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Abstract: Polymeric wet-strength agents are important additives used in the paper industry to
improve the mechanical properties of paper products, especially when they come into contact with
water. These agents play a crucial role in enhancing the durability, strength, and dimensional
stability of paper products. The aim of this review is to provide an overview of the different types of
wet-strength agents available and their mechanisms of action. We will also discuss the challenges
associated with the use of wet-strength agents and the recent advances in the development of more
sustainable and environmentally friendly agents. As the demand for more sustainable and durable
paper products continues to grow, the use of wet-strength agents is expected to increase in the
coming years.

Keywords: paper packaging; polyamideamine-epichlorydrin resin; chitosan; bio-based wet-strength
agents

1. Introduction

For centuries, the paper industry has been a crucial player in our daily lives, providing
us with essential materials such as printing and writing paper, tissue paper, and packaging
products. With a global market size of over $500 billion, the paper industry holds a
significant position globally and employs millions of people worldwide, contributing
significantly to the economies of many countries. The paper manufacturing industries
employ around 647,000 workers in 21,000 companies. In the EU, the annual turnover from
the production of pulp, as well as graphic and hygienic packaging and specialized paper
grades and products is around EUR 180 billion [1]. The global pulp and paper market is
projected to grow from USD 354.39 billion in 2022 to USD 372.70 billion by 2029, exhibiting
a growth rate of 0.72% over the period forecast 2022–2029 [2].

Europe is a significant producer of paper. Roughly 50% of paper production is ded-
icated to packaging, while the remaining half is evenly split between the production of
paper for graphic applications and paper for sanitary products [3].

Despite challenges related to sustainability and changing consumer demands, the
paper industry continues to thrive and evolve [4]. Paper is a highly versatile material used
for packaging due to its light weight, easy handling, and flexibility. It is also environmen-
tally friendly, being sustainable and recyclable. In this context, in recent years, there has
been a growing demand for sustainable packaging solutions, and paper has emerged as a
popular choice [5]. Paper-based packaging has several advantages over traditional plastic
packaging as it is biodegradable, made from a renewable resource, and easy to recycle [6].
With the growing demand for sustainable packaging solutions, it is likely that we will see
even more innovative uses of paper in packaging in the years to come.

The process of making paper starts with raw materials such as wood, recycled paper,
and agricultural fibers, which are processed into pulp through mechanical or chemical
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methods [7,8]. The pulp is then mixed with water to form a slurry, which is spread out on a
screen, drained of water, and left to dry, press, and finish the paper. The finished product
can then be cut into sheets or rolled into large reels for various uses (Figure 1). The demand
for high-quality paper products continues to grow, and paper manufacturers are constantly
striving to improve the properties of their products.
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One of the key properties that is highly valued in paper products is their wet strength,
which refers to the ability of the paper to maintain its strength and integrity when exposed
to moisture [9]. To achieve this, wet-strength agents are added to the paper during the
manufacturing process. Most of the common wet-strength agents are added to the pulp
before the sheet is formed at the “wet end” of the machine (wet-end addition). Additives
that are not absorbed by paper fibers must be added to the paper after sheet formation
(Figure 1).

Polymer wet-strength agents are of outmost importance in the paper industry due
to their ability to enhance water resistance, dimensional stability, durability, and cost-
effectiveness of paper products. These agents are chemical additives working by forming
cross-linking bonds between the paper fibers, creating a network that reinforces the paper
structure [10]. This results in enhanced water resistance, preventing the paper from becom-
ing weak or disintegrating when exposed to liquids. This property is particularly crucial for
various paper-based applications, such as packaging materials, labels, and tissues, where
exposure to moisture is common. It also enables the use of cellulose in membrane technol-
ogy for removing contaminants from water. Current membrane technology involves the
use of expensive synthetic materials. In contrast, emerging cellulose membrane technology
can provide a low-cost platform for various pressure-driven filtration techniques, such as
microfiltration, ultrafiltration, and reverse osmosis [11].

In addition to water resistance, polymer wet-strength agents contribute significantly
to the dimensional stability of paper products. These agents strengthen the inter-fiber
bonds, making the paper more resistant to dimensional changes, not only when exposed
to varying levels of humidity or moisture, but also in dry conditions [12]. A nearly linear
improvement in both the wet and dry strength of softwood bleached Kraft pulp can be
achieved by increasing the dosage of polymer wet-strength agents up to 1%. However,
beyond this dosage, the increase in wet strength becomes marginal, while dry strength
remains largely unaffected [12]. As a result, the paper retains its original shape, size, and
flatness, ensuring that it remains visually appealing and functional. Dimensional stability is
particularly important for applications such as printing, converting, and packaging, where
precise and accurate dimensions are required.

The increase in strength and resilience provided by these agents results in paper that
is more resistant to tearing, breaking, or puncturing, thus enhancing the durability and
longevity of paper products. They improve the tensile strength and tear resistance of
the paper fibers, making the paper more robust and able to withstand rigorous handling,
printing, and converting processes. Additionally, polymer wet-strength agents help to
maintain the integrity of the paper when it is exposed to repeated wetting and drying cycles.
This is particularly important for applications such as paper towels, tissues, and wipes.

Finally, the use of polymer wet-strength agents offers advantages in terms of produc-
tion efficiency and cost savings. During the paper manufacturing process, excessive drying
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is often required to remove moisture from the paper, which consumes significant amounts
of energy and increases production costs. However, the application of wet-strength agents
can reduce the need for excessive drying by improving the paper resistance to moisture.
This not only saves energy but also improves production efficiency by reducing drying
times and increasing throughput. Additionally, by minimizing the risk of paper damage
during wetting and drying processes, polymer wet-strength agents contribute to a decrease
in waste and rejections, resulting in cost savings for paper manufacturers.

There are various wet-strength agents available on the market, either synthetic or
natural, each with its own specific mechanism of action and benefits. In this review,
we aim to provide an overview of the different types of wet-strength agents, including
their chemical structures and mechanisms of action. We will also discuss the challenges
associated with the use of wet-strength agents, such as their potential impact on the
environment and their role in the transition towards a sustainable and circular economy.

