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Abstract: In recent years, three emerging cell deaths, ferroptosis, necroptosis and pyroptosis, have
gradually attracted everyone’s attention, and they also play an important role in the occurrence and
development of various diseases. Ferroptosis is an idiographic iron-dependent form regulated cell
death with the hallmark of accumulation of the intracellular reactive oxygen species (ROS). Necrop-
tosis is a form of regulated necrotic cell death mediated by the receptor-interacting protein kinase
1(RIPK1) and receptor-interacting protein kinase 3RIPK3. Pyroptosis, also known as cell inflammatory
necrosis, is a programmed cell necrosis mediated by Gasdermin D (GSDMD). It is manifested by
the continuous swelling of the cells until the cell membrane ruptures, resulting in the release of the
cell contents and the activation of a strong inflammatory response. Neurological disorders remain a
clinical challenge and patients do not respond well to conventional treatments. Nerve cell death can
aggravate the occurrence and development of neurological diseases. This article reviews the specific
mechanisms of these three types of cell death and their relationship with neurological diseases and
the evidence for the role of the three types of cell death in neurological diseases; understanding these
pathways and their mechanisms is helpful for the treatment of neurological diseases.

Keywords: ferroptosis; necroptosis; pyroptosis; nervous system disease; neurodegenerative disease;
traumatic brain injury; stroke

1. Introduction

Cell death is common in a variety of organisms and is closely associated with a lot of
diseases. In recent years, with the deepening of research on the mechanism of cell death, a
variety of cell deaths have been defined [1]. Ferroptosis, necroptosis and pyroptosis are
three types of non-apoptotic cell death that have been extensively studied [2]. At present,
the great achievements of cell death in cancer have been reported, and the induction of cell
death mechanisms other than apoptosis has become a new strategy for cancer treatment [3].
Of course, cell death is a double-edged sword, which can promote the occurrence of some
diseases. In the nervous system, the normal growth and development of nerve cells is
crucial to the nervous system. However, abnormal death of nervous system cells can lead
to a series of nervous system diseases. Common nervous system diseases in clinic include
neurodegenerative diseases, stroke, traumatic brain injury, etc. The etiology of the nervous
system is multifactorial. With the research on nervous system diseases, it is found that their
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pathogenesis is closely related to cell death. We would like to explore the treatment of its
disease by summarizing and comparing these cell death pathways. Understanding the
regulation of cell death can help prevent and treat disease.

2. Ferroptosis
2.1. Definition

Ferroptosis was discovered in recent years; it is a new form of cell death. Cell death
is usually accompanied by the accumulation of large amounts of iron, lipid peroxidation
and ROS [4]. Ferroptosis occurs in a completely different process from other types of cell
death [5]. Morphologically, ferroptosis is characterized by an intact cell membrane, normal
nuclear morphology, atrophy of mitochondria, increased density of the mitochondrial
membrane, and a reduced or disappeared density of the mitochondrial cristae [6]. Biochem-
ically, ferroptosis is mainly due to the depletion of glutathione (GSH) in the cell and the
inactivation of glutathione peroxidase 4 (GPX4) for lipid-peroxide reduction, resulting in
an increased lipid peroxidation and lipid ROS [7] (Table 1).

Table 1. The features of ferroptosis, necroptosis, and pyroptosis, apoptosis, and necrosis.

Cell Death Morphological Features Biochemical Features Key Genes Ref.

Ferroptosis

Intact cell membrane, normal
nuclear morphology, atrophy of
mitochondria, increased density
of mitochondrial membrane, and
reduced or disappeared density
of mitochondrial cristae

Iron accumulation and lipid
peroxidation

GPX4, SLC7A11, TFR1, Nrf2,
NCOA4, ACSL4, FSP1 [6,7]

Necroptosis

Organelle swelling, loss of
plasma membrane integrity, and
the breakdown of cell
membranes leads to the release
of cell contents

RIPK1, RIPK3, MLKL
phosphorylation and
ubiquitination, and formation
of necrotic complexes in
the cytoplasm

RIPK1, RIPK3, MLKL [8–13]

Pyroptosis Cell swelling and formation of
pores in the plasma membrane

Inflammasome formation, caspase
and gasdermin activation and the
release of numerous
pro-inflammatory factors

caspase-1, GSDMD [14–17]

Apoptosis
Nucleus fragmentation,
plasma membrane blistering,
cell contraction

The formation of apoptotic bodies Caspase, Bcl-2, Bax, Fas [18]

2.2. Mechanism
2.2.1. System Xc-/GPX4

Suppression of System Xc- to induce ferroptosis: System Xc- consists of SLC7A11 and
SLC3A2, embedded on the surface of the cell membrane. Glutamate and cystine (Cys2) are
exchanged inside and outside the cell via System Xc- [19]. The Cys2 transferred into the
cell is further reduced to cysteine (Cys) and participates in GSH synthesis. The inhibitory
System Xc- promotes ferroptosis by inhibiting cystine uptake [19,20] (Figure 1).

P53-induced ferroptosis is mediated by the inhibition of the SLC7A11 transcription,
which inhibits cystine uptake by System Xc-, resulting in decreased GSH and inducing
ferroptosis of the cells [21–23].

Deactivation of GPX4: GPX4 is an antioxidant enzyme and a restricted GSH-dependent
enzyme [24]. GPX4 reduces the toxic lipid peroxides to their corresponding alcohols, weak-
ening their toxicity. Any factor that inhibits GPX4 activity will result in the accumulation of
lipid peroxides, which induces ferroptosis [20].

