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Abstract: Exposure of living cells to non-thermal plasma produced in various electrical discharges
affects cell physiology and often results in cell death. Even though plasma-based techniques have
started finding practical applications in biotechnology and medicine, the molecular mechanisms of
interaction of cells with plasma remain poorly understood. In this study, the involvement of selected
cellular components or pathways in plasma-induced cell killing was studied employing yeast deletion
mutants. The changes in yeast sensitivity to plasma-activated water were observed in mutants with
the defect in mitochondrial functions, including transport across the outer mitochondrial membrane
(∆por1), cardiolipin biosynthesis (∆crd1, ∆pgs1), respiration (ρ0) and assumed signaling to the nucleus
(∆mdl1, ∆yme1). Together these results indicate that mitochondria play an important role in plasma-
activated water cell killing, both as the target of the damage and the participant in the damage
signaling, which may lead to the induction of cell protection. On the other hand, our results show
that neither mitochondria-ER contact sites, UPR, autophagy, nor proteasome play a major role in the
protection of yeast cells from plasma-induced damage.

Keywords: cold plasma; yeast; Saccharomyces cerevisiae; mitochondria; oxidative stress; autophagy

1. Introduction

Non-thermal plasma is an ionized gas typically produced by low-power electrical
discharges in a gaseous environment. It contains multiple ions and radicals generated by
reactions of electrons with gas molecules, which are highly reactive and can react with
various biomolecules. The exposure of living cells to such plasmas, either directly or to
the liquid media that have been treated with plasma, producing plasma-activated liquids,
thus affects cell physiology and survival. By now, it has been well established that plasma
and plasma-activated liquids can efficiently kill microorganisms, such as bacteria and
fungi, and affect living cells, including animal or plant cells. Interactions of non-thermal
plasmas with living cells have mostly been studied for the purpose of disinfection and
sterilization or for the development of techniques by which specific cells, for example,
cancer cells, can be selectively killed. The latter applications bring new potential in human
medicine for the treatment of numerous pathologies, such as chronic wounds or cancer [1–5].
Although many studies have focused on interactions of cells with plasmas, the mechanisms
involved in cell killing are still poorly understood, and the dissection of cellular pathways
or structures, which play specific roles in plasma-induced cell killing, using a simple
eukaryotic model is desirable.

Yeast Saccharomyces cerevisiae is a model organism with an unprecedented impact on
the biology of eukaryotic cells. Easy cultivation and particularly its susceptibility to genetic
analyses and manipulations, together with a broad range of methods for biochemical
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analyses, make it an ideal experimental system, in which the interactions of plasma with
eukaryotic cells can be studied. When yeast cells are exposed to non-thermal plasma, they
lose viability in a dose-dependent way (see [6] for review). Several mutations have been
identified in yeast that increase the sensitivity of cells to the plasma treatment. These include
deletions of genes encoding for either of the two superoxide dismutases [7], components of
stress-responsive mitogen-activated protein kinase (MAPK) cascade [8], regulators of the
cell cycle [8], and enzymes involved in the repair of double-strand breaks in DNA [9]. While
superoxide dismutases apparently act upstream of the actual cell damage by inactivating
reactive superoxide, the latter pathways participate in either signaling that results in
the induction of cell protection or respond to the actual damage, e.g., by a repair of
damaged DNA.

Although it has been reported that plasma treatment can trigger programmed cell
death pathways such as apoptosis in mammalian cells [4,10–13], it does not appear that
regulated cell death participates in the killing of yeast cells by plasma, as inactivation of
genes encoding for components of these pathways in yeast does not affect the efficacy of
plasma killing yeast cells [7]. Plasma-treated yeast cells die due to the damage resulting
in a failure of some vital cellular activities rather than by the execution of the cell death
program. This fact adds another advantage to using yeast as a model to study interactions
of plasma with cells because the damage inflicted by plasma is not obscured by the changes
resulting from the cell death program.

In this study, we tested the sensitivity of selected yeast deletion mutants to look for
pathways related to the damage or cell protection from the damage caused by non-thermal
plasma-activated water treatment.

2. Results and Discussion

To identify the cellular components or pathways that affect cell survival after treatment
with non-thermal plasma, we tested selected S. cerevisiae mutants with individual deletions
of genes encoding for components of selected pathways for their sensitivity to indirect
treatment with plasma. In this experimental setting, the sterile deionized water was treated
with plasma, producing the solution containing the reactive particles generated in the
plasma, referred to as plasma-activated water (PAW). Cells were then incubated in PAW
for a short period of time (60 and 120 min in this study), and the number of living cells
was determined based on the ability of cells to form viable colonies on a complete growth
medium (YPD).