2. Types of Wet-Strength Agents

Wet-strength agents are polymers that are added to paper products to improve their
strength and dimensional stability in the presence of moisture. These agents play a vital
role in the paper industry and are typically added to paper products such as tissue paper,
paper towels, and filter paper, which are likely to come in contact with water during use.

There are two main types of wet-strength agents used in the paper industry: synthetic
and natural (Table 1).

Table 1. Chemical structures of main synthetic and natural wet strength.

Wet Strength Agents

Synthetic Resin Structure Natural Resin Structure

Polyamidemine-
epichlorohydrin

(PAE)
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Table 1. Cont.

Wet Strength Agents
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Synthetic wet-strength agents are typically based on polymers and include polyamideamine
epichlorohydrin, polyacrylamide, and polyethyleneimine. These agents work by crosslink-
ing with cellulose fibers in the paper, forming a strong network that resists the breakdown
of the paper when it comes in contact with water.

Natural wet-strength agents, on the other hand, are derived from natural sources such
as starch and chitosan. These agents work by forming hydrogen bonds with cellulose fibers,
enhancing the strength of the paper when wet. Natural wet-strength agents are generally
less effective than synthetic agents but are often used in the production of high-end paper
products such as tea bags, coffee filters, and cigarette paper.

The process of adding wet-strength agents to paper products varies depending on
the type of agent being used. Synthetic agents are typically added to the paper slurry
during the papermaking process, while natural agents are often applied to the surface of
the finished paper product.

3. Mechanisms of Action of Wet-Strength Agents

Depending on their chemical composition, wet-strength additives can act as protective,
reinforcing, and swelling prevention agents of the fibers, by protecting already existing
bonds and/or by forming new water-resistant bonds [10]. Typically, the ability of an addi-
tive to impart water resistance properties to paper is related to four properties: (i) polymeric
nature, (ii) water solubility, (iii) cationic character, and (iv) reactivity [12]. While reactivity
is crucial and refers to the additive tendency to self-crosslink and form a water-resistant
coating on the fibers, the positive charges themselves do not contribute to wet strength but
allow for the initial anchoring of the additive to the fibers of anionic cellulose [13]. Once
the additive adsorbs onto the fibrous substrate, it modifies: (i) the physical-structural prop-
erties of the fibers, through the formation of new fiber-fiber covalent bonds (reinforcement
mechanism); (ii) the chemical properties of the fibers, making their surface hydrophobic or
super-hydrophobic (protective mechanism) [14].

The chemical reactions which take place upon addition of the resin are: (i) the cross-
linking of the cellulose or hemicellulose through the formation of resin-fiber covalent bonds;
(ii) the reinforcement of the fiber-fiber contacts by forming a chemical lattice of the resin
molecules which do not necessarily react with the functional groups of the fibers [10].

In the reinforcement mechanism, the agent reacts with cellulose or hemicellulose,
forming covalent bonds between the molecules and fibers. These linkages supplement and
strengthen the natural hydrogen bonding in the dry sheet, adding to the overall strength of
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wet fibers. Since these bonds are covalent, they are not broken by water. It is likely that the
reinforcement mechanism involves some level of wet-strength agent crosslinking.

In the protective mechanism, the agent is dispersed onto the fibers and undergoes self-
crosslinking to form an insoluble network that surrounds and penetrates the fiber contacts.
This network impedes fiber separation when the paper is wetted, thereby preserving some
of the original dry strength.

The mechanism of action of wet-strength agents depends on the type of agent used.
Synthetic wet-strength agents such as polyamideamine-epichlorohydrin work by forming
covalent bonds with cellulose fibers in the paper, resulting in a strong network that resists
the breakdown of the paper when it comes in contact with water. Polyacrylamide works
by adsorbing onto cellulose fibers and forming hydrogen bonds, while polyethyleneimine
works by forming ionic bonds with the cellulose fibers. Natural wet-strength agents such as
starch and chitosan work by forming hydrogen bonds with the cellulose fibers, enhancing
the wet strength of the paper.

4. Synthetic Wet-Strength Agents

The most commonly used synthetic wet-strength agents are polyamideamine-
epichlorohydrin (PAE), melamine formaldehyde (MF), polyacrylamide (PAM), glyoxylated
polyacrylamide (GPAM), polyethyleneimine (PEI), polyvinylamine (PVAm) and polycar-
boxylic acids. These synthetic wet-strength agents can be used alone or in combination to
achieve the desired wet-strength properties of paper.

The history of wet-strength additives in papermaking dates back to 1930 when PEI
was first used, although its mechanism of action was unclear. Later, resins based on
formaldehyde were developed, which were more cost-effective and efficient. However, their
usage was limited due to their performance in only acidic conditions and the associated
toxicity of formaldehyde. In the 1960s, PAE resins were introduced, which were known for
their excellent performance under neutral and alkaline conditions.

For most cationic resins, wet treatment of the paper consists of introducing the ad-
ditive into the fibrous suspension before the formation of the fibrous mat. These resins
are adsorbed by the fibers through electrostatic interactions that occur between the pos-
itively charged groups of the resin and the negative charges (carboxyl groups) of the
lignocellulosic fibers. As the paper sheet dries, the polymer crosslinks under heating and a
three-dimensional network is formed which gives the paper its moisture resistance. De-
pending on the synthetic product used, it is possible to obtain a permanent resistance to
humidity, i.e., relatively unaffected by the increase in the time of contact of the paper with
water, or a temporary resistance to humidity which decreases until it disappears as time
increases contact of paper with water.

Many synthetic wet-strength additives are used at levels below 1% (w/w) based on
dry fiber weight. Although wet-strength resins are added to impart wet strength, they also
indirectly contribute to increasing the mechanical strength of papers in dry conditions.

4.1. Polyamideamine-Epichlorohydrin

Due to its impressive wet-strength properties, good retention, and affordability, PAE
is the primary synthetic wet-strength agent used today, despite having certain limitations
that will be discussed later. This cationic resin is compatible with alkaline cellulose pulps
and accounts for 90% of the wet-strength market [12]. PAE is synthesized through the
polycondensation of adipic acid and diethylenetriamine to form a polyamideamine (PA),
which is then functionalized with epichlorohydrin (Figure 2).
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Figure 2. Scheme of polymerization of PA and its functionalization with epichlorohydrin to give PAE.
The cationic azetidinium group is essential for additive adsorption on the cellulose fibers and for the
crosslinking of PAE.