Depletion of GSH: Depriving cells of the essential GSH precursor Cys or blocking the
function of the GSH-dependent enzyme GPX4 can induce ferroptosis [25].
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Figure 1. The mechanism of ferroptosis. The process of ferroptosis is usually accompanied by the
accumulation of lipid peroxides and the disorder of iron metabolism. By inhibiting the System Xc-,
it inhibits the transfer of cystine into cells to participate in the synthesis of GSH, leading to the
occurrence of ferroptosis. Fe3+ enters cells and is reduced to Fe2+ in Fenton reaction, which produces
a large amount of ROS. In addition, the promotion of lipid–peroxide production and disturbance of
iron ion metabolism induce ferroptosis through other pathways.

2.2.2. FSP1-COQ10 Pathway

Ferroptosis suppressor protein 1 (FSP1) can function as an oxidoreductase in the
plasma membrane, reduce coenzyme Q10 (CoQ10), and prevent the propagation of lipid
peroxides. Loss of FSP1 can lead to an increase in lipid peroxides, which can lead to
ferroptosis [26] (Figure 1).

2.2.3. P62-Keap1-NRF2 Pathway

p62 mediates Kelch-like ECH-associated protein 1 (Keap1) degradation, which disso-
ciates nuclear factor erythroid 2-related factor (Nrf2) from Keap1 and the unbound Nrf2,
to enter the nucleus to regulate downstream genes. Therefore, Nrf2 activation suppresses
ferroptosis [27]. Nrf2 is an important antioxidant transcription factor, and p62-mediated
Keap1 degradation contributes to Nrf2 activation during ferroptosis. Nrf2-regulated genes
NQO1, HO1 and FTH1 confer a resistance to ferroptosis by altering iron metabolism and
lipid peroxidation [27] (Figure 1).

2.2.4. Iron Accumulation

Transferrin (Tf) and transferrin receptor (TfR) form the Tf-TfR complex [28]. The
Tf-TfR complex transfers Fe3+ into cells, where it is reduced to Fe2+ [29]. Intracellular iron
accumulation leads to massive ROS generation by the Fenton reaction to produce hydroxyl
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radicals. Both the disruption of iron homeostasis and increased levels of ferrous iron can
lead to ferroptosis [30] (Figure 1).

3. Necroptosis
The Definition and Mechanism of Necroptosis

Necroptosis is different from apoptosis; it is a new cell death pathway [31], which can
occur when the apoptotic pathway is blocked [32]. In 2008, RIPK1 was identified as a specific
molecular target of necroptosis [33]. In 2009, RIPK3 was identified as a key regulator of
necroptosis [34]. In 2012, MLKL was shown to be a key molecule in downstream signaling
of necroptosis [35]. Morphologically, necroptosis includes organelle swelling and the loss of
plasma membrane integrity. The breakdown of cell membranes leads to the release of cell
contents, which results in an inflammatory response [8] (Table 1). In this specific mechanism:
TNFα binds to TNF receptor 1 (TNFR1) on the cell membrane and recruits the protein to
form a complex [9]; the complex includes TNFR-associated death domain (TRADD), RIPK1,
TNFR-associated factor 2 (TRAF2), cellular inhibitor of apoptosis 1 (cIAP1), cylindromatosis
(CYLD), and NF-κB essential modulator NEMO [9,10]. After phosphorylation of RIPK1,
RIPK3 is recruited and RIPK3 is phosphorylated and activated. RIPK3 acts on MLKL to
phosphorylate, and the phosphorylated MLKL oligomerizes into a pore-like structure on the
cell membrane, leading to rapid cell membrane disruption [11–13] (Figure 2).
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Figure 2. The mechanism of necroptosis. The death receptor TNFR binds to its ligand and forms a
corresponding complex to activate RIPK1. After phosphorylation of RIPK1, RIPK3 is recruited and
RIPK3 is phosphorylated and activated. RIPK3 acts on MLKL to phosphorylate, and the phospho-
rylated MLKL oligomerizes into a pore-like structure on the cell membrane, leading to rapid cell
membrane disruption.