When the wild-type strain was treated with PAW, roughly 50% of cells survived after
60 min (with respect to the cells surviving in the control untreated water taken as 100%),
and an additional ~10% of cells died within the second hour of incubation in PAW, resulting
in ~40% surviving cells after 120 min (Figure 1). The kinetics of the decrease of the number
of viable cells in the treated suspension clearly correlates with the general idea of the
decreasing concentration of short-lived reactive particles originating in PAW. At the same
time, it reflects the presence of longer-lived reactive particles in PAW even after 60 min post
plasma activation [14,15].

It should be noted here that even though the same conditions were used to generate
PAW throughout this study, the individual batches of PAW differed slightly in their effec-
tivity in cell-killing. The comparison of different strains was, therefore, possible among
the strains treated with the same batch of PAW. The viability of individual mutants after
treatment with PAW is therefore expressed relative to the viability of the wild type treated
with the same batch of PAW in each particular experiment.

The set of deletion mutants selected for this study contained the mutants with deletions
of nonessential genes involved in mitochondrial biogenesis and function, autophagy, and
vacuolar metabolism and in response to various forms of stress.
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Figure 1. Effect of PAW on the viability of wild-type yeast strain. Cells of the wild-type strain 
(BY4742) were incubated with PAW or untreated water (control). After the indicated time of incu-
bation (60 or 120 min) at laboratory temperature, aliquots were spread onto Petri dishes with com-
plete growth medium (YPD). The proportion of living cells was evaluated after 2–3 days of cultiva-
tion at 28 °C. Plotted values represent the number of colonies formed by treated cells relative to the 
untreated control, with the control normalized to 100%. Mean values and standard errors of pro-
portion are shown for data from five independent experiments. Asterisks indicate a statistical sig-
nificance of p < 0.01 (*) and p < 0.0001 (****). 
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and transport, such as the 𝜌0 mutant that is respiratory deficient due to the complete ab-
sence of mitochondrial DNA; mutants with a defect in ATP/ADP transport due to deletion 
of AAC2 and SAL1, encoding for a major isoform of mitochondrial ADP/ATP carrier [17] 
and ATP-Mg/Pi transporter [18], respectively; a mutant lacking the outer membrane 
VDAC (POR1) [19,20]; as well as mutants with deletions of genes involved in mitochon-
drial biogenesis and maintenance, e.g., genes encoding for enzymes involved in the bio-
synthesis of cardiolipin (CRD1, PGS1) [21–23]. 

As shown in Figure 2, some of the tested mutants differed from the wild type in their 
sensitivity to PAW, with some strains being more sensitive and some strains being more 
resistant. Although no common pattern in these results can be observed, one can hypoth-
esize on the role of each gene or related pathway in PAW-induced killing individually. 

Figure 1. Effect of PAW on the viability of wild-type yeast strain. Cells of the wild-type strain (BY4742)
were incubated with PAW or untreated water (control). After the indicated time of incubation (60 or
120 min) at laboratory temperature, aliquots were spread onto Petri dishes with complete growth
medium (YPD). The proportion of living cells was evaluated after 2–3 days of cultivation at 28 ◦C.
Plotted values represent the number of colonies formed by treated cells relative to the untreated
control, with the control normalized to 100%. Mean values and standard errors of proportion are
shown for data from five independent experiments. Asterisks indicate a statistical significance of
p < 0.01 (*) and p < 0.0001 (****).

2.1. Mitochondria

In yeast cells growing under various conditions, mitochondria are generally the main
source of oxidative damage, and mitochondrial function is also required for resistance to
oxidative stress [16]. The first set of mutants tested in this study, therefore, included mutants
with defects in mitochondrial functions. These were mutants deficient in respiration and
transport, such as the ρ0 mutant that is respiratory deficient due to the complete absence
of mitochondrial DNA; mutants with a defect in ATP/ADP transport due to deletion of
AAC2 and SAL1, encoding for a major isoform of mitochondrial ADP/ATP carrier [17] and
ATP-Mg/Pi transporter [18], respectively; a mutant lacking the outer membrane VDAC
(POR1) [19,20]; as well as mutants with deletions of genes involved in mitochondrial
biogenesis and maintenance, e.g., genes encoding for enzymes involved in the biosynthesis
of cardiolipin (CRD1, PGS1) [21–23].

