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Abstract: T2DM etiology differs among Asians and Caucasians and may be associated with gut
microbiota influenced by different diet patterns. However, the association between fecal bacterial
composition, enterotypes, and T2DM susceptibility remained controversial. We investigated the
fecal bacterial composition, co-abundance network, and metagenome function in US adults with
T2DM compared to healthy adults based on enterotypes. We analyzed 1911 fecal bacterial files of
1039 T2DM and 872 healthy US adults from the Human Microbiome Projects. Operational taxonomic
units were obtained after filtering and cleaning the files using Qiime2 tools. Machine learning and
network analysis identified primary bacteria and their interactions influencing T2DM incidence,
clustered into enterotypes, Bacteroidaceae (ET-B), Lachnospiraceae (ET-L), and Prevotellaceae (ET-P).
ET-B showed higher T2DM incidence. Alpha-diversity was significantly lower in T2DM in ET-L
and ET-P (p < 0.0001), but not in ET-B. Beta-diversity revealed a distinct separation between T2DM
and healthy groups across all enterotypes (p < 0.0001). The XGBoost model exhibited high accuracy
and sensitivity. Enterocloster bolteae, Facalicatena fissicatena, Clostridium symbiosum, and Facalibacterium
prausnitizii were more abundant in the T2DM group than in the healthy group. Bacteroides koreensis,
Oscillibacter ruminantium, Bacteroides uniformis, and Blautia wexlerae were lower in the T2DM than
in the healthy group regardless of the enterotypes in the XGBoost model (p < 0.0001). However,
the patterns of microbial interactions varied among different enterotypes affecting T2DM risk. The
interaction between fecal bacteria was more tightly regulated in the ET-L than in the ET-B and ET-P
groups (p < 0.001). Metagenomic analysis revealed an inverse association between bacteria abundance
in T2DM, energy utility, butanoate and propanoate metabolism, and the insulin signaling pathway
(p < 0.0001). In conclusion, fecal bacteria play a role in T2DM pathogenesis, particularly within
different enterotypes, providing valuable insights into the link between gut microbiota and T2DM in
the US population.

Keywords: fecal bacteria; type 2 diabetes; pooling data; western diet; metagenome analysis

1. Introduction

Type 2 diabetes (T2DM) is a metabolic disease characterized by elevated serum glucose
concentrations due to insulin resistance and impaired insulin secretion. The prevalence
of T2DM has markedly increased among Asians [1] and is related to different etiology
of T2DM among Asians and Caucasians [2]. In Asians, T2DM occurs in lean individuals
with lower insulin-secreting capacity and pancreatic β-cell mass, which eventually causes
hyperglycemia and T2DM [3]. It occurs without hyperinsulinemia in Asians [3]. However,
in Western countries, increased insulin resistance due to obesity, aging, and inflammation
is overcome by hyperinsulinemia, which delays the progression to T2DM. Over time, the
increased insulin secretion in a person with high insulin resistance causes β-cell exhaustion,
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leading to T2DM. Therefore, T2DM is progressed slowly through an increase in insulin
secretion in adults in Western countries, unlike Asians [4].

The difference in T2DM etiology between Asians and Western individuals is linked to
lifestyle factors across generations. Traditionally, Asians have consumed a high-carbohydrate
diet rich in dietary fiber, resulting in greater insulin sensitivity but lower insulin-secreting
capacity and pancreatic β-cell mass compared to Caucasians [5]. On the contrary, Western
individuals living in the USA have traditionally adopted a diet high in meat consumption,
leading to a higher prevalence of obesity and elevated fasting serum glucose and insulin
concentrations [6,7]. These differences in dietary patterns and metabolic characteristics
influence the composition of the gut microbiota, contributing to the etiology of T2DM [8,9].
Butyrate and propionate among SCFA, products of fecal bacteria, are beneficial for in-
sulin sensitivity, and T2DM patients exhibit reduced production, potentially contributing
to impaired glucose homeostasis [10]. Akkermansia is positive, but certain species of Es-
cherichia and Clostridium are inversely associated with metabolic function, contributing to
T2DM risk [11,12]. Therefore, they have been shown to exert beneficial effects on glucose
metabolism and insulin sensitivity.

In recent years, the crucial role of gut microbiota in the disease pathophysiology of
T2DM has emerged [8,9]. The metabolites and bacterial components of gut microbiota
affect the initiation and progression of T2DM [13]. Genetic differences, lifestyles, and
interactions influence gut microbiota linked to T2DM [14]. The emerging evidence on
the interconnectedness between the gut microbiome and host metabolism indicates that
gut microbiota is associated with intestinal permeability, secretion of digestive juices, and
the autonomous nervous system, all linked to the host’s genetic predisposition [15]. In
a hyperglycemic state, the acute stimulation of the vagus nerve, a principal component
of the parasympathetic nervous system, decreases glucose release from the liver and
potentiates insulin secretion from the pancreatic β-cells [16]. The vagus nerve activation
suppresses peripheral inflammation, decreases intestinal permeability, and modulates
the microbiota composition [11]. The fecal bacteria community of Asians with T2DM
exhibits the potential association with vagus nerve suppression, suggesting that insufficient
insulin secretion in Asian T2DM may be related to the inhibition of the vagus nerve.
However, T2DM, mainly with insulin resistance in Western countries, may have different
gut microbiota communities.

Limited evidence exists regarding the link between fecal bacteria composition and
T2DM, specifically in Western countries. Furthermore, the composition of fecal bacteria and
metagenome function in adults with T2DM in the USA, which predominantly represents
a Caucasian population, may exhibit differences compared to populations in Asia due to
distinct T2DM etiologies between Asians and non-Asians [3]. In the present study, we
aimed to identify and analyze the specific variations in gut microbiota associated with
T2DM in the USA, categorized according to enterotypes by pooling the fecal bacteria data
since the sample size of previous studies was too small to reveal consistent results in the
association between fecal bacteria and T2DM in the USA. The present study can provide
insight into T2DM etiology in the aspect of fecal bacteria in the USA.

2. Results
2.1. Collection of Fecal Bacteria and Their Enterotypes

A total of 1911 FASTA/Q fecal bacteria were collected: 872 and 1039 FASTA/Q be-
longed to the healthy and T2DM groups, respectively (Figure 1). The T2DM group included
611 men and 428 women, and the healthy group included 485 men and 387 women. Their
average age was 44.6 ± 2.32 years for T2DM and 43.9 ± 1.53 years for the healthy group. They
were clustered into three enterotypes determined with an eigenvalue > 1.5 using PCA analysis
(Supplementary Figure S1A). The optimal number of clusters was three, represented by
enterotypes, and three enterotypes were assigned and named based on the predominant bac-
terial family. A total of three clusters were named as enterotypes, namely: Bacteroidaceae
(ET-B), Lachnospiraceae (ET-L), and Prevotellaceae (ET-P) (Supplementary Figure S1B).
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The ET-B included 416 healthy and 533 T2DM subjects, ET-L included 329 healthy and
411 T2DM subjects, and ET-P included 127 healthy and 95 T2DM subjects (Figure 1).

