27%, compared to 33%
for empty vector (EV) controls. Significantly, simultaneous silencing of TaCAMAT2 and
TaCAMTA3 could lead to a further decrease in HI% to approximately 13%, suggesting
that TaCAMTA2 and TaCAMTA3 might partially redundantly suppress post-penetration
resistance of wheat to B.g. tritici.

In addition, we performed barley stripe mosaic virus (BSMV)-induced gene silencing
(BSMV-VIGS) to silence all endogenous TaCAMAT2 or TaCAMTA3 genes in the leaves
of the B.g. tritici-susceptible wheat cultivar Yannong 999. qRT-PCR showed that the en-
dogenous transcript level of TaCAMAT2 or TaCAMTA3 was substantially reduced in the
indicated VIGS plants (Figure 2C). Thereafter, these VIGS plants were inoculated with
conidia from the virulent B.g. tritici isolate E09, and the formation of microcolonies was
analyzed to evaluate the wheat’s susceptibility to powdery mildew. B.g. tritici microcolony
index (MI%) declined to approximate 40% on BSMV-TaCAMTA2as plants and 47% on
BSMV-TaCAMTA3as plants, compared with 55% for the BSMV-γ plants (Figure 2D). No-
tably, simultaneous silencing of TaCAMAT2 and TaCAMTA3 could lead to a further MI%
decrease to about 28%. These data clearly indicate that TaCAMAT2 and TaCAMTA3 partially
redundantly contribute to the wheat susceptibility to B.g. tritici.

2.3. Homology-Based Identification of TaSARD1 and TaEDS1 in Bread Wheat

Previous studies revealed that AtCAMTA3 could regulate the expression of defense
genes SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1 (AtSARD1) and ENHANCED
DISEASE SUSCEPTIBILITY 1 (AtEDS1) in A. thaliana [29–32]. We are interested in examin-
ing the potential regulation of TaCAMAT2 and TaCAMTA3 on the wheat defense genes. To
this end, we first searched the reference genome of the hexaploid bread wheat by using
the amino acid sequences of Arabidopsis AtSARD1 (At1g73805) and AtEDS1 (At3g48090)
as a query and obtained TaSARD1 and TaEDS1, the most closely related homologs of
AtSARD1 and AtEDS1, in bread wheat. Five highly homologous sequences of TaSARD1
genes separately located on chromosomes 6A, 6B, and 6D were obtained from the genome
sequence of the hexaploid wheat and designated as TaSARD1.1-6A (TraesCS6A02G091700),
TaSARD1.1-6B (TraesCS6B02G119900), TaSARD1.1-6D (TraesCS6D02G080500), TaSARD1.2-
6A (TraesCS6A02G296600), and TaSARD1.2-6D (TraesCS6D02G276800). Similarly, three
highly homologous sequences of TaEDS1 genes separately located on chromosomes 5A, 5B,
and 5D were obtained from the genome sequence of the hexaploid wheat and designated
as TaEDS1-5A, TaEDS1-5B, and TaEDS1-5D [33].

As shown in Figure 3A, these predicted TaSARD1.1-6A, TaSARD1.1-6B, TaSARD1.1-6D,
TaSARD1.2-6A, and TaSARD1.2-6D proteins shared about 43% identities with Arabidopsis
AtSARD1. In addition, TaSARD1.1-6A, TaSARD1.1-6B, TaSARD1.1-6D, TaSARD1.2-6A, and
TaSARD1.2-6D proteins all contain a CBP60-conserved domain (Figure 3B). The coding
regions of these allelic TaSARD1 genomic sequences all contained seven exons and six
introns (Figure 3C). The predicted TaEDS1-5A, TaEDS1-5B, and TaEDS1-5D proteins shared
about 38% identity with Arabidopsis AtEDS1 (Figure 3D). In addition, TaEDS1-5A, TaEDS1-
5B, and TaEDS1-5D proteins all contain an N-terminal lipase-like domain and a C-terminal
EP (EDS1–PAD4) domain (Figure 3E). The coding regions of these allelic TaEDS1 genomic
sequences all contained 3 exons and 2 introns (Figure 3F).
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Figure 3. Identification of wheat TaSARD1 and TaEDS1 based on homology with Arabidopsis At-
SARD1 and AtEDS1. (A) Protein sequence comparison of wheat TaSARD1 and Arabidopsis AtSARD1.
Residues conserved in at least 3 of the 6 proteins are shaded in gray, while identical residues among
6 protein sequences are shaded in dark. (B) Domain structure of wheat TaSARD1 proteins. (C) Gene
architectures of wheat TaSARD1 genes. (D) Protein sequence comparison of wheat TaEDS1 and
Arabidopsis AtEDS1. Residues conserved in at least 2 of the 4 proteins are shaded in gray, while
identical residues among 4 protein sequences are shaded in dark. (E) Domain structure of wheat
TaEDS1 proteins. (F) Gene architectures of wheat TaEDS1 genes.

