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Abstract: The main aim of the study was to assess the acetylcholinesterase-inhibitory potential
of triterpenoid saponins (astragalosides) found in the roots of Astragalus mongholicus. For this
purpose, the TLC bioautography method was applied and then the IC50 values were calculated
for astragalosides II, III and IV (5.9 µM; 4.2 µM, and 4.0 µM, respectively). Moreover, molecular
dynamics simulations were carried outto assess the affinity of the tested compounds for POPC
and POPG-containing lipid bilayers, which in this case are the models of the blood-brain barrier
(BBB). All determined free energy profiles confirmed that astragalosides exhibit great affinity for the
lipid bilayer. A good correlation was obtained when comparing the logarithm of n-octanol/water
partition coefficient (logPow) lipophilicity descriptor values with the smallest values of free energy
of the determined 1D profiles. The affinity for the lipid bilayers changes in the same order as the
corresponding logPow values, i.e.,: I > II > III~IV. All compounds exhibit a high and also relatively
similar magnitude of binding energies, varying from ca. −55 to −51 kJ/mol. Apositive correlation
between the experimentally-determined IC50 values and the theoretically-predicted binding energies
expressed by the correlation coefficient value equal 0.956 was observed.

Keywords: acetylcholinesterase; molecular docking; IC50; free energy; zebrafish; safety; SH-SY5Y;
lipophilicity

1. Introduction

The key physiological role of the enzyme acetylcholinesterase (AChE), mainly found
at the neuromuscular junctions and cholinergic brain synapses, is the hydrolytic destruction
of neurotransmitter acetylcholine (ACh) [1]. The elevated AChE activity affects Ach release
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due to its rapid hydrolysis to acetic acid and choline. This terminates the impulse trans-
mission at the cholinergic synapses in numerous cholinergic pathways in the central and
peripheral nervous systems [2,3]. It is assumed that at high ACh concentrations, each AChE
active site hydrolyses 10,000 molecules of substrate per second [1,4]. The AChE inhibitors
play an important role in the treatment of neurodegenerative diseases e.g., Alzheimer’s
disease (AD) [1].

The cholinergic hypothesis of AD, related to the role of ACh in learning and mem-
orising processes, was developed in the 1970s. The nucleus basalis of Meynert (NBM),
identified as the cholinergic centre in the brain, is affected during the pathological aging
of people [5]. The neuronal loss within the NBM in the forebrain of AD patients reduces
the levels of cortical ACh which leads to cognitive impairments [6]. The cognitive deficit is
caused by the dysfunction of the central cholinergic system which in turn, plays a key role
in the storage and retrieval of memory in the central nervous system [7–9].

Currently, the treatment of neurodegenerative diseases is based on drugs being either
AChE inhibitors or antagonists of N-methyl-D-aspartate (NMDA) receptors [10]. Unfortu-
nately, none of the current therapeutic strategies can successfully stop the progression of
the disease in the early stages. Therefore, the main task of available drugs is to alleviate
the symptoms of the disease and slow it down. These drugs include, among others, galan-
tamine [11,12], rivastigmine [13,14] donepezil [15] and memantine [16]. Frequent drug
resistance as well as undesirable effects of their long-term use and insufficient effectiveness
during long-term therapy have resulted in the need to search for new drug candidates,
including AChE inhibitors, mainly of plant origin. Although there are some registered
AChE inhibitors already on the market, there is still a need for the identification of novel
drug candidates for the same applications. Currently-used medicines cause significant side
effects. Dizziness, nausea, cognitive and digestive system disorders and most important
lytolerance to the used dosageare only some of the drawbacks of the existing therapeutic
strategies [17].

The richness of traditional Chinese medicine can be a source of searching for new AChE
inhibitors e.g., Huperzia serrata, whose active compounds, named Lycopodium alkaloids,
have a wide spectrum of medicinal applications. Huperzine A is considered to be the most
potent, reversible and selective AChE inhibitor which can make it useful in the treatment
of dementia and other relevant cognitive impairments [10,18,19]. Galantamine, which is
an active ingredient of many plants from the Amaryllidaceae family, has a similar AChE-
inhibitory effect. This substance is approved by the Food and Drug Administration in
the United States as well as by the State Food and Drug Administration in China for the
treatment of mild to moderate AD [20]. It was also reported that tenuifolin from Polygala
tenuifolia can enhance cholinergic neurotransmission as well as inhibit AChE activity [21].

In this research, triterpenoid saponins—the active compounds contained in the Astra-
galus mongholicus roots—have been tested and evaluated for AChE-inhibitory potential.
Astragalus, an annual flowering plant of Fabaceae, has been widely used by humans for
cardiovascular inflammation, digestive and renal abnormalities as well as fatigue and weak-
ness since the most ancient periods of development of medical science. Over 2000 species of
Astragalus are spread throughout the world, while approximately 70 species are registered
in Mongolia alone [22].

