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Abstract: High-fat diet (HFD)-induced insulin resistance (IR) in skeletal muscle is often accompanied
by mitochondrial dysfunction and oxidative stress. Boosting nicotinamide adenine dinucleotide
(NAD) using nicotinamide riboside (NR) can effectively decrease oxidative stress and increase mito-
chondrial function. However, whether NR can ameliorate IR in skeletal muscle is still inconclusive.
We fed male C57BL/6J mice with an HFD (60% fat) ± 400 mg/kg·bw NR for 24 weeks. C2C12
myotube cells were treated with 0.25 mM palmitic acid (PA) ± 0.5 mM NR for 24 h. Indicators for IR
and mitochondrial dysfunction were analyzed. NR treatment alleviated IR in HFD-fed mice with
regard to improved glucose tolerance and a remarkable decrease in the levels of fasting blood glucose,
fasting insulin and HOMA-IR index. NR-treated HFD-fed mice also showed improved metabolic
status regarding a significant reduction in body weight and lipid contents in serum and the liver.
NR activated AMPK in the skeletal muscle of HFD-fed mice and PA-treated C2C12 myotube cells
and upregulated the expression of mitochondria-related transcriptional factors and coactivators,
thereby improving mitochondrial function and alleviating oxidative stress. Upon inhibiting AMPK
using Compound C, NR lost its ability in enhancing mitochondrial function and protection against
IR induced by PA. In summary, improving mitochondrial function through the activation of AMPK
pathway in skeletal muscle may play an important role in the amelioration of IR using NR.

Keywords: insulin resistance; NAD; nicotinamide riboside (NR); AMPK activation; mitochondrial
dysfunction; oxidative stress

1. Introduction

The prevalence of Type 2 diabetes mellitus (T2DM) has been increasing worldwide
over the past few decades. It was estimated that approximately 537 million adults (aged
20–79) suffered from diabetes in 2021 [1]. On account of sedentary lifestyles and excessive
calorie intake, more individuals have become obese. Obesity is a major contributor to
insulin resistance (IR), which is one of the key pathophysiological processes involved in
T2DM [2]. Skeletal muscle, liver and white adipose tissue are the key insulin-responding
tissues. Among them, skeletal muscle accounts for 60–70% of the insulin-stimulating glu-
cose uptake in the whole body [3]. Thus, IR in skeletal muscle takes a major responsibility
for hyperglycemia [4]. Mitochondria are the center of the cellular energy metabolism
that contributes to the regulation of oxidative stress, cellular redox balance and cellular
signaling transduction. The abnormal function of mitochondria is associated with many
diseases. Structural damage of mitochondria and a reduced number of mitochondria were
universally found in skeletal muscle cells of IR patients [5–7]. Previous studies found
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that nutrient (especially lipid) overfeeding led to mitochondrial oxidative stress, which
contributed to the development of IR. Increased mitochondrial reactive oxygen species
(ROS) production and a decreased ratio of glutathione/glutathione disulfide (GSH/GSSG)
were found in the skeletal muscle of both obese mice and individuals [8]. Reduction in
mitochondrial ROS production was able to prevent IR in skeletal muscle [8–10].

Adenosine monophosphate-activated protein kinase (AMPK) is a crucial mediator
regulating mitochondrial function and energy metabolism. Catabolic events mediated by
AMPK include enhancing glucose uptake through phosphorylating TBC1 domain family
member 1/4 (TBC1D1/4) and triggering glucose transporter type 4 (GLUT4) membrane
translocation [11–13]. Previous studies showed that activation of AMPK could activate
IRS1/AKT signaling pathway and increase skeletal muscle insulin sensitivity [14]. Mean-
while, AMPK can maintain mitochondrial function as it can directly or indirectly activate
peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) to increase
mitochondrial biogenesis [15,16]. AMPK is also involved in the turnover of mitochondria
via mitophagy, which helps to scavenge ROS produced by the damaged mitochondria [17].

Nicotinamide adenine dinucleotide (NAD) is an essential coenzyme of mitochondrial
oxidative phosphorylation and energy metabolism [18]. Studies have shown that the levels
of NAD in multiple tissues of the body drop significantly in individuals with obesity,
T2DM and non-alcoholic fatty liver disease (NAFLD) [19]. Increasing NAD levels via
NAD precursors can increase skeletal muscle insulin sensitivity in overweight or obese
prediabetic women [20] and improve insulin sensitivity in diabetic mice [21]. Nicotinamide
riboside (NR) is a key NAD precursor that can effectively increase NAD biosynthesis in
the body [22]. Unlike nicotinic acid (NA) and nicotinamide (NAM) (two common NAD
precursors) [23–25], NR has been found to induce no adverse effects in both human and
animal objects [26–28]. NR supplementation promoted NAD metabolism and transcription
of mitochondrial genes in the skeletal muscle while reduced the levels of circulating
inflammatory cytokines in aged individuals [27]. NR can protect mitochondrial homeostasis
through increasing the enzymatic activity of Sirtuin 1 (Sirt1) and Sirtuin 3 (Sirt3) in skeletal
muscle and brown adipose tissue, and has a protective effect against the development of
metabolic diseases caused by a high-fat diet (HFD) [29]. NR supplementation increases
hepatocellular NAD levels and activates AMPK, which in turn enhances fatty acid oxidation
(FAO) to inhibit ALD development [30]. Additionally, NR supplementation enhances
the function of endothelial precursor cells to promote diabetic wound healing through
activating AMPK [31]. However, the quantity of studies investigating the role of NR and
AMPK in preventing IR is rather limited.