As shown in Figure 2, some of the tested mutants differed from the wild type in their
sensitivity to PAW, with some strains being more sensitive and some strains being more re-
sistant. Although no common pattern in these results can be observed, one can hypothesize
on the role of each gene or related pathway in PAW-induced killing individually.

After the first hour of the PAW treatment, we observed increased survival of the ∆por1
mutant. The POR1 gene encodes for the mitochondrial voltage-dependent anion channel
(VDAC) [19,20]. This protein, also known as a mitochondrial porin, serves as the primary
means of transport for low molecular compounds from the cytosol to mitochondria and
vice versa. A potential explanation for the higher survival of cells lacking the VDAC could
be a decrease in the ability of reactive particles originating from PAW to reach their targets
in mitochondria. At the same time, the damage of mitochondrial targets would significantly
participate in cell-killing by plasma. The latter is likely because it is in accordance with the
earlier finding that mitochondrially localized superoxide dismutase (Sod2p) protects yeast
cells from the plasma effects [7]. One can only assume whether or not the absence of VDAC
in mitochondrial membranes may effectively limit the transport of plasma-generated
reactive particles to mitochondria. The transport of other low molecular substrates to
mitochondria is not totally absent in mitochondria devoid of VDAC as ∆por1 mutant is able
to grow on non-fermentable carbon source at normal temperature, indicating that transport
of ATP/ADP and substrates for mitochondrial respiration must occur at some level in this
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strain [24]. This residual permeability of the outer mitochondrial membrane, however, is
profoundly decreased for some molecules, e.g., for NADH [25], indicating that the flow of
metabolites through the outer mitochondrial membrane is limited.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 4 of 15 
 

 

 
Figure 2. Viability of yeast mutants defective in selected mitochondrial functions after incubation 
with PAW. Cells of different deletion mutants were incubated with PAW or untreated water for 1 
and 2 h, and viability was determined by plating on YPD. The viability of each mutant (the number 
of colonies formed by the PAW-treated cells to the number of colonies formed by the untreated 
control) is expressed relative to the viability of the wild type (shown here as 100%). Mean values 
and standard errors of proportion are shown for data from 3 independent experiments. Asterisks 
indicate a statistical significance of p < 0.05 (*) and p < 0.01 (**) of differences between mutants and 
the wild type. 

After the first hour of the PAW treatment, we observed increased survival of the 
∆por1 mutant. The POR1 gene encodes for the mitochondrial voltage-dependent anion 
channel (VDAC) [19,20]. This protein, also known as a mitochondrial porin, serves as the 
primary means of transport for low molecular compounds from the cytosol to mitochon-
dria and vice versa. A potential explanation for the higher survival of cells lacking the 
VDAC could be a decrease in the ability of reactive particles originating from PAW to 
reach their targets in mitochondria. At the same time, the damage of mitochondrial targets 
would significantly participate in cell-killing by plasma. The latter is likely because it is in 
accordance with the earlier finding that mitochondrially localized superoxide dismutase 
(Sod2p) protects yeast cells from the plasma effects [7]. One can only assume whether or 
not the absence of VDAC in mitochondrial membranes may effectively limit the transport 
of plasma-generated reactive particles to mitochondria. The transport of other low molec-
ular substrates to mitochondria is not totally absent in mitochondria devoid of VDAC as 
∆por1 mutant is able to grow on non-fermentable carbon source at normal temperature, 
indicating that transport of ATP/ADP and substrates for mitochondrial respiration must 
occur at some level in this strain [24]. This residual permeability of the outer mitochon-
drial membrane, however, is profoundly decreased for some molecules, e.g., for NADH 
[25], indicating that the flow of metabolites through the outer mitochondrial membrane is 
limited. 

Interestingly, the increased survival of the ∆por1 mutant is not observed after the 
second hour of treatment, indicating that the limited transport of reactive particles to mi-
tochondria causes a lag in dying rather than net protection. Perhaps it may reflect the 
changes in the participation of different cellular targets at different times during the incu-
bation in PAW as the composition of reactive particles in PAW changes in time: hydrogen 
peroxide and nitrites decrease, while nitrates increase after plasma activation [14,15]. 

