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Abstract: We previously identified a lipopeptide, EK1C4, by linking cholesterol to EK1, a pan-CoV
fusion inhibitory peptide via a polyethylene glycol (PEG) linker, which showed potent pan-CoV
fusion inhibitory activity. However, PEG can elicit antibodies to PEG in vivo, which will attenuate its
antiviral activity. Therefore, we designed and synthesized a dePEGylated lipopeptide, EKL1C, by
replacing the PEG linker in EK1C4 with a short peptide. Similar to EK1C4, EKL1C displayed potent
inhibitory activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other
coronaviruses. In this study, we found that EKL1C also exhibited broad-spectrum fusion inhibitory
activity against human immunodeficiency virus type 1 (HIV-1) infection by interacting with the
N-terminal heptad repeat 1 (HR1) of viral gp41 to block six-helix bundle (6-HB) formation. These
results suggest that HR1 is a common target for the development of broad-spectrum viral fusion
inhibitors and EKL1C has potential clinical application as a candidate therapeutic or preventive agent
against infection by coronavirus, HIV-1, and possibly other class I enveloped viruses.

Keywords: HIV-1; coronavirus; six-helix bundle; broad-spectrum fusion inhibitor

1. Introduction

Class I enveloped viruses, such as human immunodeficiency virus type 1 (HIV-1),
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and Influenza A virus
(IAV), pose a huge threat to global public health security, economic development, and
social stability. HIV-1 is still one of the most serious public health threats in the 21st
century [1]. The coronavirus disease 2019 (COVID-19) pandemic caused bySARS-CoV-2 has
now caused approximately 863 million infections and 6.8 million deaths [2] (https://www.
worldometers.info/coronavirus/, accessed on 1 March 2022). Other highly pathogenic
coronaviruses, such as severe acute respiratory syndrome coronavirus (SARS-CoV), middle
east respiratory syndrome coronavirus (MERS-CoV), and emerging novel coronaviruses in
the future, have equally serious impacts on human health. These statistics call for the urgent
development of broad-spectrum antiviral drugs to combat current and future emerging
and re-emerging viruses.

Human coronavirus (HCoV) and HIV-1 are both class I enveloped viruses with similar
membrane fusion mechanisms [3]. Specifically, during membrane fusion, the N-terminal
heptad repeat 1 (HR1) of fusion glycoproteins (gp41 of HIV-1 and S2 subunit of coronavirus),
together with the antiparallel C-terminal heptad repeat 2 (HR2), can form a highly stable
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six-helix bundle (6-HB), bringing the viral and cell membranes together for fusion [4–8].
Since both HIV-1 and HCoV envelope proteins form 6-HB, it is reasonable to suggest that
HR1 in the HCoV S2 protein and HIV-1 gp41 can serve as common targets for the design of
broad-spectrum drugs against HcoVs and HIV-1.