In our previous study [23], the ability to cross the blood-brain barrier (BBB) of triter-
penoid saponins derived from the Astragalus mongholicus roots was investigated. It was
noted that the most active compound among those tested is astragaloside IV (A IV). In
post-mortem research, carried out on the brain tissues of mice, the ability of astragaloside
IV to cross the BBB was confirmed and thus the logBB value was determined (0.49).

Keeping in mind the results obtained in our previous study, here we aimedat carrying
on the research into the significance of astragalosides as AChE inhibitors. To do so, a
TLC bioautography assay, molecular dynamics simulations and molecular docking as well
as biomimetic research were carried out to show the greatest potential of A IV to inhibit
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AChE. The studies were complemented with the assessment of A IV safetyin vitro using the
SH-SY5Y human neuroblastoma cell line as well as in vivo using the zebrafish model [24].

2. Results
2.1. Biomimetic Models for Lipophilicity Determination

To determine lipophilicity of the tested astragalosides, the biomimetic-High Perfor-
mance Liquid Chromatography (HPLC) systems with a cholesterol-bound (CHOL) station-
ary phase as well as the Immobilized Artificial Membrane (IAM) column were used. These
stationary phases have pseudomembrane properties and therefore are widely applied
in chromatographic practice to determine lipophilicity of various groups of compounds,
including newly synthesized ones [25–29].

Based on the Soczewiński–Wachtmeister Equation (1) [30], the logarithms of retention
factors extrapolated to pure water (logkw) values were calculated. These values can be
considered as an alternative to the n-octanol/water partition coefficient recognized as the
lipophilicity descriptor [31].

logk = logkw − sϕ (1)

where logk is the logarithm of the retention factor in the mixed effluent systems; ϕ is the
volume fraction of organic modifier in the mobile phase; s is the slope characteristic of
a given solute in the chromatographic system. The logkw, s, and R2 values obtained from
Equation (1) for the tested chromatographic systems are presented in Table 1.

Table 1. Parameters of the Soczewiński-Wachtmeister equation calculated for the tested chromato-
graphic systems.

Chromatographic System Compound logkw s R2

IAM A I 2.713 6.040 0.992

A II 2.104 4.715 0.995

A III 1.807 4.165 0.969

A IV 1.727 3.965 0.965

CHOL A I 3.234 5.590 0.985

A II 3.209 6.570 0.985

A III 2.627 5.681 0.981

A IV 2.668 6.000 0.981

2.2. HPLC-MS Fingerprinting of Extracts

The obtained 50% ethanolic extract from Astragalus mongholicus roots was analysed for
its composition by the HPLC-MS instrument to determine the presence of astragalosides III
and IV, which were found to exhibit inhibitory properties in the AChE assay. The fingerprint
of the analysed extract together with the fragmentation pattern of both compounds are
presented below in Figure 1.

2.3. Molecular Dynamics

Molecular dynamics simulations were performed to assess the affinity of the tested
compounds for POPC and POPG-containing lipid bilayers, which in this case are the
models of the blood-brain barrier. Taking into account the permeability of astragalosides
I–IV through the biological membranes, free energy profiles through the lipid bilayer were
determined (Figure 2).

2.4. TLC Bioautography

TLC bioautography was used to determine the biological properties of the major
constituents of Astragalus mongholicus roots. In the assay on the inhibitory properties
towards the acetylcholinesterase enzyme, astragalosides were found to be active.
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Figure 1. Total ion chromatogram of 50% methanolic extract from the roots of Astragalus mongholicus
in the positive ionisation mode (A), extracted ion chromatogram of astragaloside III and IV (m/z of
785) (B), mass spectrum of astragaloside IV (C), mass spectrum of astragaloside III (D).

In this study, the reference compounds of astragalosides II (A II), III (A III) and IV (A IV)
at different concentrations were injected into the normal phase TLC plate covered with silica
gel. Each experiment was repeated three times and the average values of the obtained peak
areas corresponding to different injections of pure astragalosides were taken for the calcula-
tion of IC50 values of the saponins. For the three astragalosides: II, III and IV the following
calibration curve equations were obtained: y = 70,773,628.9063x − 62,644.2995 (R2 = 0.9732),
y = 33,106,972.8125x − 67,429.4097 (R2 = 0.9771), and y = 48,308,195.3125x + 3538.3021
(R2 = 0.9981), respectively. Finally, the obtained IC50 values were: 0.00488 mg for astra-
galoside II, 0.00330 for astragaloside III, and 0.00316 for astragaloside IV. The respective
chromatogram is presented in Figure 3.

The results of the TLC bioautography assay encouraged the authors to focus on the
analysis of molecular aspects related to the BBB permeation of astragaloside IV and on the
character of its relations with the AChE enzyme. For the compounds A II, A III, and A IV
the IC50 values were obtained experimentally using the TLC bioautography assay (5.9 µM;
4.2 µM, and 4.0 µM, respectively).
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by the bootstrapping method.
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Figure 3. Results of the TLC-bioautography assay for the inhibition of acetylcholinesterase enzyme in
daylight on the silica-gel-covered TLC normal phase. The TLC plate shows different concentrations
of the tested astragalosides: II (A II), III (A III), and IV (A IV).