Figure 2. Viability of yeast mutants defective in selected mitochondrial functions after incubation
with PAW. Cells of different deletion mutants were incubated with PAW or untreated water for 1
and 2 h, and viability was determined by plating on YPD. The viability of each mutant (the number
of colonies formed by the PAW-treated cells to the number of colonies formed by the untreated
control) is expressed relative to the viability of the wild type (shown here as 100%). Mean values
and standard errors of proportion are shown for data from 3 independent experiments. Asterisks
indicate a statistical significance of p < 0.05 (*) and p < 0.01 (**) of differences between mutants and
the wild type.

Interestingly, the increased survival of the ∆por1 mutant is not observed after the
second hour of treatment, indicating that the limited transport of reactive particles to mito-
chondria causes a lag in dying rather than net protection. Perhaps it may reflect the changes
in the participation of different cellular targets at different times during the incubation in
PAW as the composition of reactive particles in PAW changes in time: hydrogen peroxide
and nitrites decrease, while nitrates increase after plasma activation [14,15].

The survival after treatment with PAW was also affected in two mutants lacking genes
participating in the biosynthesis of cardiolipin. While both enzymes encoded by these genes,
phosphatidylglycerol phosphate synthase (PGS1) and cardiolipin synthase (CRD1), are
required for the final steps in cardiolipin biosynthesis and both deletion mutants, therefore,
lack the cardiolipin in mitochondrial membranes [21–23,26], they differ significantly in
the phenotype. The ∆pgs1 mutant is respiratory deficient. The ∆crd1, on the other hand,
has only mild growth defect on non-fermentable carbon source because it accumulates the
cardiolipin biosynthesis intermediate–phosphatidyl glycerol—that can partially substitute
for missing cardiolipin [27,28].

Here we observed a moderate increase in sensitivity to PAW in ∆crd1 but the opposite
effect in ∆pgs1 (Figure 2). Although it may appear confusing that these two mutants differ
in sensitivity to PAW, it correlates with the sensitivity to peroxides, which is increased in
∆crd1 cells while not in ∆pgs1 [29]. Because the defect in mitochondrial function is more
severe in ∆pgs1 than in ∆crd1, both these observations suggest that mitochondrial lipids by
themselves, rather than mitochondrial functions supported by cardiolipin, are important
in this situation. Increased resistance of ∆pgs1 can partially be explained by the fact that
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among mitochondrial lipids, cardiolipin is particularly susceptible to damage by reactive
oxygen species [30,31]. This susceptibility mostly results from two factors – the high content
of unsaturated fatty acyl chains, which are prone to oxidation, in cardiolipin, and from the
localization of cardiolipin in the proximity of the respiratory chain, which is a prominent
source of reactive oxygen species [30,31]. In the case of PAW-treated yeast cells, the latter
does not apply because reactive particles, in this case, do not originate in mitochondria but
enter the cell from the outside. The former would hold, but only partially, as yeast generally
do not produce fatty acids with more than one carbon-carbon double bond [32,33]. The
fatty acyl chains in cardiolipin in yeast are, therefore, mostly monounsaturated. What
makes ∆crd1, which lacks cardiolipin as well, more sensitive to PAW and to peroxides
remains unclear. Perhaps the damage to phosphatidyl glycerol in the absence of cardiolipin
is more toxic to cells than the oxidation of cardiolipin. Nevertheless, our results suggest
that either cardiolipin or some mitochondrial functions that are dependent on the presence
of cardiolipin play a role in damaging cells by plasma.

Increased cell survival was observed in ∆yme1 and ∆mdl1 strains (Figure 2). In these
strains, the mitochondria lack the AAA-protease responsible for the degradation of un-
folded or misfolded proteins [34–36] and the ABC transporter of the inner mitochondrial
membrane that transports the resulting peptides from the mitochondrial matrix [37,38],
respectively. It has previously been reported that ∆mdl1 mutant has increased resistance to
oxidative stress, such as treatment with hydrogen peroxide [39]. Export of these peptides
from mitochondria, thus, also likely affects pathways that protect cells from oxidative stress.
The same pathways may be involved in the protection from damage by plasma treatment.