Figure 1. The scheme of the overall fecal FASTA/Q selection process and analysis meth-
ods. 1 SRA accession list on NCBI SRA database (https://www.ncbi.nlm.nih.gov/sra)
(accessed on 6 and 10 March 2022) and Human Microbiome Project (https://portal.hmpdacc.org/)
(accessed on 6 March 2022). 2 https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=software
(accessed on 10 March 2022). Bacteroidaceae (ET-B), Lachnospiraceae (ET-L), and Prevotellaceae
(ET-P). 3 https://view.qiime2.org/ (accessed on 20 April 2022). 4 https://blast.ncbi.nlm.nih.gov/
Blast.cgi (accessed on 3 May 2022). 5 https://cran.r-project.org/web/packages/aPCoA/index.html
(accessed on 18 May 2022). 6 https://xgboost.readthedocs.io/en/stable/install.html (accessed on
25 May 2022). 7 https://shap.readthedocs.io/en/latest/index.html (accessed on 8 June 2022).
8 https://cytoscape.org (accessed on 20 June 2022).

The fecal bacterial composition of ET-B was 53.1% Bacteroidaceae, 10.6% Lachnospiraceae,
11.0% Oscillospiraceae, and 1.18% Prevotellaceae; that of ET-L was 22.1% Oscillospiraceae, 20.3%
Lachnospiraceae, 19.5% Bacteroidaceae, and 1.72% Prevotellaceae; and ET-P was 43.4% Prevotel-
laceae, 14.5% Bacteroidaceae, 10.8% Oscillospiraceae, and 10.0% Lachnospiraceae (Supplementary
Figure S2A). The ET-B predominantly included bacteria from the genera Phocaeicola and
Bacteroides (p < 0.0001); ET-P was rich in Prevotella (p < 0.0001); ET-M included equal pro-
portions of genera Phocaeicola, Bacteroides, and Faecalibacterium (p < 0.0001; Supplementary
Figure S2B).

2.2. Differences in the Bacterial Composition between the T2DM and Healthy Groups in
Total Participants

Among the bacterial families present, the participants in the T2DM group showed
a higher proportion of Bacteroidaceae and Lachanospiraceae than those in the healthy
group (p < 0.0001; Supplementary Figure S3A). Among the genera, a higher abundance
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of Bacteroides and Facalibacterium and a lower proportion of Allistipes were present
(p < 0.0001; Figure 2A). The α-diversity represented with the Chao1 (p < 0.0001), Shannon
(p < 0.0001), and Simpson (p = 0.033) indexes was lower in the T2DM group than in the
healthy group (Supplementary Figure S3A). The bacterial composition of the healthy
group was well-separated and distinct from that of the T2DM group with a p < 0.001
(Supplementary Figure S4A).

According to the machine learning approach, an optimal model to demarcate bacteria
into the T2DM and healthy groups was explored. The area under ROC (AUROC) in
the models estimated by XGboost, random forest, and linear regression were 1.0, 1.0,
and 0.988, respectively, in total participants (Table 1). Enterocloster bolteae, Facalicatena
fissicatena, Clostridium symbiosum, Facalibacterium prausnitizii, and Oscillibacter valericigenes
were present in higher proportions in the T2DM group compared to the healthy group
(p < 0.001), and Bacteroides koreensis, Oscillibacter ruminantium, Bacteroides uniformis, Blautia
wexlerae, Phocaeicola vulgatus, and Collinsella aerofaciens were present in lower proportions in
the T2DM group (p < 0.001; Figure 2B).

Figure 2. Cont.
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Figure 2. Fecal bacteria composition in total participants. Distinct differences in the abundance
of specific bacterial genera between individuals with T2DM and the healthy group of US adults
shed light on the potential role of these genera in T2DM pathogenesis. (A). Relative abundance of
fecal bacteria compositions at the genus level between type 2 diabetes (T2DM) and healthy groups.
(B). Primary bacteria between the type 2 diabetes (T2DM) and healthy groups at the species level
by XGboost in each enterotype. * Significant differences between T2DM and healthy groups at
p < 0.00001 (Bonferroni corrected p value).

Table 1. Accuracy, sensitivity, specificity, and precision of the prediction models according to enterotypes.

Total Participants AUROC Accuracy Sensitivity Specificity Precision F1

XGBoost 1.0 ± 4.1 × 10−6 9.9 ± 1.7 × 10−4 0.99 ± 2.5 × 10−4 0.99 ± 2.0 × 10−4 1.0 ± 1.6 × 10−4 0.99 ± 1.52 × 10−4

Random forest 1.0 ± 0.001 1.0. ± 8.2 × 10−5 1.0 ± 0.0 0.99 ± 1.9 × 10−4 1.0 ± 1.5 × 10−4 1.0 ± 7.36 × 10−5

Linear regress 0.99 ± 2.0 × 10−4 0.97 ± 2.0 × 10−4 0.97 ± 3.4 × 10−4 0.96 ± 4.6 × 10−4 0.97 ± 4.6 × 10−4 0.97 ± 2.55 × 10−4

ET-B AUROC Accuracy Sensitivity Specificity Precision F1

XGBoost 1.0 ± 1.1 × 10−5 0.97 ± 3.9 × 10−4 0.96 ± 5.3 × 10−4 0.97 ± 1.3 × 10−4 0.97 ± 0.0005 0.97 ± 0.0004
Random forest 1.0 ± 3.0 × 10−5 0.97 ± 3.9 × 10−4 0.98 ± 3.9 × 10−4 0.97 ± 6.4 × 10−4 0.97 ± 0.0005 0.97 ± 0.0003
Linear regress 0.98 ± 2.8 × 10−4 0.95 ± 5.2 × 10−4 0.97 ± 5.4 × 10−4 0.93 ± 7.7 × 10−4 0.94 ± 0.0007 0.96 ± 0.0005

ET-L AUROC Accuracy Sensitivity Specificity Precision F1

XGBoost 1.0 ± 0.0 0.99 ± 3.4 × 10−6 0.99 ± 3.7 × 10−4 1.0 ± 0.0 1.0 ± 0.0 0.99 ± 1.9 × 10−4

Random forest 1.0 ± 0.0 0.99 ± 1.9 × 10−4 0.99 ± 4.3 × 10−4 1.0 ± 0.0 1.0 ± 0.0 0.99 ± 2.3 × 10−4

Linear regress 1.0 ± 0.0001 0.98 ± 3.9 × 10−4 0.99 ± 4.4 × 10−4 0.97 ± 6.8 × 10−4 0.98 ± 5.2 × 10−4 0.98 ± 3.2 × 10−4

ET-P AUROC Accuracy Sensitivity Specificity Precision F1

XGBoost 1.0 ± 0.0 0.98 ± 6.9 × 10−4 0.954 ± 0.001 1.0 ± 0.0 1.0 ± 0.0 0.98 ± 8.3 × 10−5