2.5. Molecular Docking

All compounds exhibited high and also relatively similar magnitudes of binding
energies, varying from ca. −55 to −51 kJ/mol (Figure 4A,B). The energy values were
negative which confirms the strongly favourable binding in all considered cases. There was
also a positive correlation observed between the experimentally-determined IC50 values
(recalculated as log(IC50)) and the theoretically-predicted binding energies (Figure 4C)
expressed by the correlation coefficient value equal to 0.956. However, due to the small
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number of data points and also the small scatter across the sets of both the experimental IC50
and theoretical energies, such correlation can be coincidental. Nevertheless, the docking
results are in qualitative agreement with the experimental results, confirming the large
potency of astragalosides to be bound into the active site of AChE (Figure 5).
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Figure 4. (A) Correlation between the logPow values (taken from [32]) and the smallest value of the
free energy profiles associated with the permeability of the studied compounds through the lipid
bilayer. The lipid bilayer was composed of either POPC molecules (red points) or POPG molecules
(green points). The error bars correspond to the combined bootstrapping errors determined for the
smallest value of the energy and the value for the molecule located outside the bilayer. (B) The
same as in (A) but the correlation calculated for the logPSFubrain values. (C) Correlation between
experimentally-determined IC50 values (recalculated as log(IC50)) and the theoretical ligand-AChE
binding energies.
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Figure 5. (A) Superposition of the most favourable poses of all ligands interacting with AChE. (B) The
most favourable location of the astragaloside IV molecule bound to AChE. The ligand molecule is
shown in ball-and-stick representation whereas all the closest amino-acid residues (of the distance
not larger than 0.38 nm) are represented by thin sticks. The description of the interaction types is
given in the text. The residue numbering is compatible with the PDB:3EVE record.
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2.6. In Vitro and In Vivo Safety Studies

To evaluate in vitro safety of the most potent AChE inhibitor among the tested
saponins (A IV) the SY-SY5Y human neuroblastoma cell line was used (Figure 6). This cell
line is as a well-known model of dopaminergic neurons in Parkinson’s disease [33].
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Figure 6. Effect of astragaloside IV (6, 12.5, and 25 µg/mL) on viability of SY-SY5Y human neurob-
lastoma cells; the histogram shows the mean cellular viability ± SD in comparison with the control
saline-treated cells.

Since the zebrafish (Danio rerio) is the embryonic and larval model for screening safety
as well as potential toxicity [34] of a compound of interest, herein it was used to assess the
toxicity of astragaloside IV in vivo. For this purpose, zebrafish embryos were incubated in
25 µg/mL of astragaloside IV from 1 up to 96 hpf (Figure 7).
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3. Discussion

The previous studies showed that the metabolites of Astragalus mongholicus Bunge
are able to cross the BBB [23], and are characterized by a small toxicity [35]. In the doses
of 50, 100, and 200 mg/kg the plant did not interfere with the locomotor activity or situ-
ational anxiety as measured in the elevated plus maze test. On the other hand, in these
doses Astragalus mongholicus Bunge induced the pharmacological actions that included
a significant suppression of the number and duration of seizures in the pentylenetetra-
zole (PTZ)-induced model of epilepsy and in the subchronic application it showed an
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impact on the number of neurons in the CA1 (decrease) and CA3 area (no impact) of the
hippocampus [35].

The above-mentioned information encouraged the authors to study the potential of
astragalosides—the major secondary metabolites present in the plant—concerning their
potential application as an AChE inhibitor. The previous studies [23] showed a considerable
potential of astragalosides in the inhibition of acetylcholinesterase enzyme. The aim was to
evaluate the ability of astragalosides to cross the BBB as well as to compare which of the
astragalosides exhibited greater inhibition against AChE based on the peak area values (the
IC50 values were not shown). That is why the results presented herein are the continuation
of the research on their potential mechanism of action, molecular grounds for their AChE
inhibition activity, strength in action and finally, toxicity.

As the previous study [23] proved the highest biological potential of astragalosides
III and IV compared with the other tested saponins. In this research their presence was
confirmed in the whole extract obtained from the 50% ethanolic one from the root of
Astragalus mongholicus by the HPLC-ESI-QTOF-MS/MS instrument. Both compounds
were visualized as the major metabolites clearly visible in the middle part of a mass
chromatogram similarly to the studies by other authors [36,37].