In this study, we aimed to identify whether NR can prevent IR and explore the potential
molecular mechanisms involved. We hypothesized that the protective effect of NR against
IR may be via inhibiting oxidative stress and improving mitochondrial function through
the activation of the AMPK signaling pathway in the skeletal muscle.

2. Results
2.1. NR Supplementation Prevents Obesity-Related Metabolic Abnormalities in HFD-Fed Mice

To explore whether NR supplementation can protect against HFD-induced IR and
obesity-related metabolic abnormalities in mice, we used NR (400 mg/kg·bw) treatment in
HFD-fed mice for 24 weeks. The dosage of NR was based on our previous studies [32,33].
Mice fed with an HFD gained more body weight and fat mass than mice fed with the control
diet (Figure 1A–C), whereas NR supplementation could alleviate HFD-induced increment
of body weight and fat mass (Figure 1A–C). HFD increased serum lipid contents including
total cholesterol (TC) and low-density-lipoprotein cholesterol (LDL-C) in mice, while NR
supplementation inhibited this increase (Figure 1D,E). Similarly, NR supplementation
alleviated liver TC and triglyceride (TG) accumulation induced by an HFD (Figure 1F,G).
HFD also caused hepatic steatosis and enlarged the size of white adipocytes and brown
adipocytes, whereas NR supplementation protected mice from these damages (Figure 1H).
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Figure 1. NR supplementation prevents obesity-related metabolic abnormalities in HFD-fed mice.
Mice were fed with an HFD ± NR supplementation for 24 weeks. (A) Body weight in the indicated
groups. (B) Fat body mass was determined via visceral adiposity index. (C) Body composition
imaging of mice, the yellow part is the fat. (D) Serum LDL-C contents. (E) Serum TC contents.
(F) Liver TC contents. (G) Liver TG contents. (H) H&E staining of liver, WAT, BAT. For the H&E
staining of liver and WAT, the microscope magnification is 200×. For the H&E staining of WAT
and BAT, the microscope magnification is 400×. n = 5–7 in each group. * p < 0.05 compared with
the CON group; # p < 0.05 comparing HFD group vs. HFD + NR group. Abbreviations: CON—
control group; HFD—high-fat diet group, HFD + NR—high-fat diet + nicotinamide riboside group;
LDL-C—low-density-lipoprotein cholesterol; TC—total cholesterol; TG—triglyceride; H&E staining—
hematoxylin–eosin staining; WAT—white adipose tissue; BAT—brown adipose tissue.
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2.2. NR Supplementation Alleviates Insulin Resistance in HFD-Fed Mice

HFD significantly increased the levels of fasting blood glucose (FBG) and fasting
insulin in mice (Figure 2A,B). The HOMA-IR index of HFD-fed mice is significantly higher
than mice in the control group, which indicates that HFD induced insulin resistance in
mice (Figure 2C). Consistent with the results of the levels of circulation insulin (Figure 2B),
the results of immunofluorescence in pancreas showed that HFD induced compensatory
hyperfunction of insulin secretion in pancreatic β cells (Figure 2D). However, NR supple-
mentation could decrease the FBG levels and the levels of fasting insulin both in circulation
and in the pancreas. NR could prevent HFD-induced IR, which can be shown according
to the HOMA-IR index (Figure 2A–D). To further explore the effect of NR on glucose
tolerance and insulin sensitivity, IPGTT and ITT were performed. The results of IPGTT
showed that HFD significantly impaired glucose tolerance in mice, whereas NR could
protect mice against impaired glucose tolerance (Figure 2E). Additionally, HFD remarkably
decreased insulin sensitivity in mice, while the improvement of insulin sensitivity due to
NR compared with the HFD-fed group did not reach statistical significance (Figure 2F).
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Figure 2. NR supplementation alleviates insulin resistance in HFD-fed mice. (A) Fasting blood
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glucose levels. (B) Fasting blood insulin levels. (C) HOMA-IR index. (D) Immunofluorescence
of insulin and glucagon in the islet of mice. Images were taken using a confocal microscope, the
microscope magnification is 400×. (E,F) Representative IPGTT (E) and ITT (F) and the AUC result
of mice in the indicated groups. n = 5–7 for each group. * p < 0.05 compared with the CON
group; # p < 0.05 comparing HFD group vs. HFD + NR group. Abbreviations: FBG—fasting blood
glucose levels; HOMA-IR index—homeostasis model assessment of insulin resistance index; IPGTT—
intraperitoneal glucose tolerance test; ITT—insulin tolerance test; AUC—area under the curve.