2.4. TaSARD1 and TaEDS1 Positively Contribute to the Wheat Post-Penetration Resistance to
B.g. tritici

To characterize the function of TaSARD1 and TaEDS1 in the wheat–B.g. tritici inter-
action, we first employed transient gene expression assays to overexpress TaSARD1.1-6A,
TaSARD1.1-6B, TaSARD1.1-6D, TaSARD1.2-6A, TaSARD1.2-6D, TaEDS1-5A, TaEDS1-5B, or
TaEDS1-5D genes in the leaf epidermal cell of the B.g. tritici-susceptible wheat cultivar
Yannong 999. As shown in Figure 4A, the B.g. tritici HI% decreased from 54% for the empty
vector control to less than 41% on wheat cells overexpressing TaSARD1 or TaEDS1 genes.
These results suggested that overexpression of TaSARD1 or TaEDS1 remarkably attenuated
wheat post-penetration susceptibility to B.g. tritici.
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Figure 4. Functional analyses of wheat TaSARD1 and TaEDS1 under B.g. tritici infection. (A) Haus-
torial index analysis in wheat epidermal cells transiently overexpressing TaSARD1 (OE-TaSARD1)
and TaEDS1 (OE-TaEDS1). Haustorial formation on wheat epidermal cells bombarded with empty
vector (OE-EV) was statistically analyzed as a control. At least 100 wheat cells were analyzed in each
experiment. (B) Haustorial index analysis in wheat epidermal cells transiently silencing TaSARD1
(TIGS-TaSARD1) or TaEDS1 (TIGS-TaEDS1). Haustorial formation on wheat epidermal cells bom-
barded with an empty vector (TIGS-EV) was statistically analyzed as a control. (C) qRT-PCR analysis
of TaSARD1 and TaEDS1 expression in wheat leaves infected with the indicated BSMV vectors. The
BSMV-γ empty vector was employed as the negative control. (D) B.g. tritici microcolony index
analysis on wheat leaves silencing TaSARD1 (BSMV-TaSARD1as) or TaEDS1 (BSMV-TaEDS1as). At
least 1000 wheat–B.g. tritici interaction sites were counted in one experiment for each treatment. For
(A–D), three independent biological replicates were statistically analyzed for each treatment (t-test;
** p < 0.01).

To further examine the function of TaSARD1 and TaEDS1 in regulating wheat–B.g. tritici
interaction, we employed the TIGS assays to silence all endogenous TaSARD1 or TaEDS1
genes in the leaf epidermal cell of the B.g. tritici-susceptible wheat cultivar Yannong 999.
As shown in Figure 4B, silencing of TaSARD1 or TaEDS1 genes resulted in a notable
HI% increase to above 42%, compared to 31% for empty vector controls. In addition,
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we employed BSMV-VIGS to silence all endogenous TaSARD1 or TaEDS1 genes in the
leaves of the B.g. tritici-susceptible wheat cultivar Yannong 999. qRT-PCR showed that
the endogenous transcript level of TaSARD1 or TaEDS1 was significantly reduced in the
indicated VIGS plants (Figure 4C). Thereafter, these VIGS plants were inoculated with
B.g. tritici conidia, and the formation of microcolonies was statistically analyzed. B.g. tritici
MI% increased to approximately 65% on BSMV-TaSARD1as plants and 72% on BSMV-
TaEDS1as plants, compared with 53% for the BSMV-γ plants (Figure 4D). These data support
that TaSARD1 and TaEDS1 positively regulate the wheat post-penetration resistance to
B.g. tritici.