Our previous study has demonstrated that a lipopeptide-based pan-CoV fusion in-
hibitor, EK1C4, can form 6-HB with HR1 peptides of HCoV and HIV-1, thus exhibiting
potent inhibitory activity against infection by HCoV and HIV-1 [9]. To synthesize EK1C4,
four polyethylene glycol (PEG) linkers were used to link EK1, a pan-CoV fusion inhibitory
peptide, and cholesterol, and such linkage was found to improve the peptide’s inhibitory
activity. However, PEG has both immunogenic and antigenic properties and can induce
antibodies to PEG in vivo. This means that the anti-PEG antibodies in organisms may lead
to rapid clearance of the PEGylated drugs and neutralization of the inhibitors’ biological ac-
tivity, thereby limiting their therapeutic effectiveness [10,11]. Therefore, in a previous study,
we designed a dePEGylated pan-CoV fusion inhibitor, EKL1C (Figure 1), by replacing the
PEG linker in EK1C4 with a short peptide, while still retaining robust broad-spectrum
anti-coronavirus inhibitory activity, making it a potential candidate for future drug de-
velopment [12]. In this study, we detected the inhibitory activity of EKL1C against HIV-1
infection, including HIV-1 pseudoviruses, HIV-1 laboratory-adapted strains, HIV-1 clinical
isolates, and enfuvirtide (also known as T20)-resistant HIV-1 strains. Our study shows that
like the PEGylated lipopeptide EK1C4, the dePEGylated lipopeptide EKL1C could also
effectively inhibit infection by divergent HIV-1 strains. However, EKL1C is expected to
not induce anti-PEG antibodies. Therefore, it is safer and more stable than EK1C4, thus
having better potential to be further developed as a broad-spectrum fusion-inhibitor-based
therapeutic or prophylatic for the treatment and prevention of infection by HCoVs, HIV-1,
and possibly other class I enveloped viruses.
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Figure 1. Structure of viral envelope protein and sequence of peptides: (A) Schematic diagram of
HIV-1 gp41 and sequences of peptides derived from the gp41 HR1 and HR2. Fusion peptide region,
FP; N-terminal heptad repeat, HR1; C-terminal heptad repeat, HR2; tryptophan-rich region, TR;
transmembrane region, TM; cytoplasm region, CP. N36 derived from HR1 domain and C34 and
T20 derived from HR2 domain are shown in the diagram. (B) Schematic diagram of HCoV spike
(S) protein and sequences of peptides derived from S protein HR2 domain. Signal peptide, SP;
N-terminal domain, NTD; receptor-binding domain, RBD; fusion peptide, FP; heptad repeat 1, HR1
domain; heptad repeat 2, HR2 domain; transmembrane domain, TM; and cytoplasmic domain, CP.
EKL1, EKL0C, EKL1C derived from HR2 domain are shown in the diagram.
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2. Results
2.1. The dePEGylated Lipopeptide-Based Pan-CoV Fusion Inhibitor EKL1C Exhibited Potent
Inhibitory Activity against a Broad Spectrum of Pseudotyped HIV-1 Strains

Our previous study has shown that the dePEGylated lipopeptide-based pan-CoV
fusion inhibitor EKL1C is highly effective against infection from divergent HCoVs with
IC50 (half maximal inhibitory concentration) ranging from 26 to 148 nM [12]. In this study,
we detected the potential inhibitory activity of EKL1C, using the HIV fusion-inhibitor-based
anti-HIV drug T20 as a control, against infection from HIV-1 pseudotyped with a panel of
HIV-1 envelopes (Envs) of different subtypes (A, B, C, D, G, A/E, A/G, B/C) with different
coreceptor usages (X4, R5) and tiers (1A, 1B, 2, 3). As shown in Table 1, EKL1C also had
strong inhibitory activity against different subtypes of HIV-1 pseudoviruses, with IC50
ranging from 5.1 to 186.5 nM, similar to that of T20 with IC50 ranging from 6.5 to 394.2 nM.
These results suggest that in addition to its potent anti-HCoV activity, EKL1C also exhibits
broad-spectrum inhibitory activity against infection from divergent pseudotyped HIV-1,
such as the anti-HIV drugT20, which is derived from the HIV-1 gp41 HR2 region.

Table 1. Inhibitory activity of EKL1C and T20 against HIV-1 pseudovirus.

Virus Titer
IC50 (nM)

EKL1C T20

Q769env.h5 (A, R5) 2 22.1 ± 14.4 179.3 ± 76.9
Q842env.d16 (A, R5) 2 51.2 ± 12.7 23.8 ± 30.3
Q259env.w6 (A, R5) 2 39.0 ± 33.9 50.8 ± 22.9
Bal (B, R5) 3 37.6 ± 26.2 23.2 ± 15.8
REJO4541 (B, R5) - 17.6 ± 15.8 11.6 ± 13.7
SF162 (B, R5) 1A 186.5 ± 85.3 302.7 ± 164.1
JRFL (B, R5) 2 158.4 ± 57.9 222.4 ± 170.3
pRHPA4259 clone 7 (B, R5) 2 147.4 ± 64.2 14.5 ± 5.9
ZM53M.PB12 (C, R5) 2 6.6 ± 6.8 51.4 ± 41.0
HIV-25710-2, clone 43 (C, R5) 1B 23.8 ± 20.6 53.0 ± 27.1
QA013.70I.ENV.M12 (D, R5) 2 31.5 ± 13.8 6.5 ± 3.5
QD435.100M.ENV.E1 (D, R5) 2 48.1 ± 33.1 72.0 ± 24.8
Subtype G clone 252 (G, R5) 2 98.5 ± 59.4 27.5 ± 9.5
CRF01_AE clone 269 (A/E, R5) - 5.1 ± 1.234 14.2 ± 17.5
GX11.13 (A/E, R5) - 10.3 ± 7.5 74.1 ± 60.2
CRF02_AG clone 266 (A/G, R5) 2 37.5 ± 3.3 37.1 ± 7.2
CRF02_AG clone 271 (A/G, R5) 1B 19.1 ± 8.2 11.5 ± 6.4
CRF02_AG clone 278 (A/G, R5) 3 19.4 ± 14.2 28.4 ± 28.6
BC02 (B/C, R5) - 20.5 ± 11.0 31.7 ± 34.0
CH119 (B/C, R5) 2 74.2 ± 45.6 394.2 ± 71.6