At the industrial scale, the polymerization and functionalization stages are carried out
in consecutive steps. While most of the amino groups of the PA precursor are secondary, a
small percentage (<5%) of primary amines and terminal carboxyl groups are also present.
Epichlorohydrin reacts with these primary and secondary amino groups to create secondary
and tertiary aminochlorohydrin groups, respectively. At neutral pH and temperatures
above room temperature (60 ◦C), the tertiary aminochlorohydrin undergoes cyclization to
form 3-hydroxyazetidinium groups (Figure 1). These stretched rings give the resin both
reactivity and cationic charge.

PAE resin provides resistance to wet essentially through two mechanisms: (i) resin/fiber
co-crosslinking, which involves direct covalent bonding between cellulose fibers through a
resin molecule, and (ii) resin-resin homo-crosslinking, which involves crosslinking of the
resin with itself without forming covalent bonds with cellulose (Figure 3).
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PAE azetidinium groups react with the carboxylic groups of cellulose for resin grafting
onto cellulose fibers, while the free primary and secondary amino groups after functional-
ization with epichlorohydrin enable PAE auto-crosslinking, resulting in further mechanical
strength and durability of the paper when wet. It is crucial that the functionalization
phase of the PA resin with epichlorohydrin involves only a certain number of primary and
secondary amino groups to remain free for optimal wet-strength properties.

PAE resin has good retention properties, which means that it remains in the paper
fibers and does not become washed away during the papermaking process. This is impor-
tant for maintaining the desired wet-strength properties of the paper.

In general, the increase in paper wet and dry strength depends on PAE dosage
(Figure 4). The strength of the softwood bleached kraft pulp shows a noteworthy en-
hancement with a dosage of up to 1% PAE. At this dosage level, a remarkable improvement
of 20% in wet strength and 15% in dry strength can be observed. However, beyond
this dosage, the increase in wet strength becomes lower, while the dry strength remains
unchanged [12].
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TEMPO-oxidized cellulose nanofibril (TOCNs) films cross-linked with different
dosages of PAE were also investigated [16]. The PAE/TOCNs film high dry tensile strength
and Young’s modulus of approximately 135 MPa and 11 GPa, respectively. In addition,
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a high wet strength of 95 MPa was achieved for a 0.9% PAE content due to the cross-
linked structure.

A drawback in the use of PAE is the potential presence of halogenated organic
compounds (AOX), including epichlorohydrin, 1,3-dichloropropanol (1,3-DCP), and
3-monochloropropan-1,2-diol (3-MCP), even if recent technologies may drastically reduce
the content of these compounds. For instance, the use of cellulose nanofibers in combina-
tion with PAE may reduce the wet-strength polymer quantity for development of more
sustainable paper [17].

4.2. Melamine Formaldehyde Resin

MF resin is also widely used in synthetic polymers as a wet-strength agent in the
papermaking industry. It is prepared by the polycondensation of melamine with formalde-
hyde in the presence of an acid catalyst. The resulting polymer is then reacted with an acid
or amine-functionalized epoxide to impart cationic charge to the resin (Figure 5).
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quent resin homo- and co-crosslinking with cellulose.

The reaction mechanism of MF resin involves the formation of covalent bonds be-
tween the resin and cellulose fibers, as well as cross-linking between the resin molecules
themselves. This results in improved fiber-fiber bonding, which enhances the strength and
durability of the paper in wet conditions. One of the advantages of MF resin is it high
degree of cross-linking, which results in a strong and durable network of covalent bonds
that resists breakdown in wet conditions. Additionally, MF resin has good compatibility
with both acidic and alkaline pulps, which makes it a versatile wet-strength agent for a
wide range of paper grades.

MF resin also has good retention properties and is relatively low cost compared
to other wet-strength agents. One of the main drawbacks of MF resin is its potential
for formaldehyde release, which can pose health risks to workers in the papermaking
industry. In response to these concerns, many paper manufacturers have switched to using
alternative wet-strength agents that are formaldehyde-free. One approach is to partially
replace formaldehyde with other aldehydes, such as glyoxal or glutaraldehyde, which
have lower toxicity [18,19]. The reaction between dialdehydes and cellulose is catalyzed by
metal or ammonium salts, among which the most used include aluminum, magnesium,
and zinc salts. While glyoxal can increase the wet strength of paper, it may also lead to
decreased flexibility, as evidenced by reduced stretch and folding endurance. On the other
hand, glutaraldehyde treatment, particularly when a metal salt catalyst is used, can impart
excellent wet strength to paper without sacrificing its folding endurance. Moreover, as
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the curing temperature during the glutaraldehyde treatment process increases, the wet
strength of the paper can be further enhanced [15]. Another approach is to modify the
MF resin with non-toxic, water-soluble polymers, such as polyvinyl alcohol (PVA) [20],
which can reduce formaldehyde release [21]. PVA has also been used in combination
with glyoxal or glutaraldehyde and was reported to increase the wet strength of the
treated paper proportionally to its amount and molecular weight [22]. This indicates that
the interaction between glutaraldehyde and PVA facilitates the formation of inter-fiber
crosslinking, resulting in an improvement in wet strength while maintaining the flexibility
of the paper [22].

4.3. Polyacrylamide and Glyoxylated Polyacrylamide

PAM and GPAM are two commonly used synthetic polymers in the papermaking
industry as wet-strength agents [23]. PAM is a water-soluble linear polymer synthesized
from acrylamide monomers and is widely used as a flocculant, dispersant, and binder.
GPAM is a modified form of PAM that contains glyoxal functional groups and has improved
wet-strength properties. The new generation of GPAMs are obtained by a cross-linking
reaction between different acrylamides and glyoxal. The most widely applied polymer
is the copolymer obtained from dimethyldiallylammonium chloride (DMDAAC) and
acrylamide (AM) [24], which has the characteristics of a cationic copolymer (Figure 6).
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Figure 6. GPAM resin formation per reaction between a PAM cationic copolymer and glyoxal (A);
GPAM H-bond and covalent interactions with cellulose (B).