4. Pyroptosis
The Definition and Mechanism of Pyroptosis

The defining characteristic of pyroptosis is the inflammatory necrosis of cells. Py-
roptosis is mediated by an inflammatory caspase, which activates a gasdermin protein
translocation to the cell membrane to form pores leading to cell disruption [36] (Table 1).
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Pyroptosis mainly includes two signaling pathways, the canonical inflammasome path-
ways and non-canonical inflammasome pathways [14–16]. For canonical inflammasome
pathways, various triggers activate recognition receptors (NLRP3, NLRP1, AIM2) to form
inflammasome complexes [37]. The complex leads to the recruitment of an adaptor protein
apoptosis-associated speck-like protein containing (ASC) and the activation of caspase-1,
which cleaves gasdermin D (GSDMD) into gasdermin-D N-terminal domain (GSDMD-NT)
and gasdermin-D C-terminal domain (GSDMD-CT). GSDMD-NT processes IL-1β and
IL-18 into mature cytokine. GSDMD-NT mediates plasma membrane pore formation,
thereby releasing mature IL-1β, IL-18, leading to pyroptosis [36,38]. Non-canonical inflam-
masome pathways: lipopolysaccharide (LPS) promotes oligomerization and activation of
caspase-4/5/11, processes caspase into mature caspase, cleaves GSDMD into GSDMD-
NT and GSDMD-CT, and GSDMD-NT mediates plasma membrane pore formation [39].
Meanwhile, the cleavage of GSDMD triggers mitochondrial ROS (mitoROS) and K+ efflux,
hereby activating the downstream NLRP3 inflammasome [40–43] (Figure 3).
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Figure 3. The mechanism of pyroptosis. Pyroptosis mainly includes two signaling pathways, the canon-
ical inflammasome pathways and non-canonical inflammasome pathways. In canonical inflammasome
pathways, various triggers activate recognition receptors (NLRP3, NLRP1, AIM2) to form inflammasome
complexes. The complex leads to the recruitment of an adaptor protein apoptosis-associated ASC and
the activation of caspase-1, which cleaves GSDMD into GSDMD-NT and GSDMD-CT. GSDMD-NT pro-
cesses IL-1β and IL-18 into mature cytokine. GSDMD-NT mediates plasma membrane pore formation,
thereby releasing mature IL-1β, IL-18, leading to pyroptosis. Non-canonical inflammasome pathways:
LPS promotes oligomerization and activation of caspase-4/5/11, processes caspase into mature caspase,
cleaves GSDMD into GSDMD-NT and GSDMD-CT, and GSDMD-NT mediates plasma membrane pore
formation. Meanwhile, the cleavage of GSDMD triggers mitoROS and K+ efflux, hereby activating the
downstream NLRP3 inflammasome.

5. These Three Types of Cell Deaths Are Different from Apoptosis

Apoptosis is the first defined programmed cell death. With the advent of the concept
of apoptosis, people pay more attention to a series of pathophysiological changes caused
by programmed cell death. There are two main pathways of apoptosis: the mitochondrial
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pathway and death receptor pathway [44]. The mitochondrial pathway is caused by DNA
damage or endoplasmic reticulum stress [45]. The death receptor pathway is initiated through
the involvement of death-inducing receptors Fas and TNF-α receptor (TNFR) [46]. Apoptosis
mainly involves the encapsulation of dying contents in apoptotic bodies, while both pyroptosis
and necroptosis result in the rupture of the cell membrane by changing the permeability of
the plasma membrane, resulting in the outflow of intracellular material [8,40–43,47]. Unlike
the two types of cell death mentioned above, apoptosis does not cause inflammation and
the breakdown of cell membranes [48]. The process of ferroptosis is usually accompanied
by the accumulation of large amounts of iron, lipid peroxidation, and ROS [4]. This is also
completely different from apoptosis(Table 1).

6. Association of Cell Death with Neurodegenerative Diseases

Neurodegenerative disease is associated with many factors, including inflammation,
mitochondrial dysfunction, cell death, and more. Studies have shown that ferroptosis,
pyroptosis, and necroptosis take part in neurodegenerative diseases [49,50]. However,
it is unclear whether cell death plays a decisive or auxiliary role in the occurrence and
development of neurodegenerative diseases, and how cell death regulates the nervous
system, and by which cell death pathways improve the outcome of neurodegenerative
diseases. The following summarizes the specific roles of ferroptosis, necroptosis and
pyroptosis in neurodegenerative diseases.

6.1. Ferroptosis and Neurodegenerative Diseases

Ferroptosis is a common pathological condition in several neurodegenerative diseases,
such as: Parkinson’s disease (PD), Alzheimer’s disease (AD), and Huntington’s disease
(HD). Iron deposition in the brain can affect neurons and nerve cells [51] (Table 2).

Table 2. Mechanisms of ferroptosis, necroptosis, and pyroptosis in neurodegenerative diseases.

Cell Death Target/Compound Model Effect Mechanism Ref.

Ferroptosis

GSH PD patients Induction
Decreased GSH, resulting in the

formation of toxic hydroxyl radicals
and ROS.

[52]

Deferiprone PD patients Inhibition

Using deferiprone to inhibit the
accumulation of iron ions, the patient

showed clinical and radiological
improvement.

[53]

Ferritin AD patients Induction
Increased ferritin in AD brains induces

ferroptosis by enhancing oxidative stress
through the fenton response.

[54]

GSH AD patients Induction
Decreased GSH in hippocampus and

frontal cortex is associated with decline
in cognitive function.

[55]

GPX4 Gpx4BIKO mice Induction
Gpx4BIKO mice induce elevated lipid

peroxidation leading to cognitive
impairment and neurodegeneration.

[56]

iron HD patients Induction
Altered iron homeostasis in the brain

maybe involved in Huntington’s disease
pathophysiology.

[57]

Nrf2 HD mice and
HD patients Inhibition

The selective Nrf2 inducer MIND4–17
inhibits the expression of

proinflammatory cytokines in primary
microglia and astrocytes.

[58]
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Table 2. Cont.

Cell Death Target/Compound Model Effect Mechanism Ref.

Necroptosis

RIPK1 PD mice Induction

Necroptosis is involved in
neurodegeneration of dopaminergic
neurons through miR-425-mediated

activation of RIPK1.

[59]

Nec-1s PD mice Inhibition

Nec-1s inhibition of necroptosis
effectively reduces DA neuron loss

caused by MPTP-dependent
mitochondrial intoxication.

[60]

RIPK1, RIPK3 and
MLKL

PD patients and
PD mice Induction

Key components of necroptosis
mechanisms are activated in the axons
and soma of dopaminergic neurons of

SNpc in the PD model.