2.5. TaCAMAT2 and TaCAMTA3 Negatively Regulate Expression of TaSARD1 and TaEDS1

To determine the potential regulation of TaCAMAT2 and TaCAMTA3 on the expression
of TaSARD1 and TaEDS1 in bread wheat, we employed BSMV-VIGS to silence all endoge-
nous TaCAMAT2 or TaCAMTA3 genes in the leaves of the B.g. tritici-susceptible wheat
cultivar Yannong 999. Thereafter, these VIGS plants were inoculated with B.g. tritici conidia,
and expression levels of TaSARD1 and TaEDS1 were analyzed. As shown in Figure 5, the
silencing of TaCAMAT2 or TaCAMTA3 genes resulted in a marked increase in the expression
levels of TaSARD1 and TaEDS1. Significantly, simultaneous silencing of TaCAMAT2 and
TaCAMTA3 could lead to a further increase in the expression levels of TaSARD1 and TaEDS1,
suggesting that partially redundant TaCAMTA2 and TaCAMTA3 negatively regulate the
expressions of TaSARD1 and TaEDS1.
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Figure 5. qRT-PCR analysis of TaSARD1 and TaEDS1 expression levels in TaCAMTA2 and TaCAMTA3
silenced wheat leaves under B.g. tritici infection. The data are shown as means± SEs (t-test; ** p < 0.01)
from three independent biological replicates. hpi is the abbreviation for hours post B.g. tritici
inoculation.

Since PR expressions are usually activated in the plant defense responses to biotrophic
pathogens like B.g. tritici, we compared the transcript levels of TaPR1, TaPR2, and TaPR5
among BSMV-TaCAMTA2as, BSMV-TaCAMTA3as, BSMV-TaSARD1as, BSMV-TaEDS1as,
and BSMV-γ infected plants. As shown in Figure 6A, the expressions of TaPR1, TaPR2, and
TaPR5 were remarkably reduced by silencing of TaSARD1 or TaEDS1, further confirming
the fact that TaSARD1 and TaEDS1 positively regulate the wheat defense against B.g. tritici.
In contrast, the expressions of TaPR1, TaPR2, and TaPR5 were significantly affected by the
silencing of TaCAMAT2 or TaCAMTA3 genes (Figure 6B). Notably, simultaneous silencing
of TaCAMAT2 and TaCAMTA3 could lead to a further increase in the activation of TaPR1,
TaPR2, and TaPR5 (Figure 6B), which is consistent with the fact that partially redundant
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TaCAMTA2 and TaCAMTA3 negatively regulate expressions of the wheat defense genes
TaSARD1 and TaEDS1.
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3. Discussion
3.1. TaCAMAT2 and TaCAMTA3 Are Wheat S Genes Suppressing Post-Penetration Resistance
against B.g. tritici

Powdery mildew, caused by the adapted fungal pathogen B.g. tritici, seriously threat-
ens global wheat production [3,4]. To improve wheat resistance against powdery mildew,
it is vital to identify the important genes involved in the regulation of the wheat–B.g. tritici
interaction [3,4]. Powdery mildew (Pm) resistance genes and quantitative trait loci (QTL)
contributed to wheat resistance to B.g. tritici and have been employed in wheat breeding
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for powdery mildew resistance [3,4]. Compatibility between wheat and B.g. tritici under-
lies wheat’s susceptibility to powdery mildew. A plethora of wheat S genes have been
identified to facilitate compatibility by inducing B.g. tritici (pre)penetration, suppressing
wheat immunity, and supporting the sustenance of B.g. tritici [34,35]. For instance, wheat S
genes TaWIN1, TaKCS6, and TaECR were revealed to facilitate the conidial germination of
B.g. tritici by promoting the biosynthesis of wheat cuticular wax, whereas wheat S gene
TaSTP13 encodes a sugar transporter facilitating wheat hexose accumulation for B.g. tritici
acquisition [36–41]. TaMLO, TaEDR1, and TaPOD70 genes contribute to wheat susceptibility
to powdery mildew by suppressing plant defense responses [42–47]. In addition, S factors
TaMED25, TaHDA6, TaHOS15, and TaHDT701 positively contribute to wheat susceptibil-
ity to B.g. tritici by suppressing defense-related transcriptional reprogramming in bread
wheat [48–53].