Note: Each sample was tested in triplicate and the experiment was repeated two to three times. Data from a
representative experiment are presented as mean ± SD.

2.2. EKL1C Exhibited Potency against a Broad Spectrum of HIV-1 Laboratory-Adapted Strains

Next, we assessed the inhibitory activity of EKL1, EKL0C, and EKL1C against infection
from HIV-1 laboratory-adapted strains, HIV-1 IIIB (X4) and HIV-1 Bal (R5), using T20
peptide, cholesterol, and Br-cholesterol as controls. We found that EKL0C and EKL1C could
effectively inhibit infection from HIV-1 laboratory-adapted strains while EKL1, cholesterol,
and Br-cholesterol had no inhibitory activity against HIV-1 laboratory-adapted strains
at concentration as high as 5000 nM. The IC50 of EKL0C, EKL1C, and T20 against HIV-1
IIIB infection was 246.6, 73.7, and 47.3 nM, respectively, while that of EKL0C, EKL1C,
and T20 against Bal infection was 77.7, 39.7, and 11.7 nM, respectively (Figure 2A,B),
confirming that EKL1C exhibits significant inhibitory activity against infection from HIV-
1 laboratory-adapted strains. EKL1 derived from the S protein HR2 domain without
cholesterol conjugation exhibited no inhibitory activity against HIV-1 laboratory-adapted
strains. However, both dePEGylated lipopeptides EKL0C and EKL1C, which are also
derived from the S protein HR2 domain but conjugated with cholesterol, exhibited potent
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but variable inhibitory activity against infection from HIV-1 laboratory-adapted strains, and
the inhibitory activity of EKL1C against HIV-1 laboratory-adapted strains was generally
higher than that of EKL0C, which is consistent with the inhibitory activity against HCoV
infection [12].
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Figure 2. Inhibitory activity of EKL1C against HIV-1 infection: (A) Inhibitory activity of EKL1, EKL0C,
EKL1C, chol, Br-chol, and T20 against infection from HIV-1 IIIB (subtype B, X4). (B) Inhibitory activity
of EKL1, EKL0C, EKL1C, chol, Br-chol, and T20 against infection from HIV-1 Bal (subtype B, R5).
Each sample was tested in triplicate, the experiment was repeated two to three times, and the data
are presented as mean ± SD.

2.3. EKL1C Exhibited Potency against a Broad Spectrum of HIV-1 Primary Isolates

We further determined the inhibitory activity of EKL1C against a panel of HIV-1
clinical isolates with different subtypes (A, B, D, O) and different tropisms (X4, R5). As
expected, EKL1C also showed strong antiviral activity against HIV-1 clinical isolates with
IC50 values of EKL1C in the range of 70.1 to 192.9 nM and those of T20 ranging from 26.2 to
52.6 nM (Table 2). Particularly, both EKL1C and T20 were more effective against J32228M4
than other isolates, possibly because its spike protein S2 domain contains a sequence that
is preferably bound by EKL1C and T20. Although EKLIC had a lower efficacy than T20
against clinical isolates in this in vitro experiment, it is still highly effective against infection
from HIV-1 primary isolates, indicating that EKL1C has a broad-spectrum inhibitory activity
against divergent HIV-1 strains. Hopefully, this phenomenon can be verified in an in vivo
study by using an animal model in the future.

Table 2. Inhibitory activity of EKL1C and T20 against HIV-1 clinical isolates.