The bioactivity of astragaloside IV towards diseases of the central nervous system has
been studied by other authors previously. In terms of its potential to favour the treatment
of cognitive impairment, anti-inflammatory action and the attenuation of oxidative stress
seem to be the most important and so far proven actions of this saponin. In the studies by
Zhang and co-investigators [38], astragaloside IV was confirmed to improve the condition
of neuronal damage by the regulation of the Nrf2/Keap/HO-1/NQO1 pathway. According
to Meng et al. [39], the saponin showed a protective effect towards the neurons treated with
hypoxia reducing the calpain-1 and HIF-1a expression and affecting the downregulation of
the calpain-1/HIF-1α/caspase-3 pathway. In addition tothe other reports on its influence on
mitochondrial functions, the modulation of PI3K/Akt [40], AGEs/RAGE/NF-κB Axis [41],
and PARγ/BDNF signalling pathways, these findings contribute to the creation of an
interesting and comprehensive bioactivity profile of the compound.

3.1. Biomimetic Models for Lipophilicity Determination

Strong linear relationships between the logk and logkw values were obtained for all
the tested compounds in all the chromatographic systems with the average R2 value 0.980
and 0.983 for the IAM and CHOL systems, respectively. In addition, these relationships also
confirmed the congeneric nature of the investigated compounds. Moreover, the previously
in silico calculated logPow values are as follows: 5.020, 4.459, 3.767, 3.757 for A I, A II,
A III, and A IV, respectively [23]. Comparing the biomimetic-chromatographic lipophilicity
descriptors (logkw) values with the computational ones (logPow), it can be concluded that
the smallest differences between them were observed in the system with the cholesterol-
bound stationary phase (CHOL). There are the most convergent relationships between the
lipophilicity of the tested saponins determined in silico and using the IAM stationary phase.
The most lipophilic compound is A I whereas A IV is the least; however, the difference
between these values is 0.986. Moreover, it was observed that more hydrophobic molecules
reveal greater s values which is in line with the background retention theory in which
the s values are related to the solute/mobile phase and the solvent/stationary phase net
interactions [31]. Both the IAM and CHOL systems determined the lipophilicity of the
studied astragalosides to be similar to the computational method.

3.2. HPLC-MS Fingerprinting of Extracts

Both compounds were present in the centre of the chromatogram, around the 37th
minute with astragaloside IV eluted first (37.4 min) and astragaloside III eluted second
(37.8 min). The sequence of elution of these two saponins was estimated based on the com-
parison with the standard of astragaloside III, and also based on the previously published
data of Zu et al. [42].
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Moreover, both compounds identified in the total extract were characterized by a
similar fragmentation pattern as described by the above-mentioned authors. The charac-
teristic signals in their mass spectra were as follows: 785 u—as the precursor ion [M+H]+,
605 u—as the molecular ion with glucose detached from the structure [M+H-Glu]+, 473—the
molecular ion with glucose and xylose detached from the molecular ion [M+H-Glu-Xyl]+,
455—the molecular ion with removed glucose, xylose and water [M+H-Glu-Xyl-H2O]+,
437—the molecular ion with no glucose, xylose and two water moieties [M+H-Glu-Xyl-2
H2O]+, and 419—the molecular ion with removed glucose, xylose and three groups of
water [M+H-Glu-Xyl-3H2O]+. Both compounds had also a characteristic ion at 143 that
was due to the presence of the substituent containing a substituted oxolan group.

3.3. Molecular Dynamics Simulations

Molecular dynamics simulations were performed to determine the free energy profiles
associated with the permeability of astragalosides I–IV through the lipid bilayer. All
determined free energy profiles (Figure 2) confirm that astragalosides exhibit great affinity
for the lipid bilayer. This effect is expected to be due to the positive values of the logPow
parameter. Moreover, a good correlation is obtained when comparing the logPow values
with the lowest value of free energy on the determined 1D profiles (Figure 4A). Thus, the
affinity for the lipid bilayers changes in the same order as the corresponding logPow values,
i.e.: I > II > III~IV. The same trend is characteristic of both POPC- and POPG-containing
lipid bilayers, although the affinity of astragalosides for the bilayer is notably larger in the
latter case. In none of the cases was the free energy barrier associated with the immersion
into the bilayer observed. Instead, only in the case of astragalosides II, III and IV and the
POPC membrane did small (II, III) or moderate (IV) barriers appear, located either at or
around the centre of the bilayer.

The results of molecular dynamics suggest that all the studied compounds have a
tendency to accumulate in the lipid bilayers and the permeability rate is associated with
leaving the bilayer rather than entering it. The minimal energies determined from free
energy profiles also correlate reasonably well with the brain/plasma equilibration rate
expressed as the logPSFubrain parameter (Figure 4B) [23].

3.4. Molecular Docking

The results of the docking study were also analysed with respect to the mechanistic
interaction pattern, significant in the context of interpretation of the obtained binding
energies and the mechanism of inhibition. The summary given below consists of analysing
the ligand-protein contacts that take place if the distance between any corresponding
atom pair is smaller than the arbitrarily accepted value of 0.38 nm. Figure 5A shows the
superposition of all the most favourable ligand poses whereas Figure 5B shows the most
essential residues involved in the ligand-protein interactions. The extremely close match
between the superposed structures allows the transfer of most of the conclusions drawn on
the basis of the most potent compound (i.e., astragaloside IV) to the remaining ones.