Random forest 1.0 ± 0.0 0.96 ± 9.2 × 10−4 0.911 ± 0.002 1.0 ± 0.0 1.0 ± 0.0 0.95 ± 0.002
Linear regress 0.95 ± 0.001 0.96 ± 0.001 0.954 ± 0.001 0.957 ± 0.001 0.954 ± 0.001 0.95 ± 0.001

ET-B, enterotype Bacteroidaceae; ET-L, enterotype Lachnospiraceae; and ET-P, enterotype Prevotellaceae.
AUROC, the area under the receiver operating characteristic. Precision = TP/(TP + FP). F1 score = 2 ×
(precision × recall)/(precision + recall) in recall = TP/(TP + FP). TP, true positive value; FP, false positive value;
FN, false negative.
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2.3. Differences in the Bacterial Composition between the T2DM and Healthy Groups in ET-B

Within the ET-B, the T2DM group had a higher proportion of the family Bacteroidaceae
and Lachnospiraceae and a lower proportion of Rikenellaceae than the healthy group. The
T2DM group had a higher proportion of genera Bacteroides, Facalibacterium, Lachnoclostrid-
ium, and Blautia and lower Allistipes than the healthy group (p < 0.0001; Figure 3A). The
Ace, Chao1, and Shannon indexes representing α-diversity were not different between the
healthy and T2DM groups in the adults with ET-B (p > 0.05; Supplementary Figure S3B).
However, β-diversity results revealed that the bacterial community was well-demarcated
into the healthy and T2DM groups at p < 0.001 (Supplementary Figure S4B).

According to the machine learning approach, an optimal model to separate bacteria
between the T2DM and healthy groups was explored. The AUROC in the models estimated
by XGboost, random forest, and linear regression were 0.998, 0.997, and 0.994, respectively
(Table 1). Enterocloster bolteae, Facalicatena fissicatena, Clostridium symbiosum, Facalibacterium
prausnitizii, Oscillibacter valericigenes, Clostridium symbiosum, and Bacteroides cellulosilyticus
were present in higher proportions in the T2DM than the healthy group (p < 0.001), and
Bacteroides koreensis, Oscillibacter ruminantium, Bacteroides uniformis, Blautia wexlerae, Pho-
caeicola vulgatus, and Eubacterium rectale were present in lower proportions in the T2DM
compared to the healthy group (p < 0.0001; Figure 3B).

In the healthy group, certain bacteria showed positive correlations with other bac-
teria within the same group, but negative correlations with those in the T2DM group
(p < 0.001; Figure 3C). The bacterial families and genera in the T2DM group exhibited
stronger interactions compared to the healthy group, implying that there was a higher level
of interconnectedness or interdependence among the bacteria in the T2DM group.

Figure 3. Cont.
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Figure 3. Fecal bacteria composition in Enterotype Bacteroidaceae (ET-B). In US adults with ET-B, the
T2DM group exhibited a higher proportion of Bacteroides, Facalibacterium, Lachnoclostridium, and Blautia,
while the proportion of Allistipes was lower in abundance than the healthy group. The interactions
among bacterial families and genera were more robust in the T2DM group than in the healthy group.
(A). Relative abundance of fecal bacteria compositions at the genus level between type 2 diabetes (T2DM)
and healthy groups. (B). Primary bacteria between the type 2 diabetes (T2DM) and healthy groups at the
species level by XGboost in each enterotype. (C). Network of primary bacteria in the T2DM and healthy
groups according to each enterotype. Red and blue lines indicate positive and negative correlations with
Pearson correlation coefficient > 0.1, respectively (p < 0.001). * Significant differences between T2DM
and healthy groups at p < 0.00001 (Bonferroni corrected p value).
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2.4. Differences in the Bacterial Composition between the T2DM and Healthy Groups in ET-L

Within ET-L, among the families present, the proportion of Bacteroidaceae and Lach-
nospiraceae was higher, but Clostridiaceae was lower in the T2DM than in the healthy group.
The participants in the T2DM group had a higher abundance of genera Bacteroides, Phocae-
icola, Allistipes, Blautia, and Oscillibacter than the healthy group, while that of Ruminoccocus
was higher in T2DM (p < 0.0001; Figure 4A). The α-diversity, calculated with the ACE,
Chao1, and Shannon indexes, was higher, and that calculated with the Simpson index was
lower in the healthy group than the T2DM group (p < 0.0001; Supplementary Figure S3C).
This indicated that the fecal bacteria were more diverse in the healthy group than the T2DM
group. The bacterial community was clearly separated in the healthy and T2DM groups
with a p < 0.001 (Supplementary Figure S4C).

The SHAP model showed that the bacterial communities in the T2DM and healthy
groups were distinct, while the AUROC was 1.0 in XGBoost, 1.0 in a random forest, and
0.997 in linear regression, indicating that the models for the bacterial composition of
the T2DM and healthy groups were perfect using XGBoost, random forest, and linear
regression (Table 1).

The fecal bacteria in the T2DM group showed a higher abundance of Enterocloster
bolteae, Oscillibacter valericigenes, Blautia glucerasea, and Faecalicatena fissicatena. Eubacterium
rectale, Faecalibacterium prausnitizii, Blautia luti, and Streptococcus salivarius than those in
the healthy group (p < 0.001). The fecal bacteria of the healthy group showed a higher
abundance of Oscillibacter ruminantium, Bacteroides koreensis, Blautia wexlerae, Akkermentia
muciniphila, Bacteroides uniformis, and Phascolarctobacterium faecium than the T2DM group
(p < 0.001; Figure 4B).

Figure 4. Cont.
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Figure 4. Fecal bacteria composition in Enterotype Lachnospiraceae (ET-L). The distinct differences
in the abundance and interactions of specific fecal bacteria between individuals with T2DM and
the healthy group within the ET-L enterotype. ET-L participants in the T2DM group had a higher
abundance of genera Bacteroides, Phocaeicola, Allistipes, Blautia, Oscillibacter, and Ruminococcus com-
pared to the healthy group. Unlike in ET-B, bacteria in both the T2DM and healthy groups within
ET-L exhibited a more stable and positive interaction within each group, with a negative interaction
between the T2DM and healthy groups. (A). Relative abundance of fecal bacteria compositions at
the genus level between type 2 diabetes (T2DM) and healthy groups. (B). Primary bacteria between
the type 2 diabetes (T2DM) and healthy groups at the species level by XGboost in each enterotype.
(C). Network of primary bacteria in the T2DM and healthy groups according to each enterotype. Red
and blue lines indicate positive and negative correlations with Pearson correlation coefficient >0.1,
respectively (p < 0.001). * Significant differences between T2DM and healthy groups at p < 0.00001
(Bonferroni corrected p value).
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Similar to ET-B, in ET-L, the bacteria in the healthy group were positively associ-
ated with each other, but negatively interacted with those in the T2DM group (p < 0.001;
Figure 4C). However, unlike ET-B, bacteria in the T2DM and healthy groups within ET-L
showed a more stable and positive interaction within each group and a negative interaction
between the T2DM and healthy groups.