2.3. NR Supplementation Improves Insulin Sensitivity in Skeletal Muscle Cells

To further understand whether NR supplementation can improve insulin sensitivity
in skeletal muscle cells, C2C12 myoblast cells were differentiated to myotube cells and then
exposed to 0.25 mM PA for 24 h. Meanwhile, 0.5 mM NR was added to the medium together
with PA. The dose of PA was selected through dose–response experiments (Figure S1). The
dosage of NR was based on our previous studies [32,33]. The results of 2-NBDG uptake
indicated that insulin could not stimulate PA-treated C2C12 myotube cells to uptake glu-
cose, while NR improved the insulin sensitivity of C2C12 myotube cells and increased
insulin-stimulated glucose uptake (Figure 3A). Meanwhile, PA-treated C2C12 myotube
cells showed lower GLUT4 mRNA expression, but NR supplementation prevented this
decrease (Figure 3B). Western blot results showed that PA treatment blocked the insulin
signaling pathway and inhibited the activation of phosphorylated IRS1 and AKT after
insulin stimulation. In contrast, NR supplementation increased the insulin-stimulated phos-
phorylation of AKT and promoted insulin signaling in C2C12 myotube cells (Figure 3C,D).
Similarly, the phosphorylation of AKT was decreased in the skeletal muscle tissue of HFD-
fed mice, while NR supplementation prevented this decrease (Figure 3E). Taken together,
these results revealed that NR supplementation can improve insulin sensitivity in skeletal
muscle cells.
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2-NBDG by C2C12 myotube cells, the microscope magnification is 200×. (B) Relative mRNA expres-
sion of GLUT4 gene. (C) Representative Western blot results of insulin signaling pathway–associated
protein (IRS1, AKT) of cells. β-Actin served as loading control. (D) Quantitative results for WB; n = 3
in each group. (E) Representative Western blot results and quantitative results for WB of AKT of
skeletal muscle tissue of mice. β-Actin served as a loading control; n = 3 in each group. * p < 0.05
compared with the CON group; # p < 0.05 comparing PA group vs. PA + NR group. Abbreviations:
2-NBDG—2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl)-amino]-D-glucose; GLUT4—glucose trans-
porter type 4; IRS1—insulin receptor substrate 1; p-IRS1—phosphorated insulin receptor substrate 1;
AKT—protein kinase B; p-AKT—phosphorated protein kinase B.

2.4. NR Supplementation Alleviates Mitochondrial Dysfunction Induced by HFD

HFD-induced mitochondrial dysfunction has been recognized as one of the impor-
tant mechanisms in the development of IR. Improving mitochondrial function might be
effective in preventing IR. In our previous study, we have found that NR supplementation
could improve mitochondrial function in the liver [32]. In this study, we found that NR
supplementation can improve mitochondrial function in the skeletal muscle of mice with
IR, which can be detected via mitochondrial function markers. Through the immunochem-
istry staining of TOM20 (a mitochondrial outer membrane protein), we found that HFD
reduced the mitochondria amount in the skeletal muscle of mice, which was prevented via
NR supplementation (Figure 4A). 4-Hydroxynonenal (4-HNE) is a biomarker of cellular
oxidative stress. HFD induced oxidative stress in the skeletal muscle; this could be shown
via the increased immunochemistry staining of 4-HNE, which was decreased after NR sup-
plementation (Figure 4B). Moreover, we detected the protein expressions of key mediators
involved in mitochondrial function including AMPK, PGC-1α and Sirt1. We found that
the phosphorylation of AMPK decreased by nearly 50% and the protein expression of Sirt1
and PGC-1α in skeletal muscle was remarkably decreased in HFD-fed mice, whilst NR
supplementation significantly increased the phosphorylation of AMPK and the protein
expressions of Sirt1 and PGC-1α (Figure 4C,D).
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Figure 4. NR supplementation alleviates mitochondrial dysfunction induced by HFD. (A) IHC
staining of TOM20 in skeletal muscle tissue, the microscope magnification is 200×. (B) IHC staining
of 4-HNE in skeletal muscle tissue, the microscope magnification is 200×. (C) Representative Western
blot results of p-AMPKα, AMPKα, Sirt1 and PGC-1α of skeletal muscle tissue of mice. β-Actin served
as a loading control. (D) Quantitative results for WB. n = 3 for each group. * p < 0.05 compared
with the CON group; # p < 0.05 comparing HFD group vs. HFD + NR group. Abbreviations: IHC—
immunohistochemistry; TOM20—translocase of the outer mitochondrial membrane complex 20;
4-HNE—4-Hydroxynonenal; AMPKα—adenosine monophosphate-activated protein kinase alpha;
p-AMPKα—phosphorated adenosine monophosphate-activated protein kinase alpha; Sirt1—sirtuin
1; PGC-1α—peroxisome proliferator-activated receptor gamma coactivator 1-alpha.