As further shown in Figure 2, increased sensitivity to PAW was observed in ρ0 strain—
a mutant, which is devoid of mitochondrial DNA (Figure 2). Although the increased
sensitivity may, in this case, result from the overall fragility and reduced robustness of
the strain that lacks the functional oxidative phosphorylation, it may rather specifically
reflect the requirement of functional respiratory competent mitochondria for resistance
to oxidative stress [16]. The fact that a statistically significant decrease in the survival
of this mutant was only observed after two hours of the treatment also indicates that
functional mitochondria might be required for some of the stress response pathways that
help cells survive in the later phases of the PAW treatment, perhaps because of changes in
the chemical composition of PAW in time.

In contrast to ρ0, the survival of strains deficient in the transport of adenine nucleotides—
∆aac2 and ∆sal1—did not significantly differ from the wild type. Since respiration is largely
suppressed in the ∆aac2 strain due to the lack of ATP/ADP transport between mitochondria
and cytosol, these results indicate that it is not the activity of the respiratory chain but
rather its functionality that affects survival after treatment with PAW.

Other tested mitochondrial proteins included proteins involved in mitochondrial
biogenesis and components of complexes at the contact sites of mitochondria and endoplas-
mic reticulum (ER), including MMM1, MDM10, MDM12, MDM31, MDM32, and MDM34
(Figure 3). Deletion of neither of these genes affected the cell survival, with only a minute
difference in the case of ∆mdm12. This difference is, however, unlikely to result from the
unfunctional complex of the mitochondria-ER contact site, as the absence of other subunits
has no effect on cell survival.

2.2. Unfolded Protein Response

We further tested the participation of unfolded protein response (UPR) pathway. Al-
though three UPR pathways have been described in mammalian cells, the pathway relying
on Ire1p is the only known UPR pathway functional in yeast cells [40,41]. IRE1 encodes
for the protein kinase-endonuclease localized in the ER membrane that participates in the
signaling of the accumulation of unfolded proteins in ER [42]. Another protein involved in
the UPR, likely by affecting the Ire1 pathway, is ER membrane integral protein Bxi1. It is a
homolog of mammalian Bax-inhibitor 1, which was first identified as a suppressor of the
ability of mammalian proapoptotic protein Bax to induce cell death in yeast cells [43]. Later
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it was found that it is a calcium channel that mediates the release of calcium from ER to the
cytosol [44,45]. Similar to the ∆ire1 strain, the ∆bxi1 mutant shows a decreased survival
on media containing β-mercaptoethanol or tunicamycin, indicating that the function of
Bxi1p supports UPR [46]. Signaling of ER stress by releasing Ca2+ into the cytosol is further
mediated by a calcium and calmodulin-dependent protein phosphatase – calcineurin [47].
A regulatory subunit of calcineurin in yeast is encoded by CNB1.
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contact sites after incubation with PAW. Cells of different deletion mutants were incubated with PAW
or untreated water for 1 and 2 h, and viability was determined by plating on YPD. The viability
of each strain is expressed relative to the viability of a corresponding wild type (shown here as
100%). Mean values and standard errors of proportion are shown for data from three independent
experiments. Asterisks (**) indicate a statistical significance (p < 0.01) of the differences between
mutants and the wild type.

As shown in Figure 4, neither of the tested mutants showed increased sensitivity to
PAW with respect to the wild type. While the deletion of BXI1 nor CNB1 did not affect cell
survival, ∆ire1 cells manifested an increased survival. This is rather surprising because it
has been described previously that plasma treatment induces the Ire1 pathway in yeast [48],
though it remained unclear whether this pathway effectively protects cells. As we show
here, it appears that the activation of the Ire1 pathway not only does not help cells to
survive after treatment with PAW, but the activity of this pathway, in fact, does make cells
more vulnerable.