The detailed pattern of the ligand-enzyme interactions is illustrated in Figure 5B, with
the exemplary A IV displaying the smallest IC50 value. All ligands prefer roughly the same
binding position in the enzyme cavity which enables them to block the catalytic site (the
proximity of the ligand to the two catalytic residues, His440 and Ser200, can be observed).
Moreover, blocking is achieved by limiting the access to the catalytic site as the ligand
molecule is located in the vestibule of the catalytic triad. The central fragment of the ligand
molecule (composed of aliphatic, cyclic moieties) interacts with the aromatic cluster of
sidechains, created by Phe290, Phe330, Phe331, Tyr121, and Trp279. These contacts have a
character of the CH-π interactions. The two sugar moieties (glucose and xylose, both in
the pyranose form) interact with more polar residues, located closer to the binding cavity
entrance (e.g., Asp285, Glu73, Asp72 or backbone fragments of Gln74 and Leu282). Some of
these contacts occur via the hydrogen binding. Interestingly, the glucose residue interacts
with the two aromatic sidechains of Tyr70 and Trp279, exhibiting the CH-π interactions
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characteristic of non-charged carbohydrate-protein binding [43]. The close presence of
the non-polar residues of Ile287 and Leu358 seems to be an opportunistic consequence
of previously-listed, more intensive interactions. Due to the location of the carbohydrate
residue with respect to the binding cavity (they are likely to be solvent-exposed) and the
inherent conformational flexibility of the glycosidic bonds, it can be speculated that the
carbohydrate-protein interactions may be not as relevant for the overall binding strength
in comparison to the interactions involving the central part of the ligand molecule. This
is indirectly confirmed by the extremely similar values of both binding energy and IC50
obtained for all the considered compounds, in spite of the fact that the largest differences
of chemical and structural character between particular astragalosides involve regions of
substitution by carbohydrate moieties. Finally, the opposite part of the ligand molecule
(containing the substituted oxolane moiety) interacts with the sidechains Trp84, Phe330,
Glu199, Ser200, and His440; the two latter residues belong to the catalytic triad. The
character of interactions varies between hydrogen binding (Glu199 and Ser200) and CH-π
interactions (His440, Trp84, Phe330). These contacts are well-conserved among the set of
considered molecules, as indicated by the small scatter of the corresponding moieties on
the superposed structures of the docked ligands (Figure 5A).

3.5. In Vitro and In Vivo Safety Studies

After administration of astragaloside IV at doses of 6 and 12.5 µg/mL cell viability
is slightly higher than the value for the control group (saline), while at the highest dose
used (25 µg/mL) it is slightly lower. This means that no significant decrease in the cellular
SH-SY5Y viability was observed for all analysed experimental conditions (Figure 6) which
is consistent with the previous findings showing a lack of A IV cytotoxicity in vitro [44].

In the case of in vivo studies on the zebrafish embryos 1, 2, 3 and 4 days post-
fertilization (dpf), there was no difference between the control and experimental groups
in the mortality rate (p > 0.05). In addition, astragaloside IV (25 µg/mL) did not affect
the larval hatchability of 3- and 4-day-old fish (p > 0.05). After the 95 h long exposition
to astragaloside IV, there was no difference between the tested groups in relation to the
scored morphological abnormalities (p < 0.05). The fish looked identical to the control
counterparts (Figure 7). Also, in the astragaloside IV-exposed fish the touch-evoked re-
sponse was normal. Thus, one may conclude that 25 µg/mL of astragaloside IV is safe for
developing zebrafish—it does not affect hatchability, morphology and muscle function as
well as performance.

4. Materials and Methods
4.1. The Analytes

The chemical structures of the investigated astragalosides I–IV (A I–A IV) from the
Astragalus mongholicus roots are presented in Table 2.

4.2. Plant Material and Determination of Astragalosides

The roots of Astragalus mongholicus were obtained from Ulaanbaatar (Bayangol district)
in July 2017. They were authenticated by Dr. Otgonbataar Urjin from the Mongolian
National University of Medical Sciences. Dried and ground roots were extracted by a
mixture of water–methanol (50:50 v/v) as a result of overnight maceration according to the
protocol described in our previous study [23]. The extract was evaporated to dryness at
45 ◦C using a rotary evaporator. Later the dried residue was used for the identification
of saponins according to the protocol described in the European Pharmacopea Edition
8.0. The obtained residue was re-dissolved in water and shaken with butanol 4times. The
joined butanol fractions were shaken vigorously twice with a 15% solution of ammonia,
to enable the formation of astragaloside IV [45]. Later the butanol fractions were joined,
evaporated to dryness, resuspended in methanol and subjected to HPLC-MS analysis after
being filtered through nylon syringe filters (0.2 µm pore diameter).
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Table 2. The chemical structures of the tested compounds.