Virus
Subtype,
Tropism

IC50 (nM)

EKL1C T20

MN/H9 (84US_MNp) (A, X4) 98.1 ± 29.2 52.6 ± 7.4
BZ167/GS 010 (89BZ_167) (B, X4) 118.4 ± 17.0 47.3 ± 5.9
92UG024 (D, X4) 80.2 ± 7.6 31.0 ± 5.6
J32228M4 (D, R5) 70.1 ± 3.2 26.2 ± 3.1
HIVBCF02 (O, R5) 192.9 ± 37.6 41.3 ± 1.4

Note: Each sample was tested in triplicate, and the experiment was repeated two to three times. Data from a
representative experiment are presented as mean ± SD.

2.4. EKL1C Exhibited Potency against a Broad Spectrum of T20-Resistant HIV-1 Strains

Subsequently, we tested the inhibitory activity of EKL1C against infection from T20-
resistant HIV-1 strains. As shown in Table 3, EKL1C had potent inhibitory activity against
infection from T20-resistant strains, with IC50 ranging from 9.4 to 97.9 nM, whereas T20
could not inhibit infection from the five T20-resistant strains at a concentration as high as
1000 nM.
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Table 3. Inhibitory activity of EKL1C and T20 against T20-resistant HIV-1 strains.

Virus
IC50 (nM)

EKL1C T20

V38A, N42D 36.1 ± 11.2 >1000
HIV-1 NL4-3 D36G (WT) 17.2 ± 10.2 10.2 ± 4.1

V38A 97.9 ± 28.3 >1000
N42T, N43K 9.4 ± 1.2 >1000
V38E, N42S 19.7 ± 10.3 >1000
V38A, N42T 17.4 ± 1.5 >1000

Note: Each sample was tested in triplicate, and the experiment was repeated two to three times. Data from a
representative experiment are presented as mean ± SD.

2.5. EKL1C Inhibited HIV-1 Infection at the Early Stage of Viral Replication

Here, we examined how EKL1C exerts its anti-HIV-1 effects. To accomplish this, we
used a cell washout to determine whether EKL1C acts on host cells or not. As shown in
Figure 3A, EKL1C completely inhibited HIV-1 IIIB infection when EKL1C-pretreated MT-2
cells were not washed. However, its inhibitory activity was significantly decreased after
washing cells, but before adding the virus. These results suggest that the inhibitory activity
of EKL1C is because of its interaction with the cell surface proteins, such as cell receptors.
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Figure 3. EKL1C inhibited HIV-1 infection at the early stage of viral replication. (A) EKL1C inhibits
virus entry not by interacting with cell surface proteins as determined by cell-washout assay. The
inhibitory activity of EKL1C on HIV-1IIIB entry was detected after the EKL1C-treated MT-2 cells were
washed (red bar) or not washed (blue bar) by centrifugation. Each sample was tested in triplicate, and
the experiment was repeated two to three times. Data from a representative experiment are presented
as mean ± SD as means ± SD, ****, p < 0.0001. (B) Inhibition of HIV-1 entry at the early stage of viral
replication by EKL1C as determined by time-of-addition assay. Each sample was tested in triplicate,
and the experiment was repeated two to three times. Data from a representative experiment are
presented as mean ± SD. ns, no significance, **, p < 0.01, ***, p < 0.001, ****, p < 0.0001.

We then performed a time-of-addition assay to determine how long the addition of
EKL1C can be postponed before losing its antiviral activity in cell culture, in order to
pinpoint which stage of the viral replication circle is targeted by EKL1C. For example, the
HIV fusion-inhibitor-based antiviral drug T20 lost more than 50% of its antiviral activity
when it was added to cells 2 h after the addition of HIV-1 [13]. As shown in Figure 3B,
the inhibitory activity of EKL1C remained above 90% after 0.5 h of HIV-1 IIIB infection.
However, when EKL1C was added 1 or 2 h after infection, its inhibitory activity against
HIV-1 infection significantly waned. With the addition of time, the inhibitory activity of
EKL1C decreased gradually to less than 20% at 4, 6, and 8 h after infection, indicating that
like the HIV-1 fusion inhibitor T20, EKL1C inhibits HIV-1 entry at the virus–cell fusion step,
the early stage of viral replication.
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2.6. EKL1C Inhibited HIV-1-Env-Mediated Cell–Cell Fusion