GPAM is synthesized by modifying PAM with glyoxal functional groups. The alde-
hyde glyoxal groups on GPAM react with the OH groups of cellulose fibers to form
hemiacetals, which improve the wet strength of the paper.

The use of PAM and GPAM as wet-strength agents has several advantages over other
synthetic polymers. Firstly, they do not contain formaldehyde or other toxic chemicals and
are water-soluble, so can be easily added to the papermaking process. Secondly, they are
compatible with a wide range of papermaking chemicals and can be used in combination
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with other wet-strength agents. However, compared to PAE, GPAM provides paper with
a temporary protection to wet. Indeed, while PAE wet-strength decay rate will only be
10–15% after a paper sample is subjected to 30-min soak test, GPAM can provide much
faster rates of decay in the range of 40–60% decay rate within a 2-min paper soak time [25].
This can be an advantage in the paper recycling process. The performance of PAM and
GPAM as wet-strength agents can be improved by optimizing their molecular weight
as well as by optimizing polymer composition. Increasing the molecular weight of the
polymer may increase the number of potential bonding sites with the cellulose fibers, which
improves the wet strength of the paper, but aggregation of the agent on the paper sheet
may occur, which negatively impact the paper’s wet strength [21]. By properly combining
molecular weight and cross-linking density, GPAM may be able to enhance paper’s wet
strength better than PAE (GPAM 0.3% wet tensile index increased ratio of 381% versus
281% of PAE 0.5%) [26].

4.4. Polyethyleneimine

Polyethyleneimine is a synthetic cationic polymer that has been used as a wet-strength
agent for paper products since the 1930s. PEI is a water-soluble polymer with a high
molecular weight and a high charge density, which makes it strongly adhesive to the
negatively charged cellulose fibers.

PEI is a linear or branched cationic polymer produced by the ring-opening polymer-
ization of ethyleneimine (Figure 7). Branched PEI contains primary, secondary, and tertiary
amines in the polymer backbone, with an amine density significantly higher when com-
pared with most commercial cellulose-fiber coupling agents. That feature is essential for
promoting covalent grafting of polymer chains on cellulose fibers and their cross-linking in
reinforced composites.

To create a covalent bond between PEI and cellule fibers, different methods are avail-
able [27].

When starting from non-pre-functionalized cellulose, the use of cross-linkers is needed
to obtain stable and durable composites. Glutaraldehyde (GAL) and epichlorohydrin
are commonly used cross-linkers. GAL creates a cross-link between PEI and cellulose by
forming a Schiff base and a hemiacetal (Figure 7).

This reaction can be conducted in a single step by stirring the solution in polar solvents,
and can even be performed at room temperature. However, increasing the reaction temper-
ature can result in a higher cellulose/PEI reaction, leading to a more stable product due
to the increased amount of cellulosic polymer. The result is a three-dimensional network
of cross-linked polymer chains and cellulose fibers that enhances the wet strength of the
paper product.

When pre-functionalized cellulose is used, the direct cross-linking between the two
building blocks is sometimes possible without additional cross-linkers. This is due to
the presence of reactive functional groups on the cellulose fibers, such as carboxylic acid,
amino or thiol groups, which can react with PEI. By adjusting the pH and temperature, it is
possible to control the degree of cross-linking and the resulting properties of the composite.

One of the advantages of PEI as a wet-strength agent is its ability to improve the wet
strength of paper products in both acidic and alkaline conditions. In addition, PEI has a low
toxicity, is biodegradable, and is able to improve the ability of paper products to adsorb
dyes. This is because the amino groups in PEI can react with dyes, resulting in a more
uniform and vivid color. However, there are also some drawbacks associated with the use
of PEI. One is the cost, as it is more expensive than other wet-strength agents such as PAE
or GPAM. Additionally, the high cationic charge of PEI can interfere with the papermaking
process, and PEI also has the potential for yellowing of the paper product over time, as it is
sensitive to light and heat, leading to discoloration of the paper.
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4.5. Polyvinylamine

PVAm is a water-soluble polymer that confers wet-strength properties to paper prod-
ucts by adsorbing onto the paper fibers and creating a strong network that can resist the
effects of water. The term PVAm refers to a series of poly(N-vinylformamide) (PNVF)-
polyvylamine copolymers at different compositions obtained by a two-step procedure
(Figure 8).
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Then, PNVF is partially or fully hydrolyzed to give PVAm units bearing amine groups.
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Weisgerber’s patent was likely the first to document the wet-strength properties of
PVAm [28]. Lately, Pfohl [29] found that a 1 wt% PVAm solution in sulfite pulp (pine and
beech mixture) at pH 7.5 yielded to a wet/dry strength ratio of 26%. Ten years later, Wang
and Tanaka reported that using PVAm with an 11% hydrolysis level increased the wet/dry
strength ratio of commercial hardwood bleached kraft pulp handsheets from approximately
5% to 30% [30]. Similarly, Pelton and Hong showed that newsprint treated with PVAm
had a wet-strength value nearly 30% of the dry strength one. Notably, wet strength was
unaffected by the degree of hydrolysis (56–100%) and remained constant for up to 1 h of
soaking. The wet tensile strength was higher for paper treated at pH 10 compared to pH 3
or pH 7 [31].

The mechanism by which PVAm increases wet strength is not obvious since neither
crosslinking nor grafting seem likely. DiFlavio and colleagues [32] reported that PVAm
wet strengthening was approximately constant from pH 3 to 9, while it dropped at pH 3,
where nearly every amine group on PVAm is charged (protonated), and at pH 9 where
the PVAm is uncharged. That means that wet adhesion was independent of the extent of
PVAm protonation (i.e., the charge content) over a broad range. Contrarily, the wet-strength
adhesion was found to be related to the concentration of amino groups in the polymer
backbone as well as to the cellulose oxidation degree. This supports the hypothesis that,
besides the well-accepted electrostatic interaction between PVAm and cellulose fibers, the
formation of covalent bonds between cellulose groups (acetal/hemi-acetals/aldehydes)
and the PVAm amine is presumable to occur, as much as demonstrated for PEI.