Through homology-based searching, TaCAMAT2 and TaCAMTA3 were identified as the
most closely related homologs of AtCAMTA3, which is consistent with the reported phyloge-
netic analysis of the CAMTA homologs in different species [19]. TaCAMAT2 and TaCAMTA3
are characterized as wheat S genes contributing to the wheat post-penetration suscepti-
bility to B.g. tritici in this study. Overexpression of TaCAMTA2 and TaCAMTA3 in the leaf
epidermal cell by transient gene expression assays led to enhanced wheat susceptibility to
B.g. tritici, while knockdown of TaCAMTA2 and TaCAMTA3 expression using transient- or
virus-induced gene silencing resulted in compromised wheat post-penetration suscepti-
bility to B.g. tritici. Interestingly, a gain-of-function mutation in SIGNAL RESPONSIVE1
(SR1), which encodes the Arabidopsis homologs of wheat TaCAMTA2 and TaCAMTA3, could
suppress the edr2-associated powdery mildew resistance [29]. The sr1-4D single mutant is
more susceptible to Arabidopsis powdery mildew (Golovinomyces cichoracearum), whereas
the sr1-1 null mutant plants displayed enhanced post-penetration resistance against G. ci-
choracearum [29]. In addition, Arabidopsis AtCAMTA1 was revealed to function partially
redundantly with AtCAMTA2 and AtCAMTA3 in suppressing plant immunity [30–32]. In
this study, simultaneous silencing of TaCAMAT2 and TaCAMTA3 could lead to a further
decrease in the HI% and MI% compared with single silencing of TaCAMAT2 or TaCAMTA3,
supporting the fact that TaCAMTA3 functions partially redundantly with TaCAMAT2 in
suppressing wheat post-penetration resistance against B.g. tritici. In Arabidopsis, CAMTA
transcription factors AtCAMTA1, AtCAMTA2, and AtCAMTA3 partially redundantly
suppress the biosynthesis of salicylic acid (SA) and N-hydroxypipecolic acid (NHP), a
metabolite duo essential for systemic acquired resistance (SAR) [30–32]. Therefore, it is
intriguing to examine the potential roles of the S genes TaCAMAT2 and TaCAMTA3 in the
regulation of SA and NHP biosynthesis, as well as SAR establishment, in bread wheat in
future research.

3.2. TaSARD1 and TaEDS1 Confer Wheat Post-Penetration Resistance against B.g. tritici

TaSARD1 and TaEDS1 are identified as positive regulators of wheat resistance against
B.g. tritici in this study. Overexpression of TaSARD1 or TaEDS1 in the leaf epidermal cell
by transient gene expression assays led to enhanced wheat post-penetration resistance
to B.g. tritici, while knockdown of TaSARD1 or TaEDS1 expression using transient- or
virus-induced gene silencing resulted in increased wheat post-penetration susceptibility to
B.g. tritici. In Arabidopsis, transcription factor AtSARD1 functions in concert with AtCBP60g
to activate the expression of SID2 (SA INDUCTION DEFICIENT 2), which encodes isochoris-
mate synthase 1 (ICS1), essential for pathogen-induced SA biosynthesis [54–56]. Arabidopsis
AtEDS1 was shown to heterodimerize with its partners, phytoalexin deficient 4 (PAD4)
or senescence-associated gene 101 (SAG101), to play signaling roles in ETI as well as SA-
dependent and SA-independent PTI pathways [57–64]. Consistent with this, expressions
of SA defense marker genes TaPR1, TaPR2, and TaPR5 induced by B.g. tritici infection
were attenuated by silencing of TaSARD1 or TaEDS1, suggesting that the SARD1-EDS1-SA
defense axis might be partially conserved between model plant Arabidopsis and crop plant
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bread wheat. Therefore, it is intriguing to examine the potential regulation of wheat SA
biosynthesis and signaling by TaSARD1 and TaEDS1 in future research.