HIV-1 entry into target cells is a multistep process involving virus attachment, mem-
brane fusion, and entry [14,15]. We used MT-2 cells expressing receptor CD4 and co-receptor
CXCR4 as target cells and H9/HIV-1IIIB cells expressing HIV-1 Env as effector cells to eval-
uate the inhibitory activity of EKL1C against HIV-1-Env-mediated cell fusion. As shown
in Figure 4A, EKL1C could effectively inhibit HIV-1-Env-mediated cell–cell fusion with
an IC50 of 7 nM, which is 2.5-fold more potent than that of T20, confirming that EKL1C
inhibits HIV-1 infection through the suppression of viral Env-mediated fusion between
viral and target cell membranes.
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Figure 4. The mechanism of EKL1C peptide against HIV-1 infection: (A) Inhibition of Env-mediated
cell–cell fusion between H9/HIV-1IIIB cells and MT-2 cells. Each sample was tested in triplicate,
and the experiment was repeated two to three times. Data from a representative experiment are
presented as mean ± SD. (B) N-PAGE showed that EKL1C blocked the formation of 6-HB between
N36 and C34.

2.7. EKL1C Bound to the HR1 of gp41 and Blocked the Formation of 6-HB

The EKL1C peptide was designed on the basis of EK1 and EK1C4, both of which can
inhibit the formation of coronavirus 6-HB and effectively inhibit viral fusion, as proved
in our previous studies [12,16,17]. Therefore, we next investigated if EKL1C could inhibit
HIV-1 infection by targeting the HR1 domain of gp41 to block homologous 6-HB formation.
According to previous studies, N36 and C34 could form 6-HB at an equimolar concentration
and show a corresponding band on native polyacrylamide gel electrophoresis (N-PAGE)
gel [18]. Consistent with the previous report [18], N36 showed no band because it con-
tainment negative charges that drove the peptide upward and off the gel, while C34 and
EKL1C showed their bands at the lower and middle positions, respectively, in the gel. The
mixture of N36/C34 showed a band at the top position in the gel, which correspond to the
band of 6-HB, while the mixtures of N36 + C34 + EKL1C at the increasing concentration
displayed 6-HB bands (upper part) with decreasing density and the C34 bands (lower part)
with increasing density, respectively (Figure 4B), suggesting that EKL1C is able to block
6-HB formation between N36 and C34 in a dose-dependent manner.

2.8. EKL1C at 5 µM Exhibited no Obvious In Vitro Cytotoxicity to MT-2 Cells, CEMx174 517
5.25 M7 Cells, and U87 CD4+ CCR5+ Cells

We evaluated the in vitro safety of EKL1C by adding different concentrations of EKL1C
to target cells (MT-2 cells, CEMx174 517 5.25 M7 cells, or U87 CD4+ CCR5+ cells) cultured
at 37 ◦C with 5% CO2 for 48 h and detected cytotoxicity with a CCK8 kit. As shown in
Figure 5, we found that the CC50 (50% cytotoxicity concentration) values of EKL1C to MT-2,
M7, and U87 cells were 7.8, 17.3, and 32.3 µM, respectively. These results suggest that
EKL1C has no obvious toxicity to cells at a concentration of 5 µM and the inhibitory activity
of EKL1C on HIV-1 infection was not caused by its cytotoxicity.
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3. Discussion

In this study, we used T20, the first HIV fusion inhibitory peptide-based antiviral drug,
as a control to determine the sensitivity of the HIV-1 strains tested in this study to the HIV
fusion inhibitor and for validation of the HIV-1 inhibition assays that were used to evaluate
the inhibitory activity of the pan-HCoV fusion inhibitor EKL1C against HIV-1 infection.
We found that EKL1C exhibited potent and broad-spectrum inhibitory activity against
divergent HIV-1 strains, including HIV-1 laboratory-adapted strains, primary isolates,
and T20-resistant strains. Mechanistically, EKL1C binds to the HR1 domain to block
homologous 6-HB formation between the HR1 and HR2 domains in viral gp41, thereby
inhibiting fusion between HIV-1 and cell membranes and, hence, infection, suggesting
that the HR1 and HR2 regions involved in the formation of 6-HB of the class I enveloped
viruses are conserved targets for the development of broad-spectrum inhibitors against
class I enveloped viruses. Our previous studies have shown that peptides derived from
the HR2 domain of the HIV-1 gp41, such as SJ-2176, C34, and T20, have been shown to be
effective in inhibiting HIV-1 infection by competitively binding the exposed grooves on
the viral gp41 HR1 trimer [19–23]. These results, as well as those reporting its inhibitory
activity against a variety of HCoVs [11], suggest that EKL1C possesses broad-spectrum
antiviral activity against HCoV, HIV-1, and possibly other class I enveloped viruses and
has the potential for further development as a new antiviral drug.