2.5. NR Supplementation Ameliorates Mitochondrial Dysfunction and Oxidative Stress in Skeletal
Muscle Cells through Activating AMPK

Consistent with the results of the animal experiment (Figure 4A), PA-treated C2C12
myotube cells had fewer active mitochondria than the control group, while NR supple-
mentation could increase the number of active mitochondria in C2C12 myotube cells
(Figure 5A). Further, we investigated the changes in mitochondrial membrane potential of
C2C12 myotube cells. Through using the membrane-permeant JC-1 dye, we observed that
fluorescence shifted from red to green as mitochondria became depolarized in PA-treated
cells. NR supplementation resulted in an increased intensity ratio of red/green fluorescence,
which indicated that NR increased the mitochondrial membrane potential and prevented
mitochondrial depolarization in PA-treated C2C12 myotube cells (Figure 5B). Moreover,
PA treatment remarkably increased mitochondrial ROS (mt-ROS) and malondialdehyde
(MDA, a lipid peroxidation product) levels in C2C12 myotube cells (Figure 5C,D). NR
supplementation significantly decreased the levels of mt-ROS and MDA, suggesting that
NR could prevent the oxidative stress caused by PA treatment (Figure 5C,D).
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Figure 5. NR supplementation ameliorates mitochondrial dysfunction and oxidative stress in muscle
cells. (A) Mitotracker Red staining, the microscope magnification is 200×. (B) JC-1 staining, the
microscope magnification is 200×. (C) MitoSOX staining, the microscope magnification is 200×.
(D) MDA levels. n = 3 for each group. * p < 0.05 compared with the CON group; # p < 0.05
comparing PA group vs. PA + NR group. Abbreviations: DAPI—4′,6-diamidino-2-phenylindole;
MDA—malondialdehyde; JC-1—5,5′,6,6′-Tetrachloro-1,1′,3,3′-tetraethyl-imidacarbocyanine iodide;
MitoSOX—mitochondrial superoxide indicators.
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To investigate the molecular mechanism of the improvement of mitochondrial function
in NR-treated C2C12 myotube cells, NAD levels as well as protein and gene expression
of key mediators involved in mitochondrial function were detected. We found that NAD
levels decreased by nearly 40% after PA treatment, whereas NR supplementation could sig-
nificantly increase NAD levels in the PA-treated C2C12 myotube cells (Figure 6A). AMPK
is a key mediator of mitochondrial function, which is also important to the regulation of en-
ergy metabolism and IR. Consistent with the results of skeletal muscle tissue (Figure 4C,D),
Western blot results revealed that PA treatment markedly decreased the phosphorylation of
AMPK as well as the expression of the downstream protein of AMPK, including Sirt1 and
PGC-1α (Figure 6B,C). NR supplementation prevented the above decrease. We also found
that the mitochondrial biogenesis-related mRNA expression, including Sirt1, PGC-1α and
TFAM, as well as the antioxidant-related mRNA expression, including SOD2 and Nrf2,
were increased via NR supplementation compared with the PA-treated group (Figure 6D).
These results indicated that AMPK activation may play an essential role in the improvement
of mitochondrial function using NR.
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Figure 6. NR supplementation ameliorates mitochondrial dysfunction and oxidative stress in skeletal
muscle cells through activating AMPK. (A) Relative NAD levels. (B) Representative Western blot
results of Sirt1, p-AMPKα, AMPKα and PGC-1α of C2C12 myotube cells. α-Tubulin served as a
loading control. (C) The quantitative results for WB. (D) Relative mRNA expression of Sirt1, PGC-1α,
TFAM, Nrf2, SOD2 and CPT1α in C2C12 myotube cells. n = 3 for each group. * p < 0.05 compared
with the CON group; # p < 0.05 comparing PA group vs. PA + NR group. Abbreviations: NAD—
nicotinamide adenine dinucleotide; TFAM—mitochondrial transcription factor A; Nrf2—nuclear
respiratory factor 2; SOD2—superoxide dismutase 2; CPT1α—carnitine palmitoyltransferase 1α.
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2.6. AMPK Activation Is Required for Improvement on Mitochondrial Function and Insulin
Sensitivity via NR in PA-Treated Skeletal Muscle Cells

To verify whether AMPK activation is required for NR to ameliorate mitochondrial
dysfunction and IR in skeletal muscle cells, AMPK activity was inhibited using Compound
C in C2C12 myotube cells prior to exposing them to PA and NR. We found that Compound
C decreased the activity of AMPK by 50% (Figure 7A). The results of Western blotting
showed that the effect of NR against PA-induced decreased protein expression of Sirt1
and PGC-1α was abrogated through inhibiting AMPK activation (Figure 7A). Compared
with the PA-treated group, NR supplementation could significantly increase mitochondrial
membrane potential in C2C12 myotube cells (Figure 7B). However, NR did not improve
mitochondrial membrane potential after AMPK activity was inhibited (Figure 7B). Similarly,
NR supplementation decreased PA-induced increment of the levels of mt-ROS, while this
effect was not found after inhibiting AMPK activation (Figure 7C). These results suggest
that AMPK activation is required for the improvement of mitochondrial function using NR
in PA-treated C2C12 myotube cells.
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PA-treated skeletal muscle cells. (A) Representative Western blot results for Sirt1, p-AMPKα, AMPKα

and PGC-1α in C2C12 myotube cells and the quantitative results for WB. α-Tubulin served as a
loading control. (B) JC-1 staining, the microscope magnification is 200×. (C) MitoSOX staining,
the microscope magnification is 200×. Compound C means that the C2C12 myotube cells were
treated with 10µM Compound C for 8 h before adding PA and NR. * p < 0.05 compared with the
CON group; # p < 0.05 comparing PA group vs. PA + NR group. Abbreviations: Compound
C—6-[4-(2-Piperidin-1-ylethoxy) phenyl]-3-pyridin-4-ylpyrazolo [1,5-a] pyrimidine.