4.6. Polycarboxylic Acids

Poly(carboxylic acid)s have been used as crosslinking agents for cotton since the
1960s [33]. These compounds have carboxylic groups that can react with the hydroxyl
groups of cotton cellulose, forming ester linkages and crosslinking the fibers. This crosslink-
ing imparts improved properties to cotton fabrics, such as increased strength, durability, and
wrinkle resistance. Among them, polycarboxylic acids such as 1,2,3,4-butanetetracarboxylic
acids (BTCA) and citric acid are the most promising chemicals (Figure 9) [34].
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with BTCA improved the wet strength of the handsheets by a factor of 2–3, compared to
untreated handsheets. The improvement in wet strength was attributed to the crosslinking
of cellulose fibers by the ester bonds formed between BTCA and the hydroxyl groups on
cellulose. Caulifield also studied the use of BTCA and citric acid for improving the dry
and wet performance in this case of unbleached kraft board [36]. The study found that
treatment with BTCA and citric acid improved the dry strength, wet strength, and folding
endurance of the kraft board. Other interesting polycarboxylic acids are itaconic acid and
maleic acid (Figure 9) that have been reported to be able to in situ polymerize and crosslink
cotton fabric [37]. The expected cross-linking reaction between polycarboxylic acids and
cellulose, occurring stepwise under heating, it is likely to begin with the transformation
of the polycarboxylic acids into a cyclic anhydride, which is the real active species in the
esterification with the hydroxyl group of cellulose (Figure 9) [38,39].

High-molecular-weight polycarboxylic acids, including polymaleic acid (PMA) and
poly(methyl vinyl ether-co-maleic acid) (PMMA), have been used for wet-strength agents
for paper products [40]. The effect of polymer molecular weight on wood pulp cellulose
performance was investigated. The use of high-molecular-weight PMMA was shown
to favor the formation of inter-fiber crosslinking, leading to an improvement in the dry
strength and toughness of the treated paper. On the other hand, low-molecular-weight
PMA tends to produce intra-fiber crosslinking, which can cause embrittlement of the fibers
and reduce the flexibility of the treated paper [40].

5. Natural Wet-Strength Agents

Natural wet-strength agents for paper are derived from natural materials and in some
applications can be used as an alternative to synthetic wet-strength agents. Some examples
of natural wet-strength agents include starch, chitosan, cellulose nanofibrils (CNF), and soy
protein. These natural wet-strength agents are biodegradable, renewable, and non-toxic,
making them a more environmentally friendly alternative to synthetic wet-strength agents.
However, they may be more expensive and have some limitations in terms of performance
compared to synthetic wet-strength agents.

5.1. Starch

Starch is a natural polymer, made up of glucose units derived from various plant
sources such as corn, wheat, and potatoes, which is commonly used as a binder in paper-
making because of its ability to form hydrogen bonds with the cellulose fibers in paper.
Thermoplastic starch is also used in packaging applications [41]. The formation of a net-
work of hydrogen bonds with the cellulose fibers is believed to be the primary mechanism
of action of starch as dry- and wet-strength agent [42]. Starch also has good film-forming
properties, which help to coat and bind the fibers together, further improving the wet
strength of the paper. The use of starch as a wet-strength agent is particularly effective in
acidic paper-making conditions.

To achieve the high retention levels required in paper manufacture, starch has been
functionalized in various ways to obtain cationic starch, oxidized starch, and esterified
starch. Cationic starch is positively charged, available in different degrees of substitution,
low (0.02–0.06) and high (≥0.07), obtained by the reaction of a primary hydroxyl etherifi-
cation agent containing tertiary amines or quaternary ammonium groups, including gly-
cidyltrimethylammonium chloride (GTAC) or 3-chloro-2-hydroxypropyltrimethylammonium
chloride (CTAC) [43–45]. The adsorption of cationic starch on cellulose has been thoroughly
investigated and was shown to enhance the strength of paper [46,47]. The electrostatic
interaction of cationic starch and cellulose fiber can be affected by ionic strength, pH, and
temperature [48]. More stable interactions can be achieved by adsorbing alternating layers
of cationic and anionic starch where multilayers can be formed [49,50].

Cationic starch was found to be beneficial to the properties of PAE when added to
pulp slurry, which led to a decreased PAE dosage for health concerns as food packaging
materials [51].
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Oxidized starch is instead produced by treating starch with an oxidizing agent such as
sodium hypochlorite or hydrogen peroxide [52]. This process introduces carboxyl groups
that make the starch more water-soluble and reactive [53]. In contrast, starch esterification
with organic acids such as acetic or succinic acid makes it more hydrophobic and less
water-soluble. Although starch is less efficient than synthetic wet-strength agents, in some
applications, its use may be advantageous because it is a natural, renewable resource that
is widely available and relatively inexpensive and does not affect paper recyclability.

5.2. Chitosan

Chitosan (CS) is a natural polycationic derived from chitin, a substance found in the
shells of crustaceans. Chitosan is a biocompatible polymer which is also widely used in
biomedical [49–52] and environmental applications [54–60]. Its use as a wet-strength agent
was reported in papermaking in the 1990s [61]. Kraft paper coated with chitosan emulsion
showed lower water vapor permeability rate (by ca 43%) and water absorption capacity (by
ca 35%) compared to uncoated Kraft paper. The co-incorporation of palmitic acid further
reduced the water vapor permeability rate and water absorption capacity of Kraft paper by
51% and 41%, respectively [62].

For uses in acidic pH, chitosan is not an ideal solution due to its tendency to partially
dissolve in acidic environments. However, modifications can be made to chitosan to im-
prove its chemical resistance using crosslinking agents such as glutaraldehyde, ethylene
glycol diglycidyl ether, and epichlorohydrin [63]. The use of maleic anhydride-acylated chi-
tosan, under various pretreatment and curing conditions, was investigated to improve the
wet strength of handsheets. The results indicated that the highest wet-strength performance
was achieved at a pretreatment pH of 6, and increasing the pretreatment temperature and
polymer dose led to higher wet-strength index and an increased ratio of wet to dry strength.
When compared to PAE resin, maleic anhydride-acylated chitosan showed slightly inferior
results in terms of wet strength, with varied soaking durations. However, maleic anhydride-
acylated chitosan still achieved about 80% of the wet strength of PAE, demonstrating its
potential as a viable alternative to PAE for improving the wet strength of handsheets [63].