[61]

granulovacuolar
degeneration AD patients Induction

The presence of activated necrosome
complexes in granulovacuolar

degeneration and its association with
neuronal loss.

[62]

O-GlcNAcylation AD patients and
AD mice Inhibition

O-linked β-N-acetylglucosaminylation
(O-GlcNAcylation) ameliorates model

neuronal death and cognitive
dysfunction by inhibiting necroptosis.

[63]

TNF/TNFR1 AD patients Induction TNF/TNFR1 mediates necroptosis in AD
patients, resulting in neuronal loss. [64]

Nec-1
APP/PS1

double-transgenic
mice

Inhibition

Nec-1 directly targets Aβ and tau
proteins, attenuates brain cell death and

improves cognitive impairment in
AD models.

[65]

Nec-1 R6/2 transgenic
mice Inhibition

Nec-1 suppresses necroptosis in R6/2
transgenic mice, thereby improving

HD symptoms.
[66]

Pyroptosis

miR-7 PD patients and
PD mice Inhibition

Transfection of miR-7 inhibited the
activation of the NLRP3 inflammasome
in microglial cells, accompanied by an
inhibition of caspase-1 activation and

reduced IL-1β production.

[67]

α-synuclein PD patients Induction

IL-1β, NLRP3 levels were significantly
increased in PD. We also observed a

linear correlation of NLRP3 with
α-synuclein.

[68]

Aβ

APP/PS1
double-transgenic

mice
Induction

Aβ aggregates can activate the NLRP3
inflammatory pathway, and NLRP3

promotes the maturation of caspase-1.
[69]

Aβ

APP/PS1
double-transgenic

mice
Induction Aβ regulates pyroptosis through

NLRP3-caspase-1 signaling. [70]

GSDMD AD patients Induction
The increased expression of GSDMD in

the cerebrospinal fluid of AD patients has
certain diagnostic value for AD.

[71]

NLRP3 R6/2 transgenic
mice Induction NLRP3-mediated pyroptosis leads to

degeneration of HD neurons. [72]

MCC950 R6/2 transgenic
mice Inhibition MCC950 delays HD disease progression

by inhibiting NLRP3. [73]
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6.1.1. Ferroptosis and Parkinson’s Disease

The changes of iron content in the substantia nigra of PD may be related to the patho-
physiology and treatment of the disease [74]. In earlier studies, it was found the glutathione
pathway in PD is severely damaged, and the level of glutathione in the substantia nigra is
reduced compared with normal people [52]. Ferrostatin-1(Fer-1) is an inhibitor of ferroptosis,
which can inhibit ferroptosis in a variety of disease models such as PD, AD, and HD [75–77].
PD patients treated with iron chelators showed clinical and radiological improvement [53]
because iron chelators protects neurons in PD from damage by ferroptosis [78]. In neurode-
generative degeneration, iron chelators and Fer-1 derivatives maybe potent drug candidates
for pharmacological modulation of ferritin-signaling cascades [79].

6.1.2. Ferroptosis and Alzheimer’s Disease

The brains of AD patients exhibit an enhanced expression of the iron storage proteins
ferritin-heavy chain (FTH) and ferritin-light chain (FTL) [54]. Ferritin can increase oxidative
stress through the Fenton reaction [80]. GSH is decreased in the hippocampus (HP) and
frontal cortex (FC) of the brain of AD patients, and decreased GSH in these regions is
associated with decreased cognitive function [55]. Hippocampal neuron GPX4 knockout
(Gpx4BIKO) mice showed decreased spatial learning ability and memory, and a degenera-
tion of hippocampal neurons [56]. Both iron imbalance and GSH reduction contribute to
ferroptosis in AD patients. Inhibiting the inducing factors of ferroptosis maybe an effective
treatment of AD.

6.1.3. Ferroptosis and Huntington’s Disease

HD is also a neurodegenerative disorder, mainly in the striatum and cortex [81]. At
present, the mechanism of cognitive and psychiatric symptoms in HD patients is not clear,
but striatal dopaminergic dysregulation is thought to be a key factor in inducing the disease.
A study finds early-stage HD patients have increased iron levels [57,82]. Subsequent further
studies found that early iron increases in HD patients mainly occurred in the striatum and
globus pallidus (GP) [57]. HD patients had lower GSH compared to healthy subjects [83,84].
However, another study showed significantly increased GSH content in mitochondria
isolated from the cortex and striatum in HD patients [85]. One study showed that the
activity of GPX in peripheral blood is reduced in HD patients [86], but another study
showed that fibroblasts in HD patients did not differ between the GPX activity [87]. This
difference may be caused by different tissue sources. The role of dysregulation of GSH and
GPX in HD patients should not be ignored, but its contradictory results deserve further
exploration [88]. Studies have shown that Nrf2 activation in HD patient-derived neural
stem cells, which can inhibit ferroptosis. The mechanism is that Nrf2 activation can increase
the expression of antioxidant proteins and reduce ROS levels in the brain. In addition
to this, Nrf2 activation was able to suppress inflammatory responses in mouse microglia
and astrocytes, the major cellular mediators of neuroinflammation, as well as in blood
monocytes from HD patients [58]. Fer-1 and analogues are protective against cell death in
a brain slice model of HD [75,89]. These results show that ferroptosis is closely related to
neurodegenerative diseases. But there are a lot of ways to trigger ferroptosis, and it is not
clear which pathway or if several pathways synergistically act through various diseases.
Research on ferroptosis is still in its preliminary stages. Ferroptosis can be inhibited by
inhibitors, thereby protecting cells and related organs. In neurodegenerative diseases, we
are still limited to treating the symptoms rather than the disease. Important advances in
the treatment of this disease can be made as the pathogenesis is more understood.