2.5. Differences in the Bacterial Composition of the T2DM and Healthy Groups in ET-P

Within ET-P, those in the T2DM group had a higher proportion of the family Prevotel-
laceae and Lachnospiraceae and genus Prevotella, Facalibacterium, and Bacteroides compared
to those in the healthy group (p < 0.0001; Figure 5A). The Chao1 and Shannon indexes were
higher, but the Simpson index was lower in the healthy group than in the T2DM group
(p < 0.0001; Supplementary Figure S3D). These results indicate that the fecal bacterial com-
positions were more diverse in the healthy group than in the T2DM group. The bacterial
community was clearly demarcated into the healthy and T2DM groups with a p < 0.001
(Supplementary Figure S4D). The β-diversity determined by the Bray-Curtis dissimilarity
matrix was significantly different between the healthy and T2DM groups (p < 0.001).

The SHAP model showed that the bacterial communities in the T2DM and healthy
groups were distinct and separate: the AUROC was 1.0 in XGBoost, 1.0 in a random forest,
and 0.951 in linear regression, indicating that the models for bacterial composition between
the T2DM and healthy groups fitted well (Table 1).

The T2DM group had a higher proportion of Enterocloster bolteae, Blautia glucerases,
Clostridium herbivorans, Phocaeicola vulgatus, Oscillibacter valericigenes, Fecalibacterium
prausnitizii, Prevotella copri, and Blautia luti than those in the healthy group (p < 0.001).
The healthy group had a higher proportion of Oscillibacter ruminantium, Bacteroides
koreensis, Dorea longicatena, Blautia wexlerae, and Parabacteroides merdae than the
T2DM group (p < 0.001; Figure 5B).
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metabolism was elevated compared to the healthy group. In addition, insulin resistance-
related metabolism and glucagon signaling pathway increased in T2DM (p < 0.0001; 
Figure 6). However, fatty acid-related energy metabolism, antioxidant-related 
metabolism, purine metabolism, and branched-amino acid degradation were elevated in 
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degradation were also elevated in the healthy group compared to the T2DM group (p < 
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Figure 5. Fecal bacteria composition in Enterotype Prevotellaceae (ET-P). The distinct differences in
the proportion and interactions of specific bacteria between individuals with T2DM and the healthy
group within the ET-P enterotype. ET-P US adults with T2DM had a higher proportion of genus
Prevotella, Facalibacterium, and Bacteroides than healthy adults. In ET-P, similar to ET-B, the bacteria
within the T2DM group demonstrated a more stable interaction than those in the healthy group.
However, the interaction within the T2DM group in ET-P was less stable than in ET-B. (A). Relative
abundance of fecal bacteria compositions at the genus level between type 2 diabetes (T2DM) and
healthy groups. (B). Primary bacteria between the type 2 diabetes (T2DM) and healthy groups at
the species level by XGboost in each enterotype. (C). Network of primary bacteria in the T2DM
and healthy groups according to each enterotype. Red and blue lines indicate positive and negative
correlations with Pearson correlation coefficient > 0.1, respectively (p < 0.001). * Significant differences
between T2DM and healthy groups at p < 0.00001 (Bonferroni corrected p value).
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The bacteria in the healthy group were positively associated with each other but
interacted negatively with those in the T2DM group (p < 0.001; Figure 5C). Similar to ET-B,
ET-P bacteria within the T2DM group showed a more stable interaction than those in the
healthy group. However, the interaction between the bacteria within the T2DM group was
less stable in the ET-P than in the ET-B.

2.6. Metagenome Function of Fecal Bacteria

Fecal bacteria associated with T2DM was similar in all enterotypes, and metagenome
function was analyzed with fecal bacteria higher or lower in the T2DM group than in
the healthy group (p < 0.0001; Figure 6). In the T2DM group, glucose metabolism, in-
cluding starch, sucrose, fructose, and mannose metabolism, and cysteine and methionine
metabolism was elevated compared to the healthy group. In addition, insulin resistance-
related metabolism and glucagon signaling pathway increased in T2DM (p < 0.0001;
Figure 6). However, fatty acid-related energy metabolism, antioxidant-related metabolism,
purine metabolism, and branched-amino acid degradation were elevated in the healthy
group rather than in the T2DM group. Insulin signaling pathway and steroid degradation
were also elevated in the healthy group compared to the T2DM group (p < 0.0001; Figure 6).
Furthermore, propanoate and butanoate metabolisms were lower in the T2DM group
than in the healthy group (Figure 6). Gut bacteria in T2DM elevated insulin resistance by
decreasing insulin signaling and increasing glucagon signaling.

Figure 6. Metagenome functions of the primary bacteria in enterotype Bacteroidaceae (ET-B). Fecal
bacteria in T2DM of US adults with ET-B contributed to elevated insulin resistance by decreasing
insulin signaling pathways and increasing glucagon signaling. The metabolic differences observed
provide insights into the dysregulated insulin resistance associated with T2DM.

3. Discussion

Gut microbiota related to T2DM have been studied, but the results are inconsistent. In
this study, we investigated the association between fecal bacterial composition, enterotypes,
and T2DM in US adults, focusing on enterotypes. Our objective was to provide valuable
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insights into the role of gut microbiota in T2DM pathogenesis, specifically within different
enterotypes, and to shed light on the link between gut microbiota and T2DM in the US
population. Using a large dataset pooling fecal bacterial files of 1039 individuals with
T2DM and 872 healthy adults from HMP data, we employed machine learning and net-
work analysis to identify key bacteria and their interactions influencing T2DM incidence.
Additionally, we conducted a metagenomic analysis to explore the functional implications
of the microbial composition. Our findings revealed distinct enterotypes (Bacteroidaceae,
Lachnospiraceae, and Prevotellaceae) associated with T2DM incidence, along with lower
α-diversity in T2DM within specific enterotypes, indicating microbial diversity differences.
The XGBoost model demonstrated high accuracy and sensitivity in predicting T2DM based
on fecal bacterial composition. Furthermore, we observed specific bacterial taxa in the
T2DM group compared to the healthy group, and metagenomic analysis unveiled associa-
tions between bacterial abundance and metabolic pathways relevant to T2DM. These novel
findings enhance our understanding of the intricate interplay between gut microbiota and
T2DM in the US population.