5.3. Cellulose Nanofibrils

In recent years, there has been an increased research interest surrounding cellulose
nanofibril (CNF) as a natural nanocellulose material, owing to its biodegradability, barrier
properties, chemical tunability, and exceptional mechanical properties [64]. Typically
derived from plant fibers through enzymatic and/or chemical treatments, followed by
physical treatments such as grinding or homogenization [65], CNF has proven to be a
promising reinforcing agent for paper products [66,67].

In several studies, CNF was used as an anionic component of dual strengthening
systems in combination with polymeric cationic wet-strength agents including PAE [68],
cationic starch [69], and cationic polyacrylamide [70]. As far as PAE is concerned, due
to environmental reasons there is an interest in decreasing the amount of PAE used in
paper-making industry. Gardlund et al. [71] showed that the effect of PAE can be improved
by adsorbing carboxymethyl cellulose (CMC), an anionic cellulose derivative, and PAE
onto cellulose fibers. A further study investigated the use of CNF and PAE as agents to
improve the wet and dry strength of paper [68]. Specifically, the adsorption behavior of
CNF and PAE on cellulose model surfaces was analyzed using quartz crystal microbalance
with dissipation (QCM-D) and atomic force microscopy (AFM). The study compared the
layer structures and nano-aggregates formed by CNF and PAE onto cellulose fibers using
different adding strategies. The results showed that when PAE was adsorbed first, a
uniform and viscous layer of CNF could be adsorbed. However, when PAE and CNF
were added as cationic aggregates, a non-uniform and more rigid layer was formed. The
bilayer-adding strategy led to a significant increase in both the wet and dry tensile strength
of paper even at low added amounts of PAE. On the other hand, the use of nano-aggregates
did not lead to significant improvements in paper strength properties [68]. The utilization



Int. J. Mol. Sci. 2023, 24, 9268 15 of 24

of a dual system consisting of PAE/CNF or CS/CNF resulted in significantly higher wet
and dry tensile strengths of paper compared to using a single PAE or CS system. For
instance, when the PAE (0.4%)/CNF (0.3%) dual system was used, the resulting paper
exhibited 89% higher wet tensile strength than the paper using a single PAE (0.4%) system.
Similarly, the CS (1.3%)/CNF (0.3%) dual treatment resulted in a 21% higher dry strength
than the single CS (1.3%) system [69]. Recently, a cationic starch/CNF dual system was
demonstrated to be superior to cationic polyacrylamide for improving the bagasse pulp
and paper key properties [72]. This finding was related to the similarity of cationic starch
and cellulosic fiber structure, as well as to the branched structure of cationic starch, in
contrast to the linear cationic polyacrylamide.

5.4. Soy Protein

Recently, soy protein has been proposed as an inexpensive, sustainable, and envi-
ronmentally benign solution to enhancing papermaking performance, especially the dry
strength [73,74]. As seen for CNF, also soy proteins have been used in combination with
cationic polymeric strength agents, including cationic starch and chitosan [75]. Indeed,
as described above, the use of polyelectrolyte complexes (PECs, Figure 10), obtained by
a mixture of cationic and anionic polymers, have been shown to improve the mechanical
properties of paper through increased electrostatic networking mechanisms among the
PECs and fiber charged surfaces (Figure 10).
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Both thermal-alkali degradation [76] and thermal acid treatment [77,78] could impart
water-resistance properties to soy proteins due to the formation of water-resistant inter-
molecular chemical networks between proteins during treatment [79]. Li and Pelton [80]
compared twenty proteins as potential paper wet-strengthening additives by measuring
the peel force required to delaminate wet, regenerated cellulose films laminated with a thin
protein layer. Results of the experiments varied greatly, indicating that the composition
of the protein was a crucial factor in its effectiveness. The proteins with the highest levels
of lysine and arginine exhibited the strongest adhesion, with additional contributions
from hydroxyl and phenolic amino acid residues. Wet strength increased when laminates
were cured at high temperatures (120 ◦C), suggesting that protein grafting to cellulose and
protein cross-linking was important for good wet strength. Although none of the protein
laminates was as strong as PVAm or PAE resins, the study suggests that increasing the
content of cationic groups and optimizing heat-induced bond formation may lead to the
development of a protein-based paper wet-strength resin in the future.
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6. Techniques to Investigate the Effect of Wet-Strength Agents on the
Physico-Chemical Properties of Paper Products

Different techniques can be used for investigating the performance of a specific wet-
strength agent, including Fourier transform infrared spectroscopy (FTIR), X-ray photo-
electron spectroscopy (XPS), scanning electron microscopy (SEM), tensile strength testing
(INSTRON), dynamic mechanical analysis (DMA), and wet-peel and thermogravimetric
analysis (TGA) (Figure 11).
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Figure 11. Examples of techniques used to investigate the effect of wet-strength agents on paper’s
physico-chemical properties. (a,b) SEM micrographs of paper fibers (a) and paper fiber reinforcement
by CMC-aGO (b) (red circles represent interfibrillar voids) (reproduced from [81]); (c) tensile strength–
strain behavior of cellulose acetate butyrate (CAB)/acetone-treated cellulose nanofibers (A-CNF) with
different amounts of the bio-derived crosslinker polyisocyanurate D376N. (A) A-CNF; (B) CAB500-
5; (C) CAB/D376N (0 wt%); (D) A-CNF/D376N (3.9 wt%); (E) CAB/A-CNF/D376N (7.7 wt%);
(F) CAB/A-CNF/D376N (14.3 wt%); (G) CAB/A-CNF/D376N (24.5 wt%). (Reproduced from [82]);
(d) FTIR spectra of cottonseed protein (CSP) isolate and paper samples treated with CSP or CSF and
nanocellulose (CNC), expansion of the cellulosic region of the amide bonds (1750 cm−1 to 1400 cm−1)
(reproduced from [83]).