No. Name Chemical Structure

1 Astragaloside I
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4.3. Chemicals

All compounds used in this research were >95% pure by HPLC analysis. Astragalo-
side IV from the aqueous methanolic extract of Astragalus mongholicus roots was isolated
according to the procedure described in our previous study [23]. The pharmacopoeial
standards of astragalosides I-III were purchased from Sigma Aldrich (Sigma Aldrich,
St. Louis, MO, USA; p.a.). All the chromatographic measurements were performed using
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acetonitrile (ACN; Sigma Aldrich, St. Louis, MO, USA; p.a)–phosphate buffer at pH 7.4.
The buffer components i.e., citric acid and disodium hydrogen phosphate (Na2HPO4) were
purchased from Sigma Aldrich (Sigma Aldrich, St. Louis, MO, USA; p.a.). Distilled water
was obtained from the Direct-Q3 UV apparatus (Millipore, Warsaw, Poland).

4.4. Chromatographic-Biomimetic Equipment and Conditions

The Shimadzu Vp liquid chromatographic system (Shimadzu, Kyoto, Japan) equipped
with an LC 10AT pump, an SPD 10A UV-Vis detector, an SCL 10A system controller, a
CTO-10 AS chromatographic oven and a Rheodyne injector valve with a 20 µL loop was
applied in the HPLC measurements.

The solutions of the isolated A IV as well as pharmacopoeial standards of A I–A
III were prepared in methanol (Merck, Darmstadt, Germany; p.a.) at a concentration of
1 mg/mL. All the astragalosides proved to be in the neutral form in the solution under
experimental conditions. The optimization process of the chromatographic separation was
made before the experiment. The flow rate of the mobile phases was established to be
1 mL/min and the temperature was set at 20 ◦C. The tested compounds were detected with
UV light at λ = 203 nm.

The IAM.PC.DD2 column (IAM; 100 × 4.6 mm i.d., 10 µm; Regis Technologies, Mor-
ton Grove, IL, USA) and cholesterol-bonded (CHOL; Cosmosil; 75 × 2 mm i.d., 2.5 µm;
Genore, Warsaw, Poland) were used as the stationary phase while the buffered solutions
of acetonitrile (ACN) were used as mobile phases. In each measurement the composition
of the mobile phases was: 0.3; 0.4; 0.5; 0.6 v/v ACN-buffer. The buffer was prepared from
solutions of both Na2HPO4 (0.02 mol/dm3) and citric acid (0.01 mol/dm3).

The dead-time values were measured from the citric acid peaks. All the reported
logarithms of the retention factors were measured three times. The values of the peak
asymmetry factor were in the acceptable range.

4.5. HPLC-MS Based Identification of Astragalosides I–IV in Astragalus mongholicus

The fingerprinting of the Astragalus mongholicus 50% methanolic extract was performed
using a platform (G320AA) composed of the HPLC chromatograph 1200 Series (Agilent
Technologies, Santa Clara, CA, USA) containing a binary pump, a degasser, an autosampler
and the PDA detector as well as the TOF-MS mass detector (6210 MSD TOF) with the
ESI dual spray ionization source. For the separation the Zorbax Stable Bond C-18 chro-
matographic column (150 × 2.1 mm, dp = 3.5 µm; Agilent Technologies) was operated in
the following gradient mode of acetonitrile with 0.1% of formic acid (solvent B) in 0.1%
aqueous solution of formic acid (solvent A): 0 min, 1% of B in A; 10 min, 45% of B in A;
60 min, 90% of B in A; 61 min, 1% of B in A; 75 min, 1% of B in A. The post run was set
at 10 min., the thermostat temperature at 25 ◦C, the monitored wavelengths at 203, 210,
254, 280 and 365 nm and the flow rate at 0.2 mL/min. The following settings of the mass
spectrometer were used: fragmentation energy: 200V, gas temperature: 350 ◦C, gas flow:
10 L/min, nebulizer pressure: 30 psi, capillary voltage: 4000 V, m/z range: 100–1000 u. The
Mass Hunter Workstation program (version B.10.00, Agilent Technologies) was used to
record and handle the data.

4.6. Molecular Dynamics

The molecular dynamics (MD) simulations were carried out using the GROMOS 53a6
force field [46] and within the GROMACS 2016.1 package [47]. The simulated systems
included one astragaloside (I-IV) molecule and lipid bilayer, immersed in the simulation box
containing water molecules (SPC model [48]) and neutralized by the appropriate number of
sodium ions when necessary. Two types of lipid bilayer were considered: either the POPC or
POPG bilayer. The parameters for phospholipids were adopted from ref. [49] whereas those
for astragalosides were generated by the Automated Topology Builder online server [50].
The simulations were made under periodic boundary conditions based on the rectangular
computational boxes of initial dimensions equal to ca. 8 × 8 × 12 nm. After the geometry