PA treatment significantly decreased insulin sensitivity in C2C12 myotube cells. NR
could markedly increase insulin-stimulated glucose uptake in PA-treated C2C12 myotube
cells, while this protective effect was abolished after the inhibition of AMPK activity
(Figure 8A). Moreover, compared with the PA-treated group, NR could remarkably increase
the phosphorylation of AKT and promoted insulin signaling transduction. Compound
C pre-treatment inhibited the effect of NR on promoting insulin signaling transduction,
revealed in the form of reduced phosphorylation of AKT after insulin stimulation compared
to the PA + NR group (Figure 8B,C). The above results indicate that AMPK activation
is required for the improvement of insulin sensitivity using NR in PA-treated C2C12
myotube cells.
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the microscope magnification is 200×. (B) Representative Western blot results of insulin signaling
pathway-associated protein (AKT) of cells. β-Actin served as a loading control. (C) Quantitative
results for WB. * p < 0.05 compared with the CON group; # p < 0.05 comparing PA group vs. PA + NR
group. & p < 0.05 PA + NR group vs. PA + NR + Compound C group.
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3. Discussion

Due to the growing prevalence of obesity and IR, more and more people suffer from
T2DM. As such, an effective treatment for obesity and IR is of great urgency. In this study,
we found that NR could effectively prevent IR in both in vivo and in vitro experiments. NR
replenished skeletal muscle cellular NAD pool, boosted the activities of AMPK, Sirt1 and
PGC-1α, reduced oxidative stress, restored mitochondrial function and finally alleviated IR.

NAD is considered a key signaling molecule as well as a rate-limiting substrate for a va-
riety of enzymes involved in various biological processes. Inadequate NAD biosynthesis in
skeletal muscle, adipose tissue and the liver leads to the pathogenesis of obesity-associated
metabolic abnormalities, including IR [18,34]. Replenishing NAD might be an effective way
to prevent IR. NR, the key NAD intermediate, has been found to improve glucose tolerance
and insulin sensitivity as well as to prevent NAFLD in mice [35]. NR administration could
also alleviate IR, reduce cardiometabolic risk factors and modulate cardiac oxidative stress
in obese rats [36]. These studies are consistent with our data that treatment with NR can
improve insulin sensitivity in rodents. Additionally, promoting NAD biosynthesis through
administering nicotinamide mononucleotide (NMN) for 10 weeks increased insulin sig-
naling and sensitivity (increased insulin-stimulated glucose disposal rate) in the skeletal
muscle of obese/overweight prediabetic women [20]. These previous studies found that
replenishing NAD using NR or NMN increased insulin sensitivity in rodents or humans.
However, the above studies did not further explore the potential mechanisms of the amelio-
ration of IR after applying NR or other NAD intermediates. Consistent with these studies,
our results demonstrated that NR supplementation for 24 weeks effectively decreased the
levels of FBG and fasting insulin, improved glucose tolerance and increased muscle insulin
sensitivity (increased phosphorylated AKT) in HFD-fed mice. NR supplementation for
24 h significantly increased insulin signaling (increased expression of insulin-stimulated
phosphorylated AKT) and insulin-simulated glucose uptake in PA-treated C2C12 myotube
cells. Our results further illustrated that the potential mechanism of the improvement of
NR on IR could be related to NR effectively activating AMPK in skeletal muscle cells, which
in turn improved mitochondrial dysfunction and oxidative stress to improve IR.

AMPK is involved in glucose uptake and is critical for maintaining mitochondrial func-
tion in skeletal muscle. Skeletal muscle-specific AMPK knockout mice showed decreased
mitochondrial content, impaired mitochondrial capacity and contraction-stimulated glu-
cose uptake [37]. Using MK-8722 to activate AMPK in skeletal muscle could increase
glucose uptake and glycogen synthesis [38]. Irisin, a myokine, could activate AMPK and
extracellular signal-regulated kinase 1

2 (Erk1/2) in skeletal muscle cells to increase glucose
uptake and glycogen accumulation in response to insulin stimulation [39]. Our data also
demonstrated that NR supplementation could increase insulin-stimulated glucose uptake
in skeletal muscle cells in an AMPK-dependent manner. Moreover, our results found that
NR supplementation can prevent the decreased mRNA expression of GLUT4 induced
by PA, which may further promote insulin-stimulated glucose uptake in skeletal muscle
cells. However, whether the effect of NR on increasing the mRNA expression of GLUT4
in skeletal muscle cells depends on the activation of AMPK needs further experiments.
Additionally, activation of AMPK enhanced the transcription of PGC-1α and the activity
of its coactivators, and increased mitochondrial biogenesis, thereby promoting muscle
regeneration and improved energy metabolism to inhibit apoptosis in skeletal muscle
cells [40,41]. Our study found that in both HFD-fed mice and PA-treated C2C12 myotube
cells, the phosphorylation of AMPK decreased by nearly 50%, which led to mitochondrial
dysfunction and IR. NR supplementation significantly activated AMPK in skeletal muscle
cells, which in turn activated the downstream Sirt1 and PGC-1α to improve mitochondrial
function and alleviate IR. Our data indicated that AMPK activation may play a significant
role in the development of mitochondrial dysfunction and IR.