6.2. Necroptosis and Neurodegenerative Diseases

Necroptosis is a programmed cell death pathway that regulates RIPK1 and RIPK3 fol-
lowing activation of death receptor signaling, resulting in MLKL oligomerization into pore-
like structures at the plasma membrane [11–13]. Recent studies have shown that necroptosis
is related to the pathogenesis of a variety of neurodegenerative diseases(Table 2).



Int. J. Mol. Sci. 2023, 24, 10127 9 of 21

6.2.1. Necroptosis and Parkinson’s Disease

PD disease is characterized by the degeneration of dopaminergic neurons in the
substantia nigra. It has been reported that RIPK1 activation induced by inhibition of
miR-425 has been implicated in neurodegeneration of dopaminergic neurons [59]. Further-
more, the levels of RIPK1, RIPK3 and MLKL proteins associated with necroptosis in the
substantia nigra of PD patients were significantly increased [59,60,90]. In the PD model, an
early increase in the interaction between RIPK1 and pMLKL in the striatum was observed,
suggesting the formation of necrosome complexes [61]. Inhibition of RIPK1 by using a
RIPK1 inhibitor (Nec-1) can protect dopaminergic neurons in a PD model [60].

6.2.2. Necroptosis and Alzheimer’s Disease

It has been demonstrated that necroptosis is activated in the brains of AD patients,
as evidenced by the increased expression levels of RIPK1 and MLKL, two key proteins
of necroptosis, in the brain of AD patients [91]. Necroptosis is definitely activated in the
brains of AD patients [62,91], but the mechanism by which it is activated is still unclear.
AD is due to progressive neurodegeneration, leading to cognitive impairment, memory
loss, and dementia. The neuropathological features of AD include neuronal deposits of
hyperphosphorylated tau(pTau) protein and accumulation of both intracellular and extra-
cellular aggregates of amyloid-β(Aβ). Studies have shown that Aβ oligomer-mediated
stimulation of microglia in AD contributes to neuronal necroptosis activation and neurode-
generation [92]. Reduction of O-linked β-N-acetylglucosaminylation in AD patients has
been implicated as a trigger of necroptosis [63].The activation of TNFR1-mediated necrop-
tosis in hippocampal neurons of AD patients after death, and TNF-TNFR1 interaction,
may be the main mechanism driving neurodegeneration in AD [64]. It was found that
the inhibition of necroptosis (i.e., Nec-1) not only ameliorated neurodegeneration in mice,
but also helped to relieve the symptoms of AD and reduce Aβ [65,93–95]. At present, the
mechanism of necroptosis activation in AD is not perfect, but the detection of key proteins
of necroptosis in the brain of postmortem AD patients proved that necroptosis indeed
exists in AD. Additionally, Nec-1 alleviating AD-related symptoms also indicates that there
is indeed an activation of necroptosis signaling.

6.2.3. Necroptosis and Huntington’s Disease

The delay of disease onset by Nec-1 in R6/2 transgenic mouse of HD further confirms
the involvement of RIP1 signaling in disease pathogenesis and can be considered as a
potential therapeutic approach to improve symptoms in HD patients [66].

This study proved that the occurrence of HD is related to the activation of necroptosis;
however, the research in this field is limited, and there are no reports on necroptosis proteins
in HD patient samples.

Myriad evidence shows that necroptosis plays a crucial role in neurodegenerative
diseases, but there are few related studies on the direct connection between necroptosis and
neurodegenerative diseases. It mainly inhibits necroptosis by inhibiting the expression of
key proteins. Inhibitors have a certain positive effect on the outcome of the disease. There
are still many problems to be solved.

6.3. Pyroptosis and Neurodegenerative Diseases

Inflammasomes can cause inflammation and pyroptosis. Among various types of in-
flammasomes, NLRP3 inflammasome is closely related to neurodegenerative diseases. The
inflammasome is a key mediator involved between CNS inflammation and cell death [96].
Pyroptosis may be one of the causes of neurodegenerative diseases(Table 2).

6.3.1. Pyroptosis and Parkinson’s Disease

The activation of microglia is related to the pathogenesis of PD, and microglia acti-
vation may directly release of various substances (IL-1β, TNF-α, IL-6), NO, PGE (2) and
superoxide, which directly lead to neuronal toxicity [97]. Several studies have suggested
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that neuroinflammation perhaps involved neuronal degeneration through the production
of harmful proinflammatory cytokines [98]. Pyroptosis can promote the inflammatory
response by promoting the secretion of inflammatory factors and the activation of inflam-
masomes, leading to neuronal degeneration in PD [67]. α-synuclein is one of the most
studied proteins related to the pathogenesis of PD [99]. The linear correlation between
NLRP3, the downstream protein of pyroptosis, and α-synuclein in serum of PD patients
suggests that pyroptosis may be related to the pathogenesis of PD [68]. Current research
lacks evidence that the gasdermin protein is directly activated in PD patients, but the
impact of inflammation on PD disease has attracted attention, and multiple studies have
shown that inhibiting inflammation can be beneficial for PD patients.