Int. J. Mol. Sci. 2023, 24, 9152 13 of 18

optimization and equilibration, the non-equilibrium pulling simulation was initiated,
aiming at forced migration of the astragaloside molecule from the bulk solution, through
the lipid bilayer to the bulk solution again (force constants of the associated harmonic
potential were equal to 5000 kJ mol−1 nm−2 whereas the pull rate was 0.01 nm ps−1). The
position of the astragaloside molecule along the Z axis of the box (perpendicular to the
bilayer) was accepted as the coordinate. Along the reaction coordinate, 40 windows were
selected in the range of ca −4.5–4.5 nm (where the centre of the bilayer corresponds to the
zero value) and 40 independent simulations were initiated with the umbrella harmonic
potential fixed at the distance between the centre-of-mass of the astragaloside molecule and
the centre of the box; the accompanying force constant was equal to 5000 kJ mol−1 nm−2.
The data within each window were collected every 2 ps during 40 ns. After removing
the first 5 ns for equilibration, the 1D free energy profiles were constructed with the
weighed histogram analysis method (WHAM) [51] as implemented in GROMACS (gmx
wham) [52]. The statistical uncertainties of the energy profiles were estimated using
the Bayesian bootstrapping of complete histograms [52]. The equations of motion were
integrated with the time step of 2 fs. The P-LINCS algorithm was applied to constrain
the lengths of all bonds [53]. The temperature was maintained close to its reference
value (310 K) by applying the V-rescale thermostat [54] whereas for the constant pressure
(1 atm, semiisotropic coordinate scaling) the Parrinello–Rahman barostat was used with
a relaxation time of 1 ps [55]. The centre of mass motion was removed at every step.
Electrostatics were treated with the particle-mesh Ewald (PME) [56], using the short- range
cut-off of 1.2 nm, and the van der Waals interactions were switched off between 1.0 and
1.2 nm.

4.7. Determination of the IC50 Values of Astragalosides

The TLC-bioautography method was used to determine the IC50 values of the tested
saponins. Owing to the application of this technique, bright spots of active compounds
were registered against the dark background. The TLC chromatogram was obtained on
aluminium-covered normal phase TLC plates (Merck, Darmstadt, Germany, silica gel
60 F254).

To calculate the strength of the astragalosides, the IC50 values were determined for
astragalosides II, III, and IV. For this purpose, 1 mg/mL solutions of all pure compounds
were sprayed on the TLC plate using the Camag Linomat 5 (Muttenz, Switzerland) with
the decreasing volumes in the range of 0.002–0.008 mg of compounds per spotevery 1 cm.

Later the TLC plate was subjected to the TLC-bioautography assay towards inhibitory
properties against the AChE enzymeas described previously [23]. Briefly, first the TLC
plates were sprayed with asolution of 30 mg/20 mL of 1-naphtyl acetate. After drying the
TLC plate under the laboratory hood in the air, the TLC plate was sprayed with a solution
of AChE enzyme (3 U/mL) that was diluted in the Tris buffer (pH = 7.8) with the addition
of bovine serum (500 mg/500 mL of water). The TLC plate was incubated for 10 min at
37 ◦C in the humidified laboratory drier. Then the TLC plate was removed from the heater
and left in the air to dry. Subsequently, the silica gel plate was sprayed with asolution
of Fast Blue B salt (1.25 mg/mL)–a derivatiser–which resulted in the colouration of the
background. The chromatogram was analysed by the WinCats (v. 1.4, Camag) program
and the peak areas of every spot were determined. Based on the numerical values obtained
corresponding to the intensity of discoloured zones measured with the peak areas, the
calibration curves were determined and the IC50 values were calculated as half of the peak
area from the biggest spot that stayedwithin the linearity range area.

4.8. Molecular Docking

The astragaloside I–IV molecules were created using the online SMILES translator [57]
and subsequently optimised within the UFF force field [58] (5000 steps, the steepest de-
scent algorithm) and the Avogadro 1.1.1 [59] software. The flexible and optimised ligand
molecules were docked into the binding pocket of the protein structure found in the PDB
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database (PDB:1EVE). Docking simulations were performed in the AutoDock Vina software
(AutoDock Vina 1.1.2; vina.scripps.edu). [60]. The procedure was performed within the
cuboid region of the dimensions 22 × 30 × 24 Å3 which covers the co-crystallized ligand
present in the considered PDB record as well as the closest amino-acid residues that exhibit
a contact with this ligand. All the default procedures and algorithms implemented in
AutoDock Vina were applied during the docking procedure. The rotatable torsional angles
in both ligand molecules and the selected amino-acid sidechains within the binding cavity
(Tyr334, Phe330, Phe75, Trp84, Glu199, Ser200, Tyr70, Tyr121, Trp279, Phe290, Phe331,
Phe288, His440, Gln74, Leu282, Trp432, Asn85, and Asp285) were allowed to change their
conformation. The visual inspections of each pose of the docked ligands were carried out
in order to assure that the binding energies corresponded to the structurally-analogous
orientations. The procedure was validated in our previous paper [61].