Notably, Asians exhibit lower insulin-secreting capacity than non-Asians, contributing
to the etiological differences in T2DM development between these populations [3]. The
different etiology may be closely linked to distinct gut microbiota communities in Asians
and non-Asians. The present study explored the differences in gut microbiota composition
between individuals with T2DM and healthy individuals in the USA, predominantly
Caucasians. It showed that the enriched bacteria in the T2DM patients in the USA were
Bacteroides, Blautia, and Germmiger. However, in Asians, the T2DM-enriched genera are
Enterobacter, Coprococcus, Negativibacillus, Rothia, Desulfovibrio, Megasphaera, Eubacterium
Prevotella, Clostridium sensu stricto 1, Olsenella, Lactobacillus, and Neisseria. Coprobacter,
Butyrivibrio, Paraprevotella, Tyzzerella 3, and Barnesella belong to T2DM-depleted genera [11].
Furthermore, Asians with T2DM displayed a higher proportion of Escherichia fergusonii and
lower Faecalibacterium prausnitzii compared to the healthy group within both ET-L and ET-P
enterotypes [11]. These differences in gut bacteria between the healthy and T2DM groups
in the Asian population highlight the potential association of gut dysbiosis with intestinal
permeability and the enteric vagus nervous system [11]. Activation of the enteric vagus
nervous system in the intestines can generate aberrant signals to the hypothalamus, leading
to a distorted efferent message that induces insulin resistance [17]. Unlike the findings in
the Asian population containing ET-L and ET-P, the fecal bacteria in the US population
were clustered into ET-B, ET-L, and ET-P, and T2DM-related fecal bacteria did not appear
to be associated with intestinal permeability and the enteric vagus nervous system. In
the metagenomic analysis, unlike healthy adults, the high fecal bacteria in T2DM patients
were implicated in reduced energy utilization, butanoate and propanoate metabolism, and
insulin signaling pathways. These findings suggest that the gut bacteria associated with
T2DM in the US population primarily relate to energy metabolism and insulin resistance.

Several studies have reported a significant difference in the gut microbiota profiles
across ethnicities in the US population [18]. The α-diversity plays a critical role in disease
prevalence, and the α-diversity (Choa1 and Shannon indexes) is reported to be lower in the
order of ET-L, ET-P, and ET-B in healthy persons [19]. It suggests that ET-B may be more
susceptible to metabolic diseases, including T2DM. However, the decrement in α-diversity
in T2DM remains controversial [11,20]. A systematic review and meta-analysis of stool
microbial profiles, including seven studies, involving 600 T2DM patients and 543 controls
from China, Pakistan, Mexico, Columbia, and Nigeria, showed significant β-diversity
but not α-diversity between the T2DM and control groups as shown in a random effect
model [20]. In the other Asian study separated into ET-P and ET-L clusters, α-diversity is
lower in the T2DM group than the healthy group in ET-L, but not ET-P [11]. The present
study demonstrated that α-diversity was lower in the T2DM group than the healthy group
in the total participants. A similar trend was seen in ET-L and ET-P, but not ET-B. These
results suggest that the population with no difference between the healthy and T2DM
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groups may be susceptible to T2DM. Therefore, Asians with ET-P and US adults with ET-B
may be at a high risk of T2DM. ET-B may benefit by switching to a different enterotype.

Enterotypes are linked to not only the host’s genetic factors, but also diets [11,14,21,22].
Asians have consumed a low-fat diet with grains and vegetables and have ET-L or ET-P,
but not ET-B. Prevotella and Bacteroides belong to Bacteroidetes in the phylum level, and
a high-fat diet partly changes ET-P to ET-B [23]. Although enterotypes are challenging to
alter [24,25], dietary patterns are the primary drivers of enterotypes, regardless of other
factors. Overall, ET-B is mainly related to a high-fat and protein diet from animal foods,
ET-P is linked to insufficient energy intake, simple sugars, fruits, and vegetables, and
ET-L is involved with a mixed diet, possibly a balanced diet [19]. Bile acid acts as a
molecular cross-talk between gut microbiota and the host, and the bile acid pool in the
colon modulates gut microbial metabolism and diversity [26]. A high-fat diet, especially
with gallbladder removal, has been shown to elevate Bacteroides and decrease α-diversity
in mice [21]. In contrast, irritable bowel disease is linked to high bile acid content and a
lower proportion of Bacteroides [27]. It suggests that elevated bile acid may promote a gut
condition to increase Bacteroides. In recent years, the sudden increase of T2DM in Asians
may be related to increasing Bacteroides, although enterotypes cannot be easily altered.
US adults have a high-fat diet with high meats and low vegetables and more ET-B than
Asians. Since US adults with ET-B showed no difference in α-diversity between the T2DM
and healthy groups, they may be susceptible to T2DM. Therefore, US adults may need to
make dietary modifications to decrease Bacteroides.

T2DM is involved in increased insulin resistance and insufficient insulin secretion,
which are linked to gut microbiota [ref]. In the Rotterdam study, patients with T2DM and
high insulin resistance (high HOMA-IR) exhibited a lower Shannon index and richness
than those without T2DM. A higher abundance of Christensenellaceae, Marvinbryantia, and
Ruminococcaceae was inversely associated with insulin resistance [28]. A higher abundance
of Clostridiaceae, Intestinibacter, and Peptostreptococcaceae was inversely associated with
the incidence of T2DM. These bacteria were involved in butyrate production [28]. The
present study showed that Enterocloster bolteae, Facalicatena fissicatena, Clostridium symbiosum,
and Facalibacterium prausnitizii were present in higher abundance, and Bacteroides koreensis,
Oscillibacter ruminantium, Bacteroides uniformis, and Blautia wexlerae were present in lower
numbers in the T2DM group compared to the healthy group in the USA, regardless of
enterotypes. Akkermentia muciniphila was higher in the healthy group than the T2DM group
only in ET-L. In a metagenomic analysis of fecal bacteria, the predominant bacteria in
T2DM from the USA were related to reduced energy utilization, decreased butanoate and
propanoate metabolism, and disturbed insulin signaling pathways compared to healthy
adults, somewhat different from those associated with Asian T2DM.

Each bacterium may or may not be related to T2DM in a cause-and-effect relationship.
It is not individual bacteria, but their group influencing glucose metabolism and progression
to T2DM. Facalibacterium prausnitizii and Bacteroides uniformis act as probiotics to promote
health benefits [29,30]. However, the present study demonstrated that these bacteria were
present in higher numbers in participants with T2DM than in healthy adults. For example,
Facalibacterium prausnitizii and Bacteroides uniformis could be involved in the development
and progression of T2DM since the results of the present study came from case-control
studies and not randomized clinical trials. Gut microbial networking has been studied
mainly in the context of infections since co-existent bacteria significantly prevent infections
and are not detrimental to the host [31]. However, few studies have been conducted to
investigate gut microbial interactions to prevent metabolic diseases, and these studies have
not been conducted according to enterotypes [32]. A stable bacterial network can prevent
gut dysbiosis, which in turn can prevent disease progression. Probiotics and prebiotics
should regulate the gut bacterial network to prevent disease development and progression.
Gut bacteria are better at promoting butyrate-producing bacteria, such as Akkermansia
muciniphila, to prevent the development of T2DM [8,9].
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This study has some merits. First, the study included a large sample size by pooling
all studies conducted with US adults (1039 T2DM and 872 healthy adults). Second, the gut
microbiota in US adults showed a distinct gut microbiota community different from Asians.
Dysfunction of the parasympathetic nervous system can develop and exacerbate T2DM, es-
pecially in Asians, contributing to gut dysbiosis [33]. The present study provides evidence
that T2DM patients in the USA were not related to suppressing the parasympathetic ner-
vous system, but linked to insulin signaling pathways and energy metabolism, reiterating
the etiological differences in T2DM between Asians and Caucasians [34]. This contributes
to understanding T2DM etiology and highlights potential implications for personalized
interventions or treatments. However, the present study also has some limitations. First,
the data were collected in case-control studies, and the results could not be applied to
evaluate cause and effect. Second, the fecal FASTA/Q data from the adults in the USA
were collected from the GMrepo database. However, the demographic characteristics of the
participants, such as age, gender, ethnicity, food intake, and lifestyle, were not provided
and hence could not be used for adjustments in the statistical analysis. Information on the
drugs used to treat T2DM and antibiotic intake was also not provided. Third, the direct
effect of insulin secretion, insulin resistance, and the parasympathetic nervous system on
gut microbiota could not be evaluated due to the non-availability of biochemical data.