6.3.2. Pyroptosis and Alzheimer’s Disease

Amyloid β-protein (Aβ) is closely related to the pathogenesis of AD [100]. Aβ ag-
gregates can activate the NLRP3 inflammatory pathway, which promotes maturation of
caspase-1. NLRP3 and caspase-1 are activated to promote the release of inflammatory fac-
tors and promote the polarization of microglia to a pro-inflammatory phenotype [16,61,91].
Intervention of pyroptosis can attenuate neuroinflammation in AD, reduce nerve cell dam-
age and improve cognitive impairment in AD [70]. Some studies have confirmed that the
levels of IL-1β and caspase-1 in the cerebrospinal fluid of AD patients are increased [69,101].
In addition, recent studies have shown that the expression of GSDMD in their cerebrospinal
fluid is also significantly increased, and the increase of GSDMD expression indicates the
occurrence of pyroptosis in AD [71]. However, there are few relevant studies at present,
and more data support is still needed.

6.3.3. Pyroptosis and Huntington’s Disease

In a mouse model of HD, an increased expression of caspase-1, caspase-8, and NLRP3
was discovered in striatal neurons [72]. At present, the study of pyroptosis in HD is still in
the initial stage, and there is no evidence that the gasdermin protein is directly activated
in HD patients, but the inhibition of inflammatory pathways is helpful for the prognosis
of HD. The use of a selective inhibitor of NLRP3 inflammasome in transgenic mouse of
HD has been shown to reduce IL-1β and reactive oxygen species production, as well as
reduce neuronal toxicity, reduce neuroinflammation, prolong life span and improve motor
dysfunction [73]. It provides a certain direction for the treatment of HD patients in the
future, leading to a series of pathological changes

7. Association of Cell Death with Traumatic Brain Injury

Traumatic brain injury(TBI) is caused by external physical forces, such as blows,
penetrations, or explosions, leading to a range of pathological changes in normal brain
function [102]. It mainly includes primary injury and secondary injury. Mechanisms of
primary injury include disruption of the blood–brain barrier, damage to axonal fibers, and
cell death [103]. Mechanisms that lead to secondary damage include oxidative stress, lipid
peroxidation, and inflammation [104].

7.1. Ferroptosis and Traumatic Brain Injury

According to some studies, there is a direct or indirect association between ferroptosis
and the pathological changes of traumatic brain injury. Ferroptosis has been demonstrated
in animal models of TBI. Iron accumulation in the thalamus of TBI model mice was
observed by MRI [105]. Furthermore, it has been shown that the GPX4 protein decreased
in the early stage after TBI, and returned to normal level by 7 days after injury [106].
In addition to this, GSH is reduced or even depleted after TBI [107]. Consistent with
the above findings, GSH reduction was observed in the serum of patients with clinically
mild TBI [108]. Moreover, Fer-1 can reduce neuronal cell death and improve cognitive
and motor dysfunction caused by brain injury [109]. Additionally, in the experiment and
clinical observation, various lipid oxidation indexes were increased in the brain tissue or
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cerebrospinal fluid of TBI patients [110]. System Xc- is regulated by glutamate in ferroptosis.
After TBI, the extracellular glutamate concentration increases significantly and system XC-
is inhibited, which induces ferroptosis [111]. Glutamate release after TBI is responsible
for excitotoxicity after brain injury, leading to neuronal damage [112]. The reduction of
glutamate release or inhibition of glutamate receptor activation has been shown to be
neuroprotective after TBI [113]. In the TBI model, ferroptosis is induced through multiple
pathways, and inhibition of ferroptosis is beneficial to the prognosis of TBI patients(Table 3).

Table 3. Mechanisms of ferroptosis, necroptosis, and pyroptosis in traumatic brain injury.

Cell Death Target/Compound Model Effect Mechanism Ref.

Ferroptosis

fer-1 TBI mice Inhibition
Fer-1 treatment reduces neuronal cell death

and improves long-term cognitive and
motor function.

[109]

EAAC1 TBI male mice from
EAAC1 −/− colony Induction

EAAC1 −/− mice promoted increased ROS
and neuronal damage after TBI model by

inhibiting cysteine uptake.
[113]

Necroptosis

CHMP4B TBI mice Inhibition
CHMP4B improves motor and memory

function in TBI model mice by alleviating
necroptosis of microglia.

[114]

RIPK1, RIPK3 TBI mice Induction

Ripk3 global knockout animals, as well as
neuronal RIPK1-deficient mice, were

protected from chronic brain injury by
inhibiting downstream pMLKL and

improved neurocognitive function after TBI.

[115]

RIPK3 TBI mice Induction

RIPK3 was highly induced after TBI, and
RIPK3 knockout reduced inflammation by

inactivating the NLRP3 and NF-κB pathways,
and attenuated brain injury after TBI.

[116]

Pyroptosis

AC-FLTD-CMK TBI mice Inhibition
AC-FLTD-CMK administration reduced a key

protein of necroptosis in a TBI model, and
attenuated neuronal damage and brain edema.

[117]

VX765 TBI mice Inhibition VX765 provides neuroprotection in TBI
model mice by inhibiting caspase-1. [118]

MCC950 TBI mice Inhibition

MCC950 attenuated pyroptosis-induced
inflammatory damage by inhibiting NLRP3

and significantly improved neurological
function in TBI mice.