6.1. Fourier Transform Infrared Spectroscopy

FTIR can be used to analyze the chemical bonds and functional groups present in
the wet-strength agent and their interactions with the paper fibers. Obokata and Isogai
investigated the mechanism of the wet-strength development of cellulose sheets prepared
with PAE resin by FTIR. Specifically, PAE-containing cellulose sheets were first degraded
by cellulase and FT-IR analysis was performed on cellulase-treated residues to investigate
whether or not the covalent bond formation between azetidinium groups of PAE and
carboxyl groups of cellulose fibers occurred. The influence of heating at 110 ◦C on covalent
bond formation and paper wet-strength improvement was also studied [84]. In the FT-
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IR spectra of the cellulase-treated residues of both heated and unheated PAE-containing
paper sheets, absorption bands were observed at 1735 cm−1 due to ester C=O groups
and at 1550 cm−1 due to amide II N-H groups. In contrast, the FT-IR spectrum of the
cellulase-treated residue of the blank sheets showed almost no absorption bands of this
type. The heating process resulted in a clear increase in the amount of ester bonds present
in the samples.

6.2. X-ray Photoelectron Spectroscopy

XPS is a surface analysis technique that uses X-rays to ionize the surface of a material
and measure the energy of the electrons emitted from it. By analyzing the energy and inten-
sity of the emitted electrons, XPS can provide information about the elemental composition,
chemical bonding, and electronic states of the surface layer of a material. XPS can be used
to study a wide range of materials, including metals, semiconductors, polymers, ceram-
ics, and composites [85,86]. Chen and Tanaka applied XPS to investigate the surfaces of
handsheets containing polydiallyl-dimethylammonium chloride (PDADMAC) and anionic
polyacrylamide (A-PAM) as polymeric wet-strength additives, suggesting as this technique
appears promising as a tool to analyze paper surfaces treated with small amounts of poly-
mer additives [87]. XPS provided valuable insights into the covalent bonding between
the strengthening agent and the fiber surface. This was achieved by analyzing the Nls
chemical shifts observed in handsheets containing PDADMAC and PDADMAC + A-PAM.
The use of XPS enabled a clear understanding of the chemical interactions between the
strengthening agent and the fiber surface, shedding light on the bonding mechanisms
involved [87]. Similarly, XPS was used to investigate CNF/carboxymethyl cellulose (CMC)
composite film’s surface treated by glycidyl trimethyl ammonium chloride (GTMA) [88].
The reaction of GTMA with the hydroxyl groups of CMC by etherification was suggested
by the XPS data.

6.3. Scanning Electron Microscopy

SEM can be used to examine the surface morphology and structure of paper fibers
treated with the wet-strength agent, as well as the distribution in and penetration into the
fibers of the wet-strength agent. The surface morphology of fibers after treatment with
polymeric wet-strength agent can be significantly altered, as shown by observations of
paper treated with either a cationic block waterborne polyurethane [89] or by mono- or
di-methylomelamine (DMM) resin [90].

Specifically, SEM observation of untreated fibers of filter paper evidenced how they
are interwoven by physical entanglement with the presence of many pores between fibers.
In contrast, a dense film was observed on the same fibers treated with a cationic block
waterborne [89].

Regenerated cellulose fibers treated by choline chloride and glycerol ionic liquid
showed a more compact structure and fewer pores on the fiber surface, along with well-
preserved cellulose frameworks compared to the untreated regenerated fibers. In addition,
the tensile strength was improved from 54.43 MPa to 139.62 MPa after introducing the ionic
liquid [91].

6.4. Tensile-Strength Testing and Wet Peeling

This involves testing the tensile strength of paper samples before and after being wet
with water to determine the strength retention properties of the wet-strength agent [92,93].
Standard procedures are available to determine the wet tensile strength of paper or board.
The ISO 3781:2011 (Paper and board—Determination of tensile strength after immersion in
water) [94] and ASTM D 829-97 (Standard Test Methods for Wet Tensile Breaking Strength
of Paper and Paper Products) [95] methods specify the apparatus and the conditions to
be used for the determination of the wet tensile strength of paper after its immersion
in water for a specified period. In addition, how to express the results in terms of wet
tensile strength (WTS) and wet-strength retention (WSR) is reported. Wet-strength (WS) is
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routinely expressed as the ratio of wet to dry tensile strength (DTS) at break, while the wet
strength retention is calculated as follows [96]:

WSR (%) =
WTS
DTS

× 100

The Instron machine can also be used for performing the so-called wet peeling test [97].
In this test, two wet and regenerated cellulose membranes are placed on top of each other
with a thin layer of wet-strength resin in between. The stack is then pressed and dried
before being rewetted. The resulting laminate serves as a physical model for studying
wet fiber-fiber joints in paper. The strength of the wet laminate is finally measured by
determining the force required to peel the two membranes apart at a 90-degree angle, also
known as the peel delamination force. The wet-peel test conducted on TEMPO-oxidized
cellulose membranes clearly demonstrated the impact of oxidation time on the wet-peel
force. Notably, a substantial increase in wet-peel force was observed up to approximately
8 min of oxidation time. However, beyond this threshold, the wet-peel force exhibited
minimal changes and remained largely unchanged [97].

6.5. Dynamic Mechanical Analysis

DMA can be used to study the mechanical properties of paper samples, such as
modulus and damping, before and after being wetted with water. Wet-strength agent-
treated paper may show a higher storage modulus (E’) than paper before impregnation,
as shown for paper treated with poly (p-phenylene benzoisoxazole) (PBO) [98]. PBO not
only conferred resistance to but also high thermal stability suitable for application in the
aerospace industry.

DMA may also be a good method for examining whether an additive is molecularly
distributed or making aggregates in paper and other composites. Indeed, the difference
in the distributions of an agent within a fiber wall could deeply affect the strength de-
velopment [99]. Mihara and Yamauchi showed the effect of polymer distribution on me-
chanical properties of paper sheets containing various amounts of cationic polyacrylamide
dry-strength resin by DMA analysis performed in the 100–300 ◦C temperatures range in
vibration mode at various frequencies [100]. DMA was a useful method for examining
whether PAM was molecularly distributed or aggregating in the paper composites. The
disappearance of PAM viscoelasticity was observed when PAM was distributed molecu-
larly within the cellulose fiber wall. Conversely, when PAM was distributed around the
fiber-to-fiber bonds or aggregated over the fiber surface, the viscoelasticity of the PAM
phase became apparent.