2.3. Autophagy and Proteasome

Autophagy is a cellular pathway that facilitates the removal of unwanted cell com-
ponents by directing them to the vacuole for degradation. These cellular components
include either the components that are no longer required during the process of adaptation
to changes in the environment (e.g., removal of excessive mitochondria when cells are
shifted from non-fermentable to fermentable carbon source or removal of peroxisomes
when carbon source changes from fatty acids to sugar) or cellular components that have
been damaged. The latter scenario contributes to survival under various stress condi-
tions [49]. As during the exposure to PAW oxidative damage to multiple cell components
likely happens, we also tested the survival of mutants with deletions of genes involved in
autophagy or vacuolar metabolism (Figure 5). These included ATG7, encoding for a protein
required for autophagosome formation; VAC8, required for the delivery to the vacuole; and
VAM7, a vacuolar SNARE protein required for autophagy [50,51]. Additionally, we tested
the participation of TOR1, a protein kinase, and UTH1, both of which are also involved
in autophagy. Another means for removal of unwanted, e.g., damaged proteins, is the
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degradation in the proteasome. We, therefore, also tested mutants lacking components of
the proteasome (SEM1, RPN4, and RPN10) [52–57].
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(p < 0.01) of the differences between mutants and the wild type.
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and standard errors of proportion are shown for data from 3 independent experiments. Asterisks
indicate a statistical significance of p < 0.05 (*) and p < 0.01 (**) of differences between mutants and
the wild type.
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Deletion of VAC8 resulted in a strain slightly more sensitive to plasma treatment as
compared to the wild-type strain; its survival rate is reduced by roughly 20% (Figure 5),
both after 60 and 120 min of treatment. At the same time, the survival of the ∆atg7 and
∆vam7 strains did not significantly differ from the wild type. Since all three tested genes
are required for autophagy, these results strongly suggest that autophagy does not play a
significant role in maintaining survival after plasma treatment and that it must not be the
defect in autophagy that affects the survival of the ∆vac8 mutant.

TOR1 encodes for a protein kinase that is involved in the regulation of autophagy.
UTH1 was initially described as an aging gene, the deletion of which confers yeast cells a
‘longevity phenotype’ [58]. Interestingly, it has dual localization in the outer mitochondrial
membrane and in the cell wall and participates in several unrelated processes, including
stress response, mitochondria-specific autophagy, and cell wall function [59–61]. The
survival of mutants with deletion of either of these genes did not differ from the wild type
after 60 min of PAW treatment and was only slightly elevated (though with p = 0.0621 just
below the threshold of statistical significance for ∆uth1) after 120 min (Figure 5). If, in this
case, the increase in survival reflects the defense of cells against PAW treatment, it may
result from an inducible process that takes part in cell protection during the second hour of
treatment. This may hypothetically involve autophagy or some other cellular process that
would depend on the activity of Tor1p or Uth1p.

To test whether the autophagy is induced under conditions of plasma treatment, the
cells of W303pho8∆60 strain were incubated in PAW for 1 h, washed with untreated water,
and after 1 h, the autophagy was measured by alkaline phosphatase assay. In this assay, due
to the pho8∆60 mutation, the cells express an alkaline phosphatase precursor in the cytosol,
which only gets activated when translocated to the vacuole by autophagy; hence the activity
of alkaline phosphatase reflects the activity of autophagic machinery [62]. Autophagy in
control cells was induced by starving for nitrogen. As shown in Figure 6, no increase in
the alkaline phosphatase activity was detected in the plasma-treated cells, while we did
observe it in control cells. In fact, the activity detected in PAW-treated cells was even lower
than in the untreated cells. These results thus indicate that plasma treatment does not
induce autophagy and that moderate differences in the sensitivity of ∆tor1, ∆uth1 as well
as ∆vac8 either result from their roles unrelated to autophagy or from some indirect effect.
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Figure 6. Autophagy activity in PAW-treated cells. (A) In cells incubated in PAW (PAW), cells
incubated in water (dH2O, negative control), and cells cultured under nitrogen starvation conditions
(SC-N, positive control), autophagy was quantified by measuring the activity of a reporter — alkaline
phosphatase. Shown is a representative of three experiments. (B) The viability of PAW-treated cells in
this experiment is expressed as a percentage of viable cells detected by plating on YPD (PAW-treated
vs. untreated cells in water taken as 100%).

As shown in Figure 5, some of the mutants with the deletions of genes encoding for
the proteasome components (SEM1, RPN4, and RPN10) differed slightly in their sensitivity
to PAW, with ∆sem1 being a little more resistant and ∆rpn4 a little more sensitive in the first
hour of treatment while ∆rpn10 retained the sensitivity of a wild type. The lack of a clear
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trend toward the increased sensitivity in these mutants suggests that the proteasome does
not play a significant role in protecting cells from the damage inflicted by plasma.

2.4. Growth Phase

Cells in different growth phases differ in several aspects, such as cell wall thickness,
metabolism, or the activity of various cellular pathways affecting the resistance of cells
to damage. As cells in different phases of growth may be differentially sensitive towards
various agents, we further assessed the sensibility of cells growing exponentially and cells
in the stationary phase of growth to PAW.