[119]

7.2. Necroptosis and Traumatic Brain Injury

The increased expression of necroptosis signaling molecules RIPK1 and RIPK3 was
found after TBI, and necroptosis is thought to be involved in TBI disease [120]. The values
of RIPK3 and p-MLKL in the TBI mouse model peaked at an early stage, so it can be
concluded that necroptosis occurs at an early stage of TBI. The inhibition of necroptosis
can improve its prognosis [114]. However, some researchers have found that necroptosis
signaling molecules RIPK1 and RIPK3 are mainly involved in chronic neuronal injury
after TBI. RIPK3-global knockout animals, as well as neuronal RIPK1-deficient mice, were
significantly protected against chronic brain injury, whereas no protective effect was ob-
served during the acute phase of TBI, indicating that necroptosis mainly mediates chronic
traumatic brain injury [115]. This contradicts the conclusion that necroptosis occurs in the
early stages of TBI, but for TBI patients, acute injury is often fatal, so it is more meaningful
to alleviate acute injury by inhibiting necroptosis. In addition to animal models, it has also
been validated in human models, and compared with normal brain tissue, whereas TBI
patient tissue shows morphological features of necroptosis and elevated levels of RIPK1,
RIPK3, and MLKL proteins [121]. The inhibition of RIPK3 may reduce TBI injury by in-
hibiting inflammation and oxidative stress [116]. At present, the research of necroptosis in
a TBI model is still in its infancy, and some studies are still controversial and contradictory,
and further study on the causal relationship between the two is needed (Table 3).
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7.3. Pyroptosis and Traumatic Brain Injury

More and more evidence has proved that pyroptosis is closely related to the patho-
genesis of TBI. TBI induces activation of the NLRP3-inflammasome, resulting in increased
ASC and caspase-1 expression and maturation of IL-1β and IL-18 [122,123]. Ac-FLTD-CMK
inhibits pyroptosis by inhibiting caspase1/4/5 and reducing the secretion of IL-1β [124].
At the same time, the use of Ac-FLTD-CMK pyroptosis inhibitor can significantly downreg-
ulate the expression of caspase-1, GSDMD N-terminal, IL-1β and IL-18, reduce neuronal
death, and improve neurobehavioral function. This showed that Ac-FLTD-CMK inhib-
ited the pyroptotic process and protected mice from TBI [117]. Both caspase-1 inhibitors
and NLRP3 inhibitors can exert neuroprotective effects after TBI [118,119,125]. Various
inhibitors of the pyroptotic pathway can play a certain protective role, providing potential
targets for the clinical treatment of TBI (Table 3).

8. Association of Cell Death with Stroke

Stroke mainly includes ischemic stroke and cerebral hemorrhage [126]. Ischemic stroke
is a sudden neurological deficit caused by an interruption of cerebral blood flow, and has
a high mortality and disability rate. Some traditional risk factors, such as diabetes and hy-
pertension, are associated with the disease, but some risk factors for ischemic stroke remain
unexplained [127]. Cerebral hemorrhage refers to a primary, spontaneous, nontraumatic hem-
orrhage that occurs in the brain parenchyma, including intracerebral hemorrhage (ICH) and
subarachnoid hemorrhage (SAH). The main risk factors are hypertension, cerebral amyloid
angiopathy, and the use of anticoagulants [128]. In recent years, with the in-depth study of
stroke and cell death, it has been found that there is a close relationship between them.

8.1. Ferroptosis and Stroke

With the growth of social economy, the incidence of ischemic stroke is gradually
increasing, and its poor prognosis is also a big problem for clinicians, so it is very important
to find its treatment targets and improve the prognosis of patients. Palmer et al. found
that an accumulation of iron in the cortex of hypoxic ischemic neonatal rats [129]. Several
clinical studies have also shown that systemic iron loading increases brain damage in
ischemic stroke and leads to a poor prognosis [130,131]. Free iron can exert its neurotoxic
effects by generating hydroxyl radicals under hypoxic conditions. In an ischemic stroke
model, iron depletion or chelation reduces cerebral edema and metabolic exhaustion, and
inhibits iron-dependent lipid peroxidation, thereby attenuating neuronal damage [132].
The causal relationship between the two is currently unclear, as to whether ischemic stroke
leads to iron accumulation and aggravates its damage, or if iron accumulation is a risk
factor for ischemic stroke. Further research is needed to demonstrate its causal relationship
and provide targets for the prevention and subsequent treatment of its disease.

Hemoglobin is released from lysed erythrocytes after ICH; there is evidence that
released hemoglobin aggravates neuronal damage, and hemoglobin inhibits GPX activity
and leads to the accumulation of lipid ROS [133]. GPX4 was decreased in the brain after
ICH was compared with the Sham group, and reached a minimum level at 24 h, while the
increase of GPX4 level alleviated brain edema, blood–brain barrier (BBB) damage, neuronal
dysfunction, oxidative stress and inflammation after ICH. The inhibition of ferroptosis or
upregulation of GPX4, ameliorates ICH-induced brain injury [134]. These all suggest that
ferroptosis aggravates the progression of ICH disease, and the inhibition of ferroptosis may
be a potential target for future treatment of this disease(Table 4).
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Table 4. Mechanisms of ferroptosis, necroptosis, and pyroptosis in stroke.

Cell Death Target/Compound Model Effect Mechanism Ref.