We previously found that a variety of lipopeptide-based pan-CoV fusion inhibitors,
such as EK1C4, could inhibit the infection of both HCoV and HIV-1 [9]. This suggests that
the mechanism of HCoV fusion inhibitors is similar to that of the fusion inhibitors against
other class I enveloped viruses, such as HIV-1. Unlike the PEGylated lipopeptide EK1C4,
that may induce anti-PEG antibodies in patients who use EK1C4 [10,11], the dePEGylated
lipopeptide EKL1C is expected to not elicit anti-PEG antibodies in vivo, thus having higher
safety and stability and lower cost, and being easier to synthesize. Therefore, compared
with EK1C4, dePEGylated lipopeptide EKL1C will be more suitable for long-term use in
the treatment of HIV or HCoV infection in the future.

In the current COVID-19 pandemic, patients who are simultaneously infected with
HIV and COVID-19 in South Africa and other regions, owing to their low immunity,
may develop novel HCoV variants that escape the immune system. This calls for the
development of bi-/multi-functional drugs that target the conserved target of HCoV HR1
and also have therapeutic effects on HIV. As a potent lipopeptide-based pan-CoV and
pan-HIV-1 viral fusion inhibitor, EKL1C is expected to be a potential candidate against
infection by HIV-1, HCoV, and the potential emerging and re-emerging class I enveloped
viruses in the future.
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4. Materials and Methods
4.1. Cells, Viruses, and Peptides

CEMx174 517 5.25 M7 cells, MT-2 cells, U87 CD4+ CCR5+ cells, HIV-1 IIIB chroni-
cally infected H9 (H9/HIV-1IIIB) cells, HIV-1 laboratory-adapted and primary HIV-1 iso-
lates, as well as HIV-1 T20-resistant strains were obtained from the NIH AIDS Reagent
Program. 293T cells were obtained from the American Type Culture Collection (ATCC,
Manzas, VA, USA). Peptides T20 (YTSLIHSLIEESQNQQEKNEQELLELDKWASLWNWF),
N36 (SGIVQQQNNLLRAIEAQQHLLQLTVWGIKQLQARIL), and C34 (WMEWDREIN-
NYTSLIHSLIEESQNQQEKNEQELL) were synthesized by KareBay Biochem with a purity
of >95% (Figure 1A).

EKL1 (NVTFLDLEYEMKKLEEAIKKLEESYIDLKELGTYEY) and EKL0C (SLDQINVT
FLDLEYEMKKLEEAIKKLEESYIDLKELGTYEYYVKW-GSG-chol) were synthesized by
Nankai Hecheng S&T Co., Ltd. (Tianjin, China) with a purity of >95%, while EKL1C
(NVTFLDLEYEMKKLEEAIKKLEESYIDLKELGTYEY-GSG-chol) was synthesized by Dr.
Chao Wang with a purity of >95%.

4.2. Plasmids

The HIV-1 envelope-expressing plasmids pcDNA3.1-REJO4541-Env, pcDNA3.1-BC02-
Env, pcDNA3.1-CH119-Env, pcDNA3.1-GX11.13-Env, pcDNA3.1-ZM53M.PB12-Env,
pcDNA3.1-HIV-25710-2 clone 43-Env, pcDNA3.1-CRF01_AE clone 269-Env, pcDNA3.1-
Bal.01-Env, pcDNA3.1-SF162-Env, pcDNA3.1-JRFL-Env, pcDNA3.1-pRHPA4259 clone 7
(SVPB14)-Env, pcDNA3.1-CRF02_AG clone 266-Env, pcDNA3.1-CRF02_AG clone 271-Env,
pcDNA3.1-CRF02_AG clone 278-Env, pcDNA3.1-Subtype G clone 252-Env, pcDNA3.1-
Q769env.h5-Env, pcDNA3.1-Q842env.d16-Env, pcDNA3.1-Q259env.w6-Env, pcDNA3.1-
QA013.70I.ENV.M12-Env, pcDNA3.1-QD435.100M.ENV.E1-Env, and pNL4-3.Luc.RE (Lu-
ciferase reporter vector) plasmid were constructed and maintained in our laboratory.