In summary, the fecal bacterial composition of US adults with T2DM was clearly
separated from those of healthy participants. Regardless of enterotypes, Enterocloster bolteae,
Facalicatena fissicatena, Clostridium symbiosum, and Facalibacterium prausnitizii were present in
higher abundance, and Bacteroides koreensis, Oscillibacter ruminantium, Bacteroides uniformis,
and Blautia wexlerae were present in lower numbers in the T2DM group compared to the
healthy group in the XGBoost model. The gut microbiota in adults with T2DM in the USA
was somewhat different from those in Asians with T2DM, which may be linked to different
β-cell functions and mass in Asians and non-Asians. The interaction between the fecal
bacteria was also different in different enterotypes. ET-L had a more stable gut microbiota
population than ET-B, and adults with ET-P and ET-L had a lower T2DM incidence than
those with ET-B. In the metagenomic analysis, gut bacteria composition in T2DM patients
was inversely associated with energy utilization, butanoate and propanoate metabolism,
and insulin signaling pathways compared to healthy adults. In conclusion, the gut bacteria
related to T2DM mainly influence the energy metabolism and insulin signaling pathways in
the US population, Caucasians, and the regulation of their network is linked to T2DM risk in
different enterotypes. Therefore, the present study provides valuable insights into the link
between gut microbiota and T2DM in US adults. This contributes to understanding T2DM
etiology and highlights potential implications for personalized interventions or treatments.

4. Methods
4.1. Collection and Pooling of Fecal Bacteria FASTA/Q Files for Healthy and T2DM Adults

Figure 1 outlines the overall analysis process of fecal bacteria in T2DM by pooling the
FASTA/Q files of the fecal bacteria. The files were collected from the projects that studied
the fecal bacterial composition of T2DM patients downloading the NCBI SRA database
(https://www.ncbi.nlm.nih.gov/sra (accessed on 6 March 2022)) and the Human Micro-
biome Project (https://portal.hmpdacc.org/ (accessed on 10 March 2022)), organized and
funded by the National Institutes of Health (NIH) in the United States. The National Hu-
man Genome Research Institute (NHGRI), the National Institute of Allergy and Infectious
Diseases (NIAID), the National Institute of Dental and Craniofacial Research (NIDCR), and
the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), among
others in the USA, had a collaboration to collect and analyze samples from various sites.
In the present study, the selection criteria for the samples were as follows: (1) Host: Homo
sapiens, (2) Sample type: human feces, (3) Target participants: Caucasians having T2DM
aged over 30 years, (4) Control participants: US healthy adults (without T2DM), (5) Assay:
amplicon sequencing (Miseq), (6) Target sequencing: 16S rRNA. Participants volunteered
to provide fecal samples in each project which the corresponding Institutional Review

https://www.ncbi.nlm.nih.gov/sra
https://portal.hmpdacc.org/
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Board approved of the respective institute. They signed informed consent forms. The
fecal FASTA/Q files were collected from the studies conducted mainly in the USA, and the
participants were 872 healthy adults and 1039 adults with T2DM (Table 1). The participants
provided their ages and gender.

4.2. Fecal Bacterial Composition and Community Analysis

The FASTA/Q files from the Caucasian fecal samples that satisfied the inclusion criteria
were downloaded and extracted using the National Center for Biotechnology Information
(NCBI) Sequence Read Archive (SRA) toolkits (https://trace.ncbi.nlm.nih.gov/Traces/sra/
sra.cgi?view=software (accessed on 20 March 2022)). The collected fecal FASTA/Q files
were processed using qiime2 (https://qiime2.org/ (accessed on 20 April 2022)). In brief, the
sequences of the collected files were merged and aligned with the SILVA v 1381 database.
Bacterial sequences were collected by removing non-target sequences, including mitochondria,
archaea, fungi, and unknown sequences. The fecal bacterial sequences were preclustered,
and chimeras were eliminated. The remaining sequences were clustered with 97% similarity,
and the taxonomy of the operational taxonomic units (OTUs) was annotated according to the
NCBI Basic Local Alignment Search Tool (BLAST) (https://blast.ncbi.nlm.nih.gov/Blast.cgi
(accessed on 3 May 2022)). The biome file containing the taxonomy and counts was used for
further analysis.

4.3. Enterotypes

The fecal bacteria were clustered by principal component analysis (PCA) using the
taxonomy and counts of the biome file. The number of clusters was designated by satisfying
eigenvalues >1.5 using the R PCoA package (https://cran.r-project.org/web/packages/
aPCoA/index.html, accessed on 18 May 2022) [19].

4.4. α-Diversity, β-Diversity, and Linear Discriminant Analysis (LDA) Scores of Fecal Bacteria

The types and diversity of fecal bacteria bidirectionally influence host metabolism
and health status. Alpha-diversity represents the diversity of the bacteria in a host’s gut
assessed by the Chao1, Shannon, Simpson, and Ace indexes. Beta-diversity is the ratio
between regional and local species diversity that demonstrates group separation [35]. The
α- and β-diversities of the bacteria were calculated using the Mothur software package,
and the results were visualized with the R program. The statistical difference of β-diversity
between the healthy and T2DM groups was checked with permutational multivariate
analysis of variance (PERMANOVA). The LDA scores represent the effect size of each
abundant species, and they were analyzed with the lefse command in the Mothur program.