Many studies have demonstrated the abnormalities of mitochondrial function and/or
content in the skeletal muscle of humans with IR or T2DM [3,6,42,43]. Saturated fat uptake
and/or excess fat exposure led to incomplete FAO in mitochondria and preferentially
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generated “toxic” diacylglycerol (DAG), which disturbs the insulin signaling and promotes
IR in skeletal muscle [44]. Lipids can activate skeletal muscle mitochondrial fission and
quality control networks to induce IR in humans [45]. Reduced mitochondrial biogenesis
contributes to obvious alterations in the numbers and functions of mitochondria. Mean-
while, decreased expression of PGC-1α/β and compromised mitochondrial biogenesis
could lead to decreased levels of oxidative phosphorylation (OXPHOS), which affected
the energy metabolism and insulin signaling in skeletal muscle [46,47]. Resveratrol could
activate the Sirt1/PGC-1α pathway, which stimulates mitochondrial biogenesis to improve
IR in skeletal muscle [48]. Considering that NAD biology is important for mitochondrial
function, and the strong association between the function of mitochondria and insulin
sensitivity in muscle [49], we examined the effect of NR on skeletal muscle mitochon-
drial function. The results confirmed that NR could prevent a decrease in the amount of
mitochondria in HFD-fed mice, and could protect mitochondria from damage induced
by PA treatment in C2C12 myotube cells. Moreover, NR supplementation could activate
AMPK to increase PGC-1α protein expression and mitochondrial biogenesis-related mRNA
(Sirt1, PGC-1α, TFAM) expression. In general, our data indicated that NR can improve
mitochondrial function in skeletal muscle, probably via AMPK activation.

Mitochondria are one of the major sites of ROS production in cells [50]. During chronic
nutrient oversupply, the amount of nutrients ingested far exceeds the demand of ATP and
the uncoupling capacity, which induces incomplete FAO and increases mitochondrial ROS
production [8,51], further contributing to compromised mitochondrial activity and blocking
downstream insulin signaling in T2DM individuals [43,52–54]. Additionally, increased
ROS has been largely reported to be related to IR in animal models. HFD feeding has been
reported to increase mitochondrial H2O2 production and decrease redox-buffering capacity,
oxidative capacity and ATP levels in the skeletal muscle of mice [55–58]. Nonetheless,
blocking mt-ROS production or scavenging ROS has been found to be able to prevent
IR [59,60]. Superoxide dismutase 2 (SOD2) is known as an important cellular defense
enzyme against oxidative stress. Nuclear respiratory factor 2 (Nrf2) is recognized as one of
the significant redox regulators which can regulate its downstream target genes, including
heme oxygenase-1 (HO-1) and NAD(P)H quinone dehydrogenase 1 (NQO1), to mediate
ROS production [61]. Our results showed that NR facilitated mitochondrial antioxidant
defenses to prevent HFD/PA-induced ROS production through increasing SOD2 and
Nrf2 gene expression. Previous studies suggested that PGC-1α can regulate hundreds
of genes that combat oxidative stress as well as enzymes such as SOD2 and catalase,
which can directly detoxify ROS [62]. In our study, NR activated AMPK and increased
PGC-1α expression. Additionally, both AMPK and PGC-1α can regulate the expression
of Nrf2 [62,63]. As such, the AMPK/PGC-1α/SOD2 and AMPK/PGC-1α/Nrf2 signaling
pathway could be key ways to maintain mt-ROS homeostasis in NR-treated skeletal muscle
cells. Furthermore, AMPK is of great importance for clearing ROS because it can activate
mitophagy to degrade the damaged mitochondria to scavenge ROS and inhibit oxidative
stress and apoptosis [64]. Whether NR can activate AMPK and then regulate mitophagy
to maintain mt-ROS homeostasis in skeletal muscle cells is to be investigated in our next-
step research.

Our results revealed that NR supplementation can replenish NAD to prevent IR in
HFD-fed mice, which can be further validated in human trials on obese/overweight in-
dividuals or aged individuals whose NAD levels might be lower than those of healthy
people. Additionally, our study figured out that the potential mechanism of the ame-
lioration of IR using NR is NR-mediated AMPK activation in the skeletal muscle. The
essential role of AMPK activation in the preventive effects of NR on IR can be explored in
skeletal-muscle-specific AMPK knockout mice in the future.