3.3. TaCAMAT2 and TaCAMTA3 Negatively Regulate the Expression of TaSARD1 and TaEDS1 to
Suppress Wheat Post-Penetration Resistance against B.g. tritici

In this study, expression levels of TaSARD1 and TaEDS1 were significantly enhanced
by silencing TaCAMTA2 and TaCAMTA3. Notably, simultaneous silencing TaCAMAT2
and TaCAMTA3 could lead to a further increase in the expression levels of TaSARD1
and TaEDS1 compared with single silencing TaCAMAT2 or TaCAMTA3, indicating that
TaCAMTA2 and TaCAMTA3 partially redundantly suppress expressions of TaSARD1 and
TaEDS1. In Arabidopsis, AtCAMTA3 could bind to the promoter region of AtEDS1 by
recognizing the CGCG box, thereby directly repressing the expression of AtEDS1 [28–31].
In addition, the expression of AtSARD1 was demonstrated to be negatively regulated
by partially redundant AtCAMTA1, AtCAMTA2, and AtCAMTA3, presumably via an
indirect effect [28–31]. These results indicate that negative regulation of the expressions
of defense genes SARD1 and EDS1 by partially redundant CAMTA3 and its homologs
might be partly conserved between the model plant Arabidopsis and the important crop
bread wheat. Indeed, the expressions of SA defense marker genes TaPR1, TaPR2, and TaPR5
induced by B.g. tritici infection were found to be potentiated by silencing TaCAMAT2 or
TaCAMTA3 in this study. However, binding sites for TaCAMAT2 and TaCAMTA3 in the
promoter regions of TaSARD1 and TaEDS1 genes remain to be identified.

Herein, TaCAMAT2 and TaCAMTA3 are identified as wheat S genes partially redun-
dantly suppressing post-penetration resistance against powdery mildew, presumably via
negative regulation of the expressions of defense genes TaSARD1 and TaEDS1. Genetic
manipulation of S genes TaMLO and TaEDR1 via targeting induced local lesions in genomes
(TILLING) and genome editing techniques like transcription activator-like effector nucle-
ases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)-Cas
(CRISPR-associated) 9 systems compromised wheat compatibility with B.g. tritici and con-
ferred wheat resistance against powdery mildew [65–73]. Therefore, it is intriguing to
examine the potential of manipulating the S genes TaCAMAT2 and TaCAMTA3 in wheat
breeding for powdery mildew resistance in future research.

4. Materials and Methods
4.1. Plant and Fungal Materials

The seedlings of bread wheat cultivar Yannong999 used in this study were grown
in a growth chamber under a 16-h/8-h, 20 ◦C/18 ◦C day/night cycle with 70% relative
humidity. The B.g. tritici strain E09 was maintained on the leaves of Jing411 plants. Conidia
of B.g. tritici strain E09 were used for the inoculation of Jing411 leaves in the study of
wheat–powdery mildew interaction. Arabidopsis thaliana used in this study was grown in
the greenhouse under a 16 h/8 h light period at 23 ± 1 ◦C with 70% relative humidity.

4.2. Quantitative Real-Time PCR (qRT-PCR)

Total RNA was extracted from the wheat leaves using the EasyPure Plant RNA kit
(Transgenbiotech, Beijing, China) and 2 µg of RNA was used to synthesize the cDNA
template using the TransScript one-step gDNA removal and cDNA synthesis supermix
(Transgenbiotech, Beijing, China) according to the manufacturer’s instructions. The real-
time PCR assay was performed using the ABI real-time PCR system with the qPCR Master
Mix (Invitrogen, Carlsbad, CA, USA). The expression of traditional housekeeping gene
GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE (TaGAPDH) was set as the in-
ternal control and expressions of TaGAPDH, TaCAMTA2, TaCAMTA3, TaSARD1, TaEDS1,
TaPR1, TaPR2 and TaPR5 were analyzed using the primers 5′-TTAGACTTGCGAAGCCAGC
A-3′/5′-AAATGCCCTTGAGGTTTCCC-3′, 5′-TACAGAAGTTGCAACAG-3′/5′-ATCTCCG
TCGACTCCTCA-3′, 5′-CCTGACAAACAACTTGA-3′/5′-CGCCAGCTGCA TCGCTT-3′,
5′-GCGAGTAATGAAAGCAT-3′/5′-TTAATCAACTTGATCCC-3′, 5′-TGAAAGACAGGGT
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GGGT-3′/5′-CGAAGGCACAAGTCTCG-3′, 5′-GAGAATGCAGACGCCCAAGC-3′/5′-CTG
GAGCTTGCAGTCGTTGATC-3′, 5′-AGGATGTTGCTTCCATGTTTGCCG-3′/5′-AAGTAGA
TGCGCATGCCGTTGATG-3′, and 5′-CTTCTACATCAAGA ACAACTG-3′/5′-CAGTCGCCG
GTCTGGCAG-3′.