4.5. Extreme Gradient Boosting (XGBoost) Classifier Training and SHapley Additive exPlanations
(SHAP) Interpreter

According to the enterotype, the specific predominant fecal bacteria in the T2DM
group were analyzed with a machine learning approach, including XGBoost, random forest,
and linear regression, and compared with the healthy group. The fecal data were divided
randomly into 80% for the training and 20% for the testing sets. The hyperparameter
settings were a random grid search with 1000 iterations of the XGBoost algorithm using
the Scikit package (https://xgboost.readthedocs.io/en/stable/install.html, accessed on
25 May 2022) [36]. The models for explaining the healthy and T2DM groups were generated.
The receiver operating characteristic (ROC) area for the models was determined using the
training and test sets of the fecal bacteria. The 10-fold cross-validation was calculated using
the “cross_val_score” function in the test data set. The original training data were clustered
into 10 subsets for the calculation: eight sets were used as training data and two sets as
test data, and they were iterated ten times [37]. The accuracy, specificity, and sensitivity
were calculated from the data sets. The value of the 10-fold cross-validation indicated the
accuracy of the selected model [38].

https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=software
https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=software
https://qiime2.org/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://cran.r-project.org/web/packages/aPCoA/index.html
https://cran.r-project.org/web/packages/aPCoA/index.html
https://xgboost.readthedocs.io/en/stable/install.html
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The SHAP analysis was conducted with the SHAP (0.39.0) package from https://shap.
readthedocs.io/en/latest/index.html (accessed on 8 June 2022) to separate the bacteria
positively or negatively involved in the T2DM group using the output of the XGBoost
model [38,39]. The correlation of the bacterial species was carried out using the Pearson
correlation analysis. Network analysis was conducted using the correlation results to
investigate the gut microbes using the Cytoscape program downloaded from the website
(https://cytoscape.org/ (accessed on 20 June 2022)).

4.6. Metagenome Function of Fecal Bacteria by Phylogenetic Investigation of Communities by
Reconstruction of Unobserved States (Picrust2)

The metagenome functions of the fecal bacteria were estimated from the genes they
contained using the FASTA/Q files. These functions were determined with the Picrust2
software for predicting functional abundances based only on marker gene sequences [40].
The metabolic functions of the genes in the fecal bacteria were estimated based on the
Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthologues (KO) and mapped using
the KEGG mapper (https://www.genome.jp/kegg/tool/map_pathway1.html (accessed
on 3 July 2022)) [40].

4.7. Statistical Analysis

The statistical analysis used SAS version 7 (SAS Institute; Cary, NC, USA) and the
R package version 4.2.0. The data were expressed as the mean ± standard deviation (SD).
To assess the mean statistical differences between the T2DM and healthy groups based on
enterotypes, a two-sample t-test was conducted with a Bonferroni correction applied to the
p values. Additionally, a one-way ANOVA with a Bonferroni correction was performed to
examine the mean differences among the three enterotypes. Visualization of the data was
conducted using R-studio and the ggplot2 package.
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Combined effects of host genetics and diet on human gut microbiota and incident disease in a single population cohort. Nat.
Genet. 2022, 54, 134–142. [CrossRef]

15. Martin, C.R.; Osadchiy, V.; Kalani, A.; Mayer, E.A. The Brain-Gut-Microbiome Axis. Cell Mol. Gastroenterol. Hepatol. 2018, 6,
133–148. [CrossRef]

16. Meyers, E.E.; Kronemberger, A.; Lira, V.; Rahmouni, K.; Stauss, H.M. Contrasting effects of afferent and efferent vagal nerve
stimulation on insulin secretion and blood glucose regulation. Physiol. Rep. 2016, 4, 12718. [CrossRef]

17. Knauf, C.; Abot, A.; Wemelle, E.; Cani, P.D. Targeting the Enteric Nervous System to Treat Metabolic Disorders? “Enterosynes” as
Therapeutic Gut Factors. Neuroendocrinology 2020, 110, 139–146. [CrossRef]

18. Brooks, A.W.; Priya, S.; Blekhman, R.; Bordenstein, S.R. Gut microbiota diversity across ethnicities in the United States. PLoS Biol.
2018, 16, e2006842. [CrossRef]

19. Wu, X.; Unno, T.; Kang, S.; Park, S. A Korean-Style Balanced Diet Has a Potential Connection with Ruminococcaceae Enterotype
and Reduction of Metabolic Syndrome Incidence in Korean Adults. Nutrients 2021, 13, 495. [CrossRef]

20. Que, Y.; Cao, M.; He, J.; Zhang, Q.; Chen, Q.; Yan, C.; Lin, A.; Yang, L.; Wu, Z.; Zhu, D.; et al. Gut Bacterial Characteristics of
Patients With Type 2 Diabetes Mellitus and the Application Potential. Front. Immunol. 2021, 12, 722206. [CrossRef]

21. Park, S.; Zhang, T.; Yue, Y.; Wu, X. Effects of Bile Acid Modulation by Dietary Fat, Cholecystectomy, and Bile Acid Sequestrant on
Energy, Glucose, and Lipid Metabolism and Gut Microbiota in Mice. Int. J. Mol. Sci. 2022, 23, 5935. [CrossRef] [PubMed]

22. Wegierska, A.E.; Charitos, I.A.; Topi, S.; Potenza, M.A.; Montagnani, M.; Santacroce, L. The Connection Between Physical Exercise
and Gut Microbiota: Implications for Competitive Sports Athletes. Sports Med. 2022, 52, 2355–2369. [CrossRef] [PubMed]

23. Thomas, F.; Hehemann, J.-H.; Rebuffet, E.; Czjzek, M.; Michel, G. Environmental and Gut Bacteroidetes: The Food Connection.
Front. Microbiol. 2011, 2, 93. [CrossRef] [PubMed]

24. Roager, H.M.; Licht, T.R.; Poulsen, S.K.; Larsen, T.M.; Bahl, M.I. Microbial enterotypes, inferred by the prevotella-to-bacteroides
ratio, remained stable during a 6-month randomized controlled diet intervention with the new nordic diet. Appl. Environ.
Microbiol. 2014, 80, 1142–1149. [CrossRef] [PubMed]

25. Hur, H.J.; Wu, X.; Yang, H.J.; Kim, M.J.; Lee, K.-H.; Hong, M.; Park, S.; Kim, M.-S. Beneficial Effects of a Low-Glycemic Diet on
Serum Metabolites and Gut Microbiota in Obese Women With Prevotella and Bacteriodes Enterotypes: A Randomized Clinical
Trial. Front. Nutr. 2022, 9, 861880. [CrossRef]

26. Guzior, D.V.; Quinn, R.A. Review: Microbial transformations of human bile acids. Microbiome 2021, 9, 140. [CrossRef]
27. Zhou, Y.; Zhi, F. Lower Level of Bacteroides in the Gut Microbiota Is Associated with Inflammatory Bowel Disease: A Meta-

Analysis. BioMed Res. Int. 2016, 2016, 5828959. [CrossRef]
28. Chen, Z.; Radjabzadeh, D.; Chen, L.; Kurilshikov, A.; Kavousi, M.; Ahmadizar, F.; Ikram, M.A.; Uitterlinden, A.G.; Zhernakova,

A.; Fu, J.; et al. Association of Insulin Resistance and Type 2 Diabetes With Gut Microbial Diversity: A Microbiome-Wide Analysis
From Population Studies. JAMA Netw. Open 2021, 4, e2118811. [CrossRef]

29. Maioli, T.U.; Borras-Nogues, E.; Torres, L.; Barbosa, S.C.; Martins, V.D.; Langella, P.; Azevedo, V.A.; Chatel, J.-M. Possible Benefits
of Faecalibacterium prausnitzii for Obesity-Associated Gut Disorders. Front. Pharmacol. 2021, 12, 740636. [CrossRef]