In conclusion, our research proposed a potential mechanism of the amelioration of IR
using NR-mediated AMPK activation in skeletal muscle. NR can activate the AMPK pathway,
restore mitochondrial function, alleviate oxidative stress and reverse IR induced by HFD.
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4. Materials and Methods
4.1. Animal Experiments

Experimental protocols were reviewed and approved by the Sun Yat-sen University
Animal Ethics Committee. Male C57BL/6J mice were purchased from the Guangdong
experiment animal center (Guangzhou, China). Mice were housed in a room with a 12–12 h
light–dark cycle and temperature of 25 ± 2 ◦C. C57BL/6 male mice (8 weeks old) were
randomly allocated into three groups: control (13% kcal fat), HFD (60% kcal fat), and
HFD + NR (n = 5–7). NR (ChromaDex, Inc., Los Angeles, CA, USA) was administered via
gavage at 400 mg/kg/d B·W for 24 weeks. The dosage of NR was based on our previous
studies [32,33]. At the end of the experiment, all mice were fasted overnight prior to
sacrifice. Livers, gastrocnemii and plasma were harvested and stored at −80 ◦C for further
investigation. Liver, gastrocnemius, brown adipose tissue and white adipose tissue samples
were fixed in formalin for H&E staining or IHC.

4.1.1. Intraperitoneal Glucose Tolerance Test (IPGTT) and Insulin Tolerance Test (ITT)

After overnight fasting, mice were given an intraperitoneal injection of glucose
(2 g/kg B·W) for IPGTT. ITTs were performed seven days after the IPGTT assessment.
Following a 6 h fast, mice were given an intraperitoneal injection of human insulin
(1 U/kg B·W). The levels of fasting blood glucose (0 min) were detected before the glu-
cose/insulin injection. Then, the levels of blood glucose of mice were quantified at 15, 30,
60, 90 and 120 min after the administration of insulin or glucose.

4.1.2. Immunohistochemistry

The gastrocnemius muscle sections were deparaffinized in xylene and hydrated in
ethanol. After washing with PBS, the sections were incubated in 5% goat serum for 30 min at
37 ◦C and then treated with antibodies against TOM20 (1:100, CST, Beverly, MA, USA) and
4-Hydroxynonenal (4-HNE) (1:100, CST) overnight at 4 ◦C. The sections were treated with
the secondary antibody IgG-HRP (1:500, CST) for 30 min at 37 ◦C and washed with PBS.
Immunostaining was performed using 3,3′ diaminobenzidine tetrahydrochloride (DAB).

4.1.3. Immunofluorescence

The pancreas sections were deparaffinized in xylene and hydrated in ethanol. After
washing with PBS, the sections were incubated in 5% goat serum for 30 min at 37 ◦C and
then treated with antibodies against insulin (1:200, Abcam) and glucagon (1:200, CST)
overnight at 4 ◦C. The sections were treated with the secondary antibodies Alexa Fluor®

488 and Alexa Fluor® 594 (1:500, Thermo Fisher Scientific, Waltham, MA, USA) for 30 min
at 37 ◦C in a dark room and then washed with PBS. DAPI was used to label the nucleus.
The images were photographed with a confocal microscope (Leica TCS SP5).

4.2. Cell Culture Experiments

Mouse skeletal muscle C2C12 myoblast cells were purchased from ATCC and cultured
in Dulbecco’s modified Eagle medium (DMEM; Gibco-Invitrogen, Carlsbad, CA, USA)
containing 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin in 5% CO2 at
37 ◦C. NR were obtained from ChromaDex, Inc. (Los Angeles, CA, USA). Palmitic acid was
obtained from Sigma Chemical (St. Louis, MO, USA). For C2C12 cells differentiation: the
medium was replaced with DMEM containing 2% horse serum for 4~5 days. When the
cells differentiated completely, they were exposed to 0.25 mM PA with or without 0.5 mM
NR for 24 h. The dose of PA was selected through dose–response experiments. The dosage
of NR was based on our previous studies [32,33]. To explore the role of AMPK, cells were
pretreated with 10µM Compound C (Selleck, Houston, TX, USA) for 8 h before PA and NR
treatment. The dosage of Compound C was from the one commonly used in the references.
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4.2.1. Insulin-Stimulated Glucose Uptake Analysis

Cells were starved in KRBH buffer without glucose for 3 h and then treated with
100 nM insulin for 30 min. The cells were washed with PBS three times and then treated
with 100 µM 2-NBDG for 30 min. Cells were washed three times. The images were
photographed with a Leica DMI8 fluorescence microscope.

4.2.2. MitoTracker Red Staining

Cells were incubated with DMEM medium with 400 nM MitoTracker Red (Thermo
Fisher Scientific, Waltham, MA, USA) at 37 ◦C for 45 min. Then, the cells were fixed in
ice-cold methanol for 15 min, washed with PBS three times and then incubated in 600 nM
DAPI for 5 min in a darked room. The images were photographed with a Leica DMI8
fluorescence microscope.