4.9. In Vitro Cytotoxicity Test

The SH-SY5Y human neuroblastoma cell lines (ATCC CRL-2266) were maintained in
a1:1 mixture of Eagle’s Minimum Essential Medium and F12 Medium, supplemented with
10% (v/v) of foetal bovine serum. The cells were grown at 37 ◦C in a humidified incubator
with 5% CO2.

The viability of SH-SY5Y cells was evaluated based on the reduction of the yellow
tetrazolium salt (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide or MTT)
to the purple formazan crystals by the metabolically active cells. The cells were seeded
onto the 96-well plates at the density of 10,000 cells/well, grown overnight and treated
with astragaloside IV at 6, 12.5 or 25 µg/mL. Following 24 h of incubation the medium was
replaced with 200 µL of fresh medium containing MTT (final concentration 0.5 mg/mL)
and the cells were incubated for a further 4 h at 37 ◦C. The precipitated formazan was
dissolved in 100 µL DMSO and the absorbance of the samples was measured at λ = 540 nm.
The mean absorbance measured for the control cells, treated with the solvent (saline), was
set to 100% cellular viability and used to calculate the percent of viable cells under each
experimental condition.

4.10. The Effect of Astragaloside IV on the Zebrafish Embryos

Zebrafish (Danio rerio) embryos were obtained from the Experimental Medicine Centre,
Medical University of Lublin, Poland. The animals were kept in an incubator under the
appropriate environmental conditions (28.5 ± 0.5 ◦C, light/dark cycle: 14/10 h) up to
96 h post-fertilization (hpf). For the studies, the National Institutes of Health Guide for
the Care and Use of Laboratory Animals (Directive 2010/63/EU) was applied. Thus, for
the yolk-feeding larvae up to 120 hpf ethical approval is not required. Nevertheless, all
attempts were made to minimize the number of animals and their suffering. Immediately
after the experiments, the larval zebrafish were euthanized in a15 µM tricaine solution.

In order to assess the effect of astragaloside IV on the developing organism, the
zebrafish embryo acute toxicity test was carried out according to the Organization for Eco-
nomic Cooperation and Development recommendation for the testing of chemicals (Test
No. 236) as described previously [62]. One hour after fertilization, viable, perfectly spheri-
cal and completely transparent embryos were selected and transferred to 12 well plates
(Sarstedt, Germany). The embryos were randomly divided into control and experimental
groups. The embryos were kept in each well until the appropriate stage of development
was reached of 96 hpf. Two batches of embryos (3 wells per batch, n = 5–6 per well) were
kept in 3 mL of zebrafish E3 medium without treatment, i.e., the control group and that was
supplemented with 25 µg/mL of astragaloside IV, i.e., the experimental group. Mortality
was assessed after 23, 47, 71 and 95 h of exposition. Hatchability was evaluated after 71
and 95 h of exposition. Morphological abnormalities were scored after 95 h of exposition:
heartbeat, heart oedema, yolk sac utilization/necrosis, jaw development, eye size, body
axis and haemorrhage [62]. Furthermore, to assess muscle function and performance, the
touch-evoked response was performed by slight touching of the tail with metal tweez-
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ers [63]. The criteria for the larval response were as follows: absent, decreased and normal,
as described in detail in our previous paper [64].

4.11. Statistical Analysis

The obtained data were pooled together. The Chi-squared test or the Fisher’s exact
test was used for statistical purposes.

5. Conclusions

The above-described properties of astragaloside IV together with the results of this
study confirming its ability to inhibit the action of the acetylcholinesterase enzyme—directly
engaged in the process of cognition—place astragaloside IV on the list of compounds that
can be drug candidates for the treatment of cognitive impairment diseases. However, it
should be noted that the assays for acetylcholinesterase-inhibitory activity were performed
by TLC. This type of research needs to be also confirmed in vivo on model organisms.
However, in accordance with Etkins’ approach [65] to the determination of biological
activity, it is important in the first stage of the experiment to carry out research based on
computational as well as biomimetic methods while confirming the safety of living organ-
isms. The docking results are in qualitative agreement with the experimental IC50 values,
confirming the large potency of astragalosides to be bound into the active site of AChE. It
was confirmed that A IV is the most active compound (with the smallest IC50 value) among
the tested saponins occurring in the roots of Astragalus mongholicus. Moreover, no toxic ef-
fect was detected in eitherin vitro orin vivo tests. A IV can cross the BBB and has an AChE
inhibitory potential comparable to e.g., isoginkgetin from Selaginella doederleinii Hieron
Selaginellaceae (whole plant), macelignan from Myristica fragrans Houtt. Myristicacea, voa-
cangine Ervatamia hainanensis Tsiang Apocynaceae (stems), or swatinine-C from Aconitum
laeve Ranunculaceae (tubers) [66].
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