4.3. BSMV-Mediated Gene Silencing and B.g. tritici Infection

The antisense fragment of TaCAMTA2, TaCAMTA3, TaSARD1, and TaEDS1 was cloned
into the pCa-γbLIC vector to create the BSMV-TaCAMTA2as, BSMV-TaCAMTA3as, BSMV-
TaSARD1as, and BSMV-TaEDS1as constructs using the primer pair 5′-AAGGAAGTTTATACC
ATCATTAGCACTTGG-3′/5′-AACCACCACCACCGTCACTTTTGGAATTACATTC-3′, 5′-
AAGGAAGTTTACATTATGCACCTGCGAGGA-3′/5′-AACCACCACCACCGTTCAGTGC
ACTTTGGTGAGC-3′, 5′-AAGGAAGTTTATGGTTCTAGTATCTATAAG-3′/5′-AACCACCA
CCACCGTGTTTGGAACCAGTTATTCG-3′, and 5′-AAGGAAGTTTAAGCGAATTCCCAA
CAGGTG-3′/5′-AACCACCACCACCGTAGACGGGGAAGTGTCAATC-3′. The BSMV-
mediated gene silencing in wheat leaves was performed as described by Zhi et al. (2020) [52].
About 15 days after BSMV infection, the newly grown upper leaves with virus symptoms
were collected and subjected to inoculation with B.g. tritici strain E09 conidia. About 72 h
post-B.g. tritici inoculation, leaf segments were fixed with ethanol: acetic acid solution
(1:1, v/v) and kept in the destaining solution (lactic acid: glycerol: water, 1:1:1, v/v/v).
Before mounting for microscopy, B.g. tritici-infected leaves were stained with 0.1% (w/v)
Coomassie Brilliant Blue R250 to visualize the fungal epiphytic structure, as reported
previously [52].