When exponentially growing yeast culture (strain CML282) is diluted in the pre-
warmed YPD media, after 4 h, cells are exponentially growing, while after 24 and 48 h, they
are in the earlier or later stationary phase, respectively. Cells grown under these conditions
were treated with PAW for 1 h, and their viability was determined. As can be seen in
Figure 7, we did not observe any differences between cells in different phases of growth. It
thus appears that the growth phase does not influence the sensitivity of the yeast cells to
PAW. This probably also indicates that the damage caused by plasma affects the processes
equally essential in any phase of cell growth and that no growth-dependent cell protection
pathway significantly influences the ability of cells to repair the damage caused by PAW.
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Figure 7. Viability of yeast cells in different growth phases after incubation with PAW. (A) Cells at
different growth stages were incubated with PAW (grey bars) or untreated water (white bars) for 1 h,
and the viability was determined by plating on YPD. Viability is expressed as the percentage of the
number of colonies formed by PAW-treated cells from the number of colonies formed by untreated
control (taken as 100%). (B) The growth curve of CML282 at the conditions of the experiment.

Taken together, among the mutants whose sensitivity to the treatment with PAW
was tested in this study, we identified several that manifested the changes with respect
to the wild type. A considerable subset of these mutants were the ones with the defect in
mitochondrial functions, including transport across the outer mitochondrial membrane
(∆por1), cardiolipin biosynthesis (∆crd1, ∆pgs1), respiration (ρ0), and assumed signaling
to the nucleus (∆mdl1, ∆yme1). Although one has to bear in mind that reactive particles
originating from PAW do likely target countless cellular targets nonspecifically, collectively,
these results indicate that mitochondria play a substantial role in PAW effects as both a
target of the damage, and the participant in the damage signaling, which may lead to the
induction of the cell defense.

Our results also show that neither mitochondria-ER contact sites, UPR, autophagy,
nor proteasome play major roles in the protection of cells from plasma-induced damage in
yeast cells.

Since the yeast cell components, whose roles in plasma-induced damage were in-
vestigated in this study, have homologs in mammalian and other eukaryotic cells, it is
reasonable to assume that similar also applies to mammalian cells, in which some of these
effects may be hard to detect due to the activation of programmed cell death pathways.
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3. Materials and Methods
3.1. Strains and Growth Conditions

The yeast strains used throughout this study were CML282 (MATa ura3-1, ade2-1, leu2-
3,112, his3-11,15, trp1-∆2, can1-100, CMVp(tetR-SSN6)::LEU2) kindly provided by Enrique
Herrero, Universitat de Lleida [63] and BY4742 (MATα his3∆1, leu2∆0, lys2∆0, ura3∆0). The
mutant strains with deletions of specific genes were either obtained from EUROSCARF
collection or prepared by standard gene replacement techniques. Briefly, disruption cas-
settes containing selection marker gene kanMX4 flanked by sequences corresponding to
the 5’ and 3’ untranslated regions of the target genes were prepared by polymerase chain
reaction (PCR) using plasmid pFA6a-kanMX4 [64] as a template. Yeast was transformed by
standard lithium acetate protocols. After the transformation of the wild-type yeast strain,
transformants were selected by growth on selective plates containing 200 µg/mL geneticin
(G418). Disruptions of specific genes were verified by PCR, using oligonucleotide primers
annealing upstream and downstream of respective genes and inside the marker gene.

The strain W303pho8∆60 (MATa ura3-1, ade2-1, leu2-3,112, his3-11,15, trp1-∆2, can1-100,
pho8::PHO8∆60-URA3) [60] was used for measuring the autophagy.

Cells were cultivated on complete YPD (1% yeast extract, 2% peptone, and 2% glucose)
media at 28 ◦C.