30. Fabersani, E.; Portune, K.; Campillo, I.; López-Almela, I.; la Paz, S.M.-D.; Romaní-Pérez, M.; Benítez-Páez, A.; Sanz, Y. Bacteroides
uniformis CECT 7771 alleviates inflammation within the gut-adipose tissue axis involving TLR5 signaling in obese mice. Sci. Rep.
2021, 11, 11788. [CrossRef]

31. Hu, Q.; Tan, L.; Gu, S.; Xiao, Y.; Xiong, X.; Zeng, W.-A.; Feng, K.; Wei, Z.; Deng, Y. Network analysis infers the wilt pathogen
invasion associated with non-detrimental bacteria. NPJ Biofilms Microbiomes 2020, 6, 8. [CrossRef] [PubMed]

https://doi.org/10.3945/ajcn.114.101238
https://doi.org/10.3390/ijms22157797
https://www.ncbi.nlm.nih.gov/pubmed/34360563
https://doi.org/10.3389/fendo.2022.958218
https://www.ncbi.nlm.nih.gov/pubmed/36034447
https://doi.org/10.3389/fimmu.2022.934695
https://www.ncbi.nlm.nih.gov/pubmed/35874661
https://doi.org/10.3389/fnut.2022.1067647
https://doi.org/10.3390/biomedicines10112998
https://www.ncbi.nlm.nih.gov/pubmed/36428566
https://doi.org/10.1186/s13099-021-00446-0
https://www.ncbi.nlm.nih.gov/pubmed/34362432
https://doi.org/10.1155/2021/5110276
https://www.ncbi.nlm.nih.gov/pubmed/34447287
https://doi.org/10.1038/s41588-021-00991-z
https://doi.org/10.1016/j.jcmgh.2018.04.003
https://doi.org/10.14814/phy2.12718
https://doi.org/10.1159/000500602
https://doi.org/10.1371/journal.pbio.2006842
https://doi.org/10.3390/nu13020495
https://doi.org/10.3389/fimmu.2021.722206
https://doi.org/10.3390/ijms23115935
https://www.ncbi.nlm.nih.gov/pubmed/35682613
https://doi.org/10.1007/s40279-022-01696-x
https://www.ncbi.nlm.nih.gov/pubmed/35596883
https://doi.org/10.3389/fmicb.2011.00093
https://www.ncbi.nlm.nih.gov/pubmed/21747801
https://doi.org/10.1128/AEM.03549-13
https://www.ncbi.nlm.nih.gov/pubmed/24296500
https://doi.org/10.3389/fnut.2022.861880
https://doi.org/10.1186/s40168-021-01101-1
https://doi.org/10.1155/2016/5828959
https://doi.org/10.1001/jamanetworkopen.2021.18811
https://doi.org/10.3389/fphar.2021.740636
https://doi.org/10.1038/s41598-021-90888-y
https://doi.org/10.1038/s41522-020-0117-2
https://www.ncbi.nlm.nih.gov/pubmed/32060424


Int. J. Mol. Sci. 2023, 24, 9533 19 of 19

32. Chen, L.; Collij, V.; Jaeger, M.; van den Munckhof, I.C.L.; Vich Vila, A.; Kurilshikov, A.; Gacesa, R.; Sinha, T.; Oosting, M.; Joosten,
L.A.B.; et al. Gut microbial co-abundance networks show specificity in inflammatory bowel disease and obesity. Nat. Commun.
2020, 11, 4018. [CrossRef] [PubMed]

33. Yu, T.Y.; Lee, M.K. Autonomic dysfunction, diabetes and metabolic syndrome. J. Diab. Investig. 2021, 12, 2108–2111.
[CrossRef] [PubMed]

34. Park, S.; Wu, X. Modulation of the Gut Microbiota in Memory Impairment and Alzheimer’s Disease via the Inhibition of the
Parasympathetic Nervous System. Int. J. Mol. Sci. 2022, 23, 13574. [CrossRef]

35. Zhang, T.; Wu, X.; Yuan, H.; Huang, S.; Park, S. Mitigation of Memory Impairment with Fermented Fucoidan and λ-Carrageenan
Supplementation through Modulating the Gut Microbiota and Their Metagenome Function in Hippocampal Amyloid-β Infused
Rats. Cells 2022, 11, 2301. [CrossRef] [PubMed]

36. Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305.
37. Wu, X.; Park, S. An Inverse Relation between Hyperglycemia and Skeletal Muscle Mass Predicted by Using a Machine Learning

Approach in Middle-Aged and Older Adults in Large Cohorts. J. Clin. Med. 2021, 10, 2133. [CrossRef]
38. Park, S.; Kim, C.; Wu, X. Development and Validation of an Insulin Resistance Predicting Model Using a Machine-Learning

Approach in a Population-Based Cohort in Korea. Diagnostics 2022, 12, 212. [CrossRef]
39. Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.-I. From local

explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2020, 2, 56–67. [CrossRef]
40. Yang, H.J.; Zhang, T.; Wu, X.G.; Kim, M.J.; Kim, Y.H.; Yang, E.S.; Yoon, Y.S.; Park, S. Aqueous Blackcurrant Extract Improves

Insulin Sensitivity and Secretion and Modulates the Gut Microbiome in Non-Obese Type 2 Diabetic Rats. Antioxidants 2021,
10, 756. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1038/s41467-020-17840-y
https://www.ncbi.nlm.nih.gov/pubmed/32782301
https://doi.org/10.1111/jdi.13691
https://www.ncbi.nlm.nih.gov/pubmed/34622579
https://doi.org/10.3390/ijms232113574
https://doi.org/10.3390/cells11152301
https://www.ncbi.nlm.nih.gov/pubmed/35892598
https://doi.org/10.3390/jcm10102133
https://doi.org/10.3390/diagnostics12010212
https://doi.org/10.1038/s42256-019-0138-9
https://doi.org/10.3390/antiox10050756

	Introduction 
	Results 
	Collection of Fecal Bacteria and Their Enterotypes 
	Differences in the Bacterial Composition between the T2DM and Healthy Groups in Total Participants 
	Differences in the Bacterial Composition between the T2DM and Healthy Groups in ET-B 
	Differences in the Bacterial Composition between the T2DM and Healthy Groups in ET-L 
	Differences in the Bacterial Composition of the T2DM and Healthy Groups in ET-P 
	Metagenome Function of Fecal Bacteria 

	Discussion 
	Methods 
	Collection and Pooling of Fecal Bacteria FASTA/Q Files for Healthy and T2DM Adults 
	Fecal Bacterial Composition and Community Analysis 
	Enterotypes 
	-Diversity, -Diversity, and Linear Discriminant Analysis (LDA) Scores of Fecal Bacteria 
	Extreme Gradient Boosting (XGBoost) Classifier Training and SHapley Additive exPlanations (SHAP) Interpreter 
	Metagenome Function of Fecal Bacteria by Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (Picrust2) 
	Statistical Analysis 

	References