4.4. Single-Cell Transient Gene Silencing and Overexpression Assay

Antisense fragments of TaCAMTA2, TaCAMTA3, TaSARD1, and TaEDS1 were, respec-
tively, amplified using the primers 5′-GGGGACAAGTTTGTACAAAAAAGCAGGCTTCTA
CCATCATTAGCACTTGG-3′/5′-GGGGACCACTTTGTACAAGAAAGCTGGGTCCACTTT
TGGAATTACATTC-3′, 5′-GGGGACAAGTTTGTACAAAAAAGCAGGCTTCCATTATGCA
CCTGCGAGGA-3′/5′-GGGGACCACTTTGTACAAGAAAGCTGGGTCTCAGTGCACTTT
GGTGAGC-3′, 5′-GGGGACAAGTTTGTACAAAAAAGCAGGCTTCTGGTTCTAGTATCTA
TAAG-3′/5′-GGGGACCACTTTGTACAAGAAAGCTGGGTCGTTTGGAACCAGTTATTC
G-3′, and 5′-GGGGACAAGTTTGTACAAAAAAGCAGGCTTCAGCGAATTCCCAACAG
GTG-3′/5′-GGGGACCACTTTGTACAAGAAAGCTGGGTCAGACGGGGAAGTGTCAAT
C-3′, and cloned into the pIPKb007 vector using a Gateway cloning system to create
the TIGS-TaCAMTA2, TIGS-TaCAMTA3, TIGS-TaSARD1, and TIGS-TaEDS1 constructs.
The coding regions of TaCAMTA2-4A, TaCAMTA2-4B, TaCAMTA2-4D, TaCAMTA3-2A,
TaCAMTA3-2B, TaCAMTA3-2D, TaSARD1.1-6A, TaSARD1.1-6B, TaSARD1.1-6D, TaSARD1.2-
6A, TaSARD1.2-6B, TaSARD1.2-6D, TaEDS1-5A, TaEDS1-5B, and TaEDS1-5D were, respec-
tively, amplified using the primers 5′-GGGGACAAGTTTGTACAAAAAAGCAGGCTTCAT
GGCCGAGGGCCGGCGCTAC-3′/5′-GGGGACCACTTTGTACAAGAAAGCTGGGTCCT
AGAAATAGCCCGGCAACG-3′, 5′-GGGGACAAGTTTGTACAAAAAAGCAGGCTTCAT
GGCCGAGGGCCGGCGCTAC-3′/5′-GGGGACCACTTTGTACAAGAAAGCTGGGTCCT
AGAAATAGCCAGGCAACG-3′, 5′-GGGGACAAGTTTGTACAAAAAAGCAGGCTTCAT
GGCCGAGGGCCGGCGCTAC-3′/5′-GGGGACCACTTTGTACAAGAAAGCTGGGTCCT
AGAAATAGCCCGGCAACG-3′, 5′-GGGGACAAGTTTGTACAAAAAAGCAGGCTTCAT
GGCGGAGATGCACAAGTAC-3′/5′-GGGGACCACTTTGTACAAGAAAGCTGGGTCTC
ACAAAATATTGGACATCG-3′, 5′-GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATG
GCGGAGATGCACAAGTAC-3′/5′-GGGGACCACTTTGTACAAGAAAGCTGGGTCTCA
CAAAACAGTGGACATCG-3′, 5′-GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATG
GCGGAGATGCACAAGTAC-3′/5′-GGGGACCACTTTGTACAAGAAAGCTGGGTCTCA
CAAAATAGTGGACATCG-3′, 5′-GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGT
CTGTGCGAAGGCCGCG-3′/5′-GGGGACCACTTTGTACAAGAAAGCTGGGTCTTAATC
AACTTGATCCCAAC-3′, 5′-GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGTCTG
TGCGAAGGCCGCG-3′/5′-GGGGACCACTTTGTACAAGAAAGCTGGGTCTTAATCAAC
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TTGATCCCAAC-3′, 5′-GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGTCTGTGC
GAAGGCCGCG-3′/5′-GGGGACCACTTTGTACAAGAAAGCTGGGTCTTAATCAACTTG
ATCCCAAC-3′, 5′-GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGTCGGTGCGAA
GGCCCCG-3′/5′-GGGGACCACTTTGTACAAGAAAGCTGGGTCTTAATCAACTTGATC
CCAAC-3′, 5′-GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGTCGGTGCGAAGG
CCACG-3′/5′-GGGGACCACTTTGTACAAGAAAGCTGGGTCTTAATCAACTTGATCCC
AAC-3′, 5′-GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCGATGGACACCCC
GCC-3′/5′-GGGGACCACTTTGTACAAGAAAGCTGGGTCTTACGAAGGCACAAGTCT
CGC-3′, 5′-GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCGATGGACACCCC
GCC-3′/5′-GGGGACCACTTTGTACAAGAAAGCTGGGTCTTACGAAGGCACAAGTCT
CGC-3′, and 5′-GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCGATGGACAC
CCCGCC-3′/5′-GGGGACCACTTTGTACAAGAAAGCTGGGTCTTACGAAGGCACAAG
TCTCGC-3′, and cloned into the pIPKb001 vector. The single-cell transient gene silencing
and expression were conducted essentially as described (Zhi et al., 2020) [52]. Briefly, the
GUS reporter vector was co-delivered (1:1 molar ratio) with pIPKb001 or pIPKb007 con-
structs into the wheat epidermal cell through the particle inflow gun (Bio-Rad). After
inoculation with B.g. tritici strain E09 conidia, the leaf segments were stained for GUS
activity 48 h post-B.g. tritici inoculation. Before mounting for microscopic analysis, the
leaves were stained with 0.1% (w/v) Coomassie Brilliant Blue R250 to visualize the fungal
epiphytic structure.
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