3.2. Plasma-Activated Water Generation

The experimental setup used for the plasma treatment of water (PAW generation)
is depicted in Figure 8. A high DC voltage was applied on a hollow needle electrode
through a ballast resistor (10 MΩ). The transient spark discharge was operated in a point-
to-plain geometry between the tip of the needle electrode and a grid electrode 10 mm
apart. The discharge parameters were measured by a 200 MHz digitizing oscilloscope (TDS
2024, Tektronix Inc., Beaverton, OR, USA) using a high voltage probe (Tektronix P6015A,
Beaverton, OR, USA) to record voltage, while the current was measured on a 1 Ω resistor.
The frequency of repetitive spark discharge pulses was maintained at 1 kHz. More details
on the transient spark discharge regime and typical parameters can be found in [65]. The
treated deionized water was pumped through the needle electrode and electrosprayed
through the plasma discharge by a syringe pump with a constant flow rate of 1 mL/min.
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Figure 8. Experimental setup for plasma treatment of water. A DC high voltage was applied on a
hollow needle electrode through a ballast resistor (10 MΩ) and a high voltage cable representing the
capacity of ~20 pF. The transient spark discharge was operated between the tip of the needle electrode
and a grid electrode (10 mm apart). The parameters of the discharge were measured by a digitizing
oscilloscope, and frequency was maintained at 1 kHz. Treated deionized water was pumped through
the needle electrode and electrosprayed through the plasma discharge by a syringe pump with a
constant flow rate of 1 mL/min.
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Freshly prepared PAW was used for the treatment of cells. Alternatively, PAW was
frozen immediately after preparation, stored at −80 ◦C, and used instantly after thawing.
This freezing was applied to preserve the concentrations of reactive particles and the
antimicrobial activity of PAW, which otherwise decay within a few hours post plasma
treatment [14,15,66].

3.3. Cells Treatment and Viability Assay

Cells were grown to the exponential phase (unless stated otherwise) and washed with
distilled water. Cell suspensions of 5× 107 cells/mL in sterile deionized water were diluted
tenfold in PAW or untreated deionized water (control) and incubated for indicated time
periods. In each experiment, the same batch of PAW was used for the treatment of the
mutant and control (wild-type) strains. Samples of the cell suspension after the indicated
times of plasma treatment (60 min and 120 min) and control untreated samples were diluted
in fresh (non-treated) water and spread on the Petri dishes containing complete growth
media (YPD; 1% yeast extract, 2% peptone, 2% glucose, 2% agar).

The viability of treated cells was evaluated after 2–3 days of cultivation at 28 ◦C as
a ratio of the number of colonies observed at the plate with PAW-treated cells relative
to the number of colonies formed from untreated control cells. To compare the viability
of different strains, the relative viability was calculated as a ratio of the viability of an
individual strain to the viability of a wild-type strain. Shown are the results of at least three
independent experiments.

Data were analyzed using the GraphPad Prism 9 software (GraphPad Software Inc.,
San Diego, CA, USA). The statistical significance of the decrease in viability of wild-type
strain was assessed by one-way analysis of variance (ANOVA) with Tukey’s multiple
comparison test. The statistical significance of differences between the individual mutants
and the wild type was assessed by a two-way ANOVA with Šidaks’s multiple comparison
test. Adjusted p-values obtained from multiple comparison tests of p ≤ 0.05, p ≤ 0.01 and
p ≤ 0.0001 are indicated in the graphs. The p-value of 0.05 was considered a threshold for
statistical significance.

3.4. Monitoring of Autophagy

Autophagy was monitored by an alkaline phosphatase (ALP) assay [62]. A yeast strain
W303pho8∆60 was cultivated in YPD and incubated for 1 h either in PAW or in untreated
water (negative control), centrifuged, and further incubated in untreated water for 1 h. As a
positive control, autophagy was induced in the same strain by cultivation under conditions
of nitrogen starvation—16 h in YNB without ammonium sulfate and without amino acids
(2% glucose, 0.17% yeast nitrogen base). Alkaline phosphatase activity was then measured
spectrophotometrically as absorbance at 420 nm, using p-nitrophenyl phosphate (Sigma, St.
Louis, MO, USA) as a substrate.

4. Conclusions

We have examined the effect of non-thermal plasma-activated water on the survival
of yeast S. cerevisiae. We identified several genes, the deletion of which results in altered
sensitivity to PAW. Although the effect of PAW (and likely of non-thermal plasma in
general) is pleiotropic and includes the chemical damage of multiple cellular targets, our
results suggest that some of the cellular targets may be particularly vulnerable. These likely
involve mitochondria since, in several mutants in mitochondrial components, the survival
of the treated cells is affected. In the tested mutants with deletions of genes encoding
for other than mitochondrial components that affected the sensitivity to PAW, the change
in survival can generally be attributed to the altered cell signaling that affects the cells’
response to stress.

On the other hand, we have shown that neither UPR nor autophagy play significant
roles in PAW resistance and that the cell sensitivity to plasma does not change with the
growth phase of the yeast culture.
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