4.3. Inhibition of HIV-1 Pseudovirus Infection

HIV-1 pseudoviruses were generated as previously described [24]. Briefly, HEK293T
cells with 40~60% cell density was co-transfected with HIV-1 envelope-expressing plasmids
and pNL4-3.Luc.RE plasmid (Luciferase reporter vector) by using VigoFect transfection
reagent (Vigorous Biotechnology, Beijing, China). Fresh DMEM with 10% FBS was replaced
6–8 h after transfection. HIV-1 pseudoviruses were harvested at 48 h post transfection and
stored at −80 ◦C.

The HIV-1 pseudovirus inhibition assay was performed as described previously [25].
Briefly, 1 × 104/well of U87 CD4+ CCR5+ cells 100 µL were cultured in a 96-well cell culture
plate at 37 ◦C with 5% CO2 for 12–16 h. Peptides with different concentrations were mixed
with a virus at 100 TCID50 and incubated at 37 ◦C for 30 min before adding U87 CD4+

CCR5+ cells. After 12 h of infection, fresh medium was replaced. After another 48 h of
culture, target cells were lysed with Cell Culture Lysis (Promega, Madison, WI, USA) and
cell lysate was added to a 96-well Costar plate (Corning Costar, NY, USA). Luciferase kit
(Promega, Madison, WI, USA) and a multi-detection Microplate Reader (Ultra 384, Tecan)
capable of reading luminescence was used to detect luciferase.

4.4. Inhibition of HIV-1 Infection

The inhibitory activity of peptides against HIV-1 laboratory-adapted strains IIIB (X4)
and Bal (R5), HIV-1 primary isolates, and T20-resistant strains was detected as previously
described [21,26]. Briefly, 50 µL of different concentrations of peptide in PBS or PBS (as
control) mixed with 50 µL of HIV-1 at 100 TCID50 was incubated at 37 ◦C for 30 min. Then,
100 µL containing 4 × 105/mL MT-2 (for X4 virus) or 2 × 105/mL CEMx 174 5.25 M7 cells
(for R5 virus) was added and incubated at 37 ◦C overnight. After 16 h, the medium was
replaced with fresh RPMI-1640 medium containing 10% FBS, and cells were cultured for 3 to
4 days. Cytopathic changes were observed, followed by collecting 50 µL of cell supernatant
and mixing with 5% Triton X-100. P24 antigen in supernatant was detected by ELISA.



Int. J. Mol. Sci. 2023, 24, 9779 9 of 11

ELISA assay was performed as described previously [27]. Briefly, 50 µL of 5 µg/mL
Anti-HIV Immunoglobulin (HIVIG) was added to the ELISA plate overnight at 4 ◦C and
5% nonfat milk at 37 ◦C was added as blocking buffer for 2 h. Then, cell supernatant was
collected, added to the ELISA plate, and incubated at 37 ◦C for 1 h. Anti-p24 mAb 183,
rabbit Anti-Mouse IgG-HRP (DACO), and substrate 3,3,5,5-TMB (Sigma-Aldrich) were
added sequentially. P24 antigen was measured at 450 nm (A450) using a multi-detection
microplate reader (Ultra 384, Tecan). Calcusyn software (Biosoft) was used to calculate
IC50, and GraphPad Prism (GraphPad Software) was used to draw the suppression curve.

4.5. Cell-Washout Assay

To determine whether EKL1C inhibits HIV-1 infection by acting on cells or not, we con-
ducted the cell-washout assay as previously described [28]. Briefly, MT-2 cells (1 × 105/mL)
were incubated with EKL1C (500 nM) at 4 ◦C for 1 h and washed by centrifugation at
800 rpm for 5 min with serum-free RPMI-1640 medium 3 times to remove the unbound
peptide, then HIV-1 IIIB was added to the washed MT-2 cells or non-washed cells (as
control). At 12–16 h post infection, the culture supernatants were replaced with fresh
RPMI-1640 medium containing 10% FBS. On the fourth day post infection, p24 antigen in
supernatant was detected by ELISA as described above.