4.2.3. Mitochondrial Membrane Potential Determination

The mitochondrial membrane potential was measured using Mitochondrial Membrane
Potential Detection Kit JC-1(Beyotime, Shanghai, China) following the manufacturer protocol.
Cells were photographed using a Leica DMI8 Fluorescence Microscope. The mitochondrial
membrane potential was represented as the ratio of red to green fluorescence intensity.

4.2.4. MitoSox Staining

Cells were incubated with DMEM medium with 5 µM MitoSOX Red and 2 mg/L
Hoechst (Thermo scientific, Waltham, MA, USA) for 10 min at 37 ◦C. Then, the levels of
mitochondrial ROS were evaluated using a Leica DMI8 fluorescence microscope.

4.2.5. Measurement of MDA Levels

Determination of malondialdehyde (MDA) level in C2C12 myotube cells was per-
formed using a lipid peroxidation MDA assay kit (Beyotime, Shanghai, China). Briefly,
100 µL extract of C2C12 myotube cells was mixed with 200 µL of MDA working solution,
incubated in a 100 ◦C for 40 min and then cooled with running water. The mixture was
centrifuged at 1078 g for 10 min and the supernatant was used to measure absorbance at
532 nm.

4.2.6. Measurement of NAD Levels

Determination of NAD levels in C2C12 myotube cells was performed using a NAD
assay kit (Beyotime, Shanghai, China) following the manufacturer protocol. The NAD
levels were quantified at 450 nm absorbance.

4.2.7. Western Blot Analysis

Total proteins were extracted via RIPA containing protease inhibitor PMSF (Beyotime,
Shanghai, China) and PhosSTOP phosphatase inhibitor (Beyotime, Shanghai, China). The
protein concentration was measured using a BCA assay kit (Beyotime, Shanghai, China).
Antibodies against p-AMPKα (Th172), AMPKα, Sirt1, p-AKT, AKT and IRS1 were from
cell signaling technology (CST, Beverly, MA, USA). Antibody against p-IRS1 was from
Thermo scientific (Waltham, MA, USA). Protein signals were visualized using an enhanced
chemiluminescence detection system according to the manufacturer’s instructions (ECL,
Thermo Fisher Scientific, Waltham, MA, USA)

4.2.8. Quantitative PCR

The total RNA of skeletal muscle tissue and C2C12 myotube cells were extracted using
Trizol reagent (Thermo Fisher Scientific, Waltham, MA, USA). Prime Script RT master mix
(Takara, Dalian, China) was used for the reverse transcription of RNA to cDNA. qPCR was
performed with SYBR Premix Ex Taq II (Takara, Dalian, China). All of the samples had
three parallel wells, and the experiments were repeated at least three times. β-actin was
employed as the internal standard to normalize gene expression via the 2−∆∆Ct method.
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Primers for qPCR analysis were designed using the NCBI database. A complete list of mice
primers is given in Table 1.

Table 1. Primers used for the RT-PCR analysis.

Genes Primers Sequences (Primer: 5′-3′)

SOD2 Forward primer GCCCAAACCTATCGTGTCCA
Reverse primer AGGGAACCCTAAATGCTGCC

β-Actin Forward primer GTGGTGGTGAAGCTGTAGCC
Reverse primer AGCCATGTACGTAGCCATCC

Sirt1 Forward primer TGTGAAGTTACTGCAGGAGTGTAAA
Reverse primer GCATAGATACCGTCTCTTGATCTGAA

PGC-1α Forward primer AAGTGTGGAACTCTCTGGAACTG
Reverse primer GGGTTATCTTGGTTGGCTTTATG

TFAM Forward primer AACACCCAGATGCAAAACTTTCA
Reverse primer GACTTGGAGTTAGCTGCTCTTT

Nrf2 Forward primer CTTTAGTCAGCGACAGAAGGAC
Reverse primer AGGCATCTTGTTTGGGAATGTG

CPT-1α Forward primer CTCCGCCTGAGCCATGAAG
Reverse primer CACCAGTGATGATGCCATTCT

GLUT4 Forward primer GTGACTGGAACACTGGTCCTA
Reverse primer CCAGCCACGTTGCATTGTAG

4.3. Statistical Analysis

Data analysis was performed with SPSS 25.0 software (Chicago, IL, USA). All experi-
mental data are expressed as mean ± SEM. Results were analyzed using one-way ANOVA
followed by Bonferroni’s post hoc multiple-comparisons test to determine statistical sig-
nificance. Comparison between two experimental groups was based on the two-tailed
t test. p < 0.05 was considered statistically significant. Each experiment was repeated at
least three times.

5. Conclusions

Mitochondrial dysfunction and oxidative stress in skeletal muscle are the key mecha-
nisms of IR. NAD is of great importance for mitochondrial function, redox homeostasis
and insulin sensitivity in skeletal muscle. NR is an effective NAD booster that can be easily
obtained in daily life through food or dietary supplements. Our research found that NR
supplementation replenished NAD potentially via activation of the AMPK pathway to
prevent IR in HFD-fed mice and PA-treated C2C12 myotube cells. Supplementing NAD
boosters such as NR, which can effectively increase NAD levels, restore mitochondrial
function and alleviate oxidative stress in skeletal muscle, might be a potential preventive
strategy for IR.
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