Ferroptosis

iron MCAO mice Induction
Iron overload leads to increased brain edema and
hemorrhage area in mice with cerebral ischemia

through fenton translation.
[130]

tempol MCAO mice Inhibition In mice model of MCAO, tempol reversed the size
of the infarct size increased by iron treatment. [132]

fer-1 ICH mice Inhibition
The use of Fer-1 in ICH model mice can reduce
neuronal death and improve neural function by

inhibiting lipid ROS.
[135]

GPX4 ICH rats Inhibition Overexpression of GPX4 ameliorated secondary
brain injury after ICH by inhibiting ferroptosis. [134]

Necroptosis

Nec-1 MCAO rats Inhibition Nec-1 inhibits necroptosis by inhibiting RIPK1
phosphorylation in rat model of MCAO. [136]

RIPK1 MCAO rats Induction A key regulator of necroptosis, RIPK1, is involved
in astrogliosis and glial scar formation. [137]

RIPK1 ICH mice Induction
RIPK1 leads to increased blood-brain barrier

permeability and brain edema in ICH model mice
through MLKL-mediated necroptosis.

[138]

Nec-1 ICH mice Inhibition
Nec-1 improves neurobehavioral ability and brain
edema by inhibiting RIPK1/RIPK3 pathway after

ICH in mice.
[139]

Pyroptosis

GSDMD MCAO mice Induction
GSDMD-induced pyroptosis leads to neurological

deficits and abundant neuronal cell death in
MCAO mice.

[140]

TREM-1 SAH mice Induction
TREM-1 exacerbates neuroinflammation through

NLRP3 inflammasome-mediated pyroptosis
after SAH.

[141]

8.2. Necroptosis and Stroke

Endothelial cell (EC) death can lead to vascular injury and BBB disruption, and BBB
disruption after ischemic stroke is a catastrophic event [142]. Ischemic injury-induced
necroptosis occurs mainly in brain ECs and neurons [143]. Cerebral ischemia induced
phosphorylation of RIPK1 and increased the expression levels of RIPK3 and MLKL in
the brain. Treatment with Nec-1 significantly inhibited these changes, thereby protecting
neurological function [136,143,144]. RIPK1promotes astrogliosis and glial scar formation
after ischemia stroke. The inhibition of RIPK1 can promote the restoration of brain function
by inhibiting astrogliosis and glial scarring [137].

The RIPK1 kinase domain is an important disease-driver in a mouse model of ICH [138].
After ICH, increased interactions of RIPK1 and RIPK3, RIPK1 and MLKL, and RIPK1 and
caspase-8 were observed in brain tissue. Additionally, the necroptosis pathway can be
effectively blocked by knocking down RIP1 [145]. The protein and mRNA expression levels
of RIPK1, RIPK3 and MLKL were increased 72 h after ICH. Nec-1 can improve brain edema
and neuroinflammation by inhibiting necroptosis, and improve behavioral scores after
ischemic brain injury [139,146] (Table 4).

8.3. Pyroptosis and Stroke

The classical pyroptotic pathway is mediated by caapase-1, and the role of caspase-1
in cerebral ischemia has been revealed, and knockout of caspase-1 or the use of caspase-1
inhibitors has a long-term neuroprotective effect on cerebral ischemic injury [147,148]. The
assembly of the inflammasome is also a key part of the pyroptotic pathway during cerebral
ischemia, and the upregulation of the NLRP3 inflammasome complex, as well as IL-1β and
IL-18, has been demonstrated in the brain tissue of patients with cerebral ischemia [149].
Nervous system deterioration after cerebral ischemia can be prevented by inhibiting the
expression of NLRP3 [150]. GSDMD, a key response component of pyroptosis, appeared at
12 h after cerebral ischemia and reached a peak at 24 h, which mainly occurred in microglia.
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Knockout of GSDMS can effectively reduce the infarct volume and block the release of
mature IL-1β and IL-18, but does not affect the maturation process [140].

Increased GSDMD-positive microglia, increased GSDMD-N protein levels and IL-1β
production were observed in the cerebral cortex in a mouse SAH model. Additionally, the
pores formed by GSDMD-N in the microglia membrane were detected by transmission
electron microscopy. The results show that the ICH model can induce microglial pyropto-
sis [141]. The NLRP3 protein was upregulated after ICH and SAH models and peaked at
24 h, accompanied by an elevation of the inflammatory cytokines IL-1β and IL-18 [151–154].
Meanwhile, a significant upregulation of caspase-1 was observed at 3 h after ICH, peaking
at 24–72 h [152,153]. Lastly, by inhibiting, caspase 1 can significantly improve neurological
damage and brain edema after ICH [155,156] (Table 4).

9. Conclusions

With the study of a series of emerging forms of programmed cell death, such as
necroptosis, pyroptosis, and ferroptosis, these forms of cell death have their own important
functions and roles in their respective environments. Exploring its specific mechanisms in
various diseases, constantly provides new treatment options for clinical disease models.
In the nervous system, the balance between life and death of cells plays a crucial role
in the normal development of the nervous system and the occurrence and development
of nervous system diseases. The pathogenesis of nervous system diseases is often very
complex and the development of the disease is the result of a combination of factors. Three
kinds of programmed death are implicated in the pathogenesis of various neurological
diseases, and the corresponding channel inhibitors have a positive effect on delaying
the development of the disease and improving the prognosis of patients. Whether the
relationship between the three is synergistic or antagonistic remains unclear. We still
need to further explore and understand the specific signaling and interaction of various
programmed cell death in various diseases, in order to provide guidance for the prognosis
and treatment of diseases.
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