4.6. Time-of-Addition Assay

To determine whether EKL1C inhibits HIV-1 infection by acting at the viral entry
stage, we performed the time-of-addition assay as previously described [28,29]. Briefly,
100 TCID50 HIV-1 IIIB was incubated with 1 × 105/mL MT-2 cells for 0, 0.5, 1, 2, 4,
6, and 8 h at 37 ◦C before the addition of EKL1C (500 nM). At 2 h post infection, the
culture supernatants were replaced with fresh RPMI-1640 medium containing 10% FBS.
On the fourth day post infection, p24 antigen in supernatant was detected by ELISA as
described above.

4.7. HIV-1-Env-Mediated Cell–Cell Fusion Assay

The inhibitory activity of peptides against HIV-1-Env-mediated cell–cell fusion was
detected as described previously [30,31]. Briefly, 2 × 105/mL H9/HIV-1IIIB cells were
labeled with 2.5 µL 1 mM fluorescent reagent, Calcein AM (Themo Fisher Invitrogen,
USA), and incubated at 37 ◦C for 30 min. H9/HIV-1IIIB cells were washed twice with
PBS by centrifugation at 800 rpm for 3 min and resuspended to 2 × 105/mL in fresh
RPMI-1640 medium containing 10% FBS. An amount of 50 µL of peptide at indicated
concentrations was added to wells of a 96-well cell culture plate, and 50 µL of labeled
H9/HIV-1IIIB cells was added to each well, followed by incubation at 37 ◦C for 30 min.
Then, 100 µL of 1 × 106/mL MT-2 cells were added to each well and incubated at 37 ◦C for
2 h. Cell–cell fusion of each well was photographed by inverted fluorescence microscopy
(Zeiss, Oberkochen, Germany). The wells containing H9/HIV-1IIIB cells and MT-2 cells
only were used as positive controls, while those containing H9/HIV-1IIIB cells only were
used as negative controls. Calcusyn software (Biosoft) was used to calculate the inhibition
of cell–cell fusion and IC50, and GraphPad Prism (GraphPad Software) was used to present
the suppression curve.

4.8. N-PAGE

N-PAGE was performed to determine the potential inhibitory activity of EKL1C on
6-HB formation between HIV-1 HR1 peptide N36 and HR2 peptide C34 as previously
described [32]. Briefly, the mixture of C34 + PBS, N36 + PBS, EKL1C + PBS, and N36
(50 µM) was incubated with EKL1C at 0, 20, or 40 µM, respectively, at 37 ◦C for 30 min,
followed by addition of C34 (20 µM) and incubation at 25 ◦C for 10 min. In the controls,
C34, N36, and EKL1C were incubated with PBS at 37 ◦C for 30 min and 25 ◦C for 10 min.
Tris-glycine native sample buffer was added to each of the above samples at a ratio of 1:5,
and the mixtures were loaded onto 18% Tris-glycine gel for gel electrophoresis at room
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temperature at a constant voltage of 125 V for 180 min. The gel was stained with Coomassie
Blue and imaged with a FluorChem 8800 imaging system (Alpha Innotech Corp., San
Leandro, CA, USA).

4.9. Cytotoxicity Assay

Cytotoxicity of peptide EKL1C to cells was assessed as previously described [33].
Briefly, 50 µL of EKL1C at different concentrations, together with 100 µL of MT-2 cells,
CEMx174 517 5.25 M7 cells, or U87 CD4+ CCR5+ cells (3 × 104 cells/well), was cultured in
wells of a 96-well cell culture plate at 37 ◦C with 5% CO2 for 48 h. Then, 50 µL Cell Counting
Kit-8 (CCK-8; Dojindo, Kumamoto, Japan) was diluted 5× and added, followed by an
additional incubation at 37 ◦C for 4 h. The absorbance was measured at 450 nm by using the
Ultra 384 microplate reader (Tecan). Calcusyn software (Biosoft) was used to calculate CC50
of EKL1C, and GraphPad Prism (GraphPad Software) was used to draw the histogram.
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