6.6. Thermogravimetric Analysis

TGA can be used to investigate the thermal stability and decomposition properties of
the wet-strength agent, as well as its compatibility with the paper fibers [101]. In general, a
decrease in the additive compatibility with cellulose fibers has negative effects on paper
performance. It is also possible to investigate cellulose fiber crosslinking by TGA. Generally,
an increase in crosslinking density increases thermal stability of the material. However, in
the case of polysaccharides, the perturbation of the H-bond network within the polymer
chains by crosslinking may induce a decrease in material stability. This latter behavior was
observed for chitosan [55] and also for hemicellulose/soy protein composite films cross-
linked with citric acid [102]. Specifically, crosslinked hemicelluloses showed degradation
temperatures lower than unmodified cellulose and related to the decrease in effectiveness
of inter-molecular hydrogen bonds.

7. Challenges and Recent Advances

The development of effective paper wet-strength agents is an ongoing challenge in the
paper industry. Synthetic wet-strength agents, in particular, are non-biodegradable and
in some cases can pose a risk to human health and the environment. On the other hand,
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natural wet-strength agents are often not as efficient as the synthetic ones. Therefore, in
recent years, there has been a growing demand for more sustainable and environmentally
friendly wet-strength agents.

Most efforts in the development of wet-strength agents are focused on researching
green precursors that are derived from bio-sources or waste materials. These precursors
need to meet the main requirements for effective wet-strength agents, including solubility
in water, the ability to bind to the surface of cellulose fibers, and reactivity to form a
crosslinked and water-resistant coating.

Lignin, and its degradation products, is an interesting green precursor that can meet
these requirements. Lignin is composed of a mixture of aromatic compounds, including
hydrophobic polyphenols that provide structural support to plants. Although lignin is not
water-soluble, it has a strong affinity for hydrophilic supports such as cellulose due to its
ability to form hydrogen bonds [103]. Polyphenolic compounds, such as those found in
lignin, are known to possess strong chelating and adhesive abilities [104], and also have
interesting antioxidant and antimicrobial properties [105,106]. Thus, if used as wet-strength
agents in papermaking, polyphenols could provide antimicrobial properties to the paper.

Another promising but still poorly investigated strategy towards sustainable wet-
strength agents is the formation of supramolecular assemblies based on polyelectrolytes
onto the cellulose fibers. Supramolecular assemblies, which are multi-component systems
aggregated by noncovalent bonds, may exhibit properties not predictable from the features
of the original constituents [107]. By rationally designing the colloidal entities, it is possible
to tune the hierarchical self-assembly of the components [108]. By properly choosing the
components, this approach could be used to create stable structures upon the surface of
cellulose fibers to confer stability and dry/wet strength.

Another potentially promising strategy includes the use of enzyme-based approaches
to modify cellulose fibers for improved wet strength [109]. Enzymatic modification ap-
pears to be a green and environmentally friendly process to change the properties of
cellulose. Several enzymes, including laccases, esterases, lipases, and hexokinases, have
been used for this purpose [110]. For instance, laccases have been extensively used for
the modification of lignocellulosic materials, such as wood, sisal pulp, unbleached flax
fibers, and softwood kraft pulp [111,112]. They are often employed with phenolic com-
pounds to provide hydrophobicity, improved mechanical properties, and antioxidant and
antibacterial properties.

8. Conclusions

Wet-strength agents play a critical role as additives in the paper industry due to their
ability to enhance the mechanical properties of paper products when exposed to water. The
availability of both synthetic and natural wet-strength agents in the market provides options
for paper manufacturers, and their mechanisms of action vary depending on the specific
type of agent used. In general, the additive effectiveness in providing water resistance to
paper is influenced by four key properties: (i) polymeric nature, (ii) water solubility, (iii)
cationic character, and (iv) reactivity. Reactivity plays a crucial role as it determines the
additive’s ability to undergo self-crosslinking as well as to covalently bind to cellulose,
forming a protective and water-resistant coating on the paper fibers. Positive charges
themselves do not directly contribute to wet strength; however, they enable the initial
attachment of the additive to the anionic cellulose fibers. By understanding and leveraging
these properties, additives can effectively enhance the water resistance properties of paper
and improve its overall durability and performance.

There is a need for further research and development to create wet-strength agents
that are more efficient and cost-effective, addressing the growing demand for sustainable
paper products. In recent years, the focus on environmental friendliness has gained
significant importance in the papermaking industry. Many manufacturers are actively
seeking wet-strength agents derived from renewable resources or those that have a minimal
environmental impact. This shift in approach aims to reduce the ecological footprint
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associated with paper production and align with sustainable practices. By utilizing wet-
strength agents derived from renewable resources, the industry can contribute to the
preservation of natural ecosystems and reduce dependence on non-renewable resources.

Furthermore, the paper industry has the potential to leverage the opportunities pre-
sented by the bioeconomy in the coming years. The bioeconomy emphasizes the utilization
of biomass, including forest resources, agricultural residues, and other organic waste ma-
terials, to produce a range of sustainable products. By embracing this concept, the pulp
and paper sector can not only enhance its own sustainability, but also become a significant
contributor to the transition towards a more sustainable and circular economy.

The exploration of alternative wet-strength agents that are both effective and envi-
ronmentally friendly aligns with the broader goals of resource efficiency, waste reduction,
and the development of a circular economy. The adoption of such agents would enable
paper manufacturers to produce high-quality paper products while minimizing the envi-
ronmental impact associated with traditional wet-strength agents. Additionally, this shift
towards sustainable practices could enhance the paper industry’s reputation and appeal to
environmentally conscious consumers who prioritize eco-friendly products.

In conclusion, the importance of wet-strength agents in the paper industry is clear.
However, there is a need for ongoing research and innovation to develop more efficient and
cost-effective agents. Embracing sustainable practices and the use of wet-strength agents
derived from renewable resources can lead the industry towards a more environmentally
friendly approach. By capitalizing on the opportunities presented by the bioeconomy, the
pulp and paper sector can play a significant role in the transition to a sustainable and
circular economy, ensuring a more sustainable future for the industry and the environment.
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