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Abstract: Temperature-sensitive transient receptor potential (TRP) channels (so-called “thermoTRPs”)
are multifunctional signaling molecules with important roles in cell growth and differentiation. Sev-
eral “thermoTRP” channels show altered expression in cancers, though it is unclear if this is a cause
or consequence of the disease. Regardless of the underlying pathology, this altered expression may
potentially be used for cancer diagnosis and prognostication. “ThermoTRP” expression may distin-
guish between benign and malignant lesions. For example, TRPV1 is expressed in benign gastric
mucosa, but is absent in gastric adenocarcinoma. TRPV1 is also expressed both in normal urothelia
and non-invasive papillary urothelial carcinoma, but no TRPV1 expression has been seen in invasive
urothelial carcinoma. “ThermoTRP” expression can also be used to predict clinical outcomes. For
instance, in prostate cancer, TRPM8 expression predicts aggressive behavior with early metastatic
disease. Furthermore, TRPV1 expression can dissect a subset of pulmonary adenocarcinoma pa-
tients with bad prognosis and resistance to a number of commonly used chemotherapeutic agents.
This review will explore the current state of this rapidly evolving field with special emphasis on
immunostains that can already be added to the armoire of diagnostic pathologists.
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1. TRPs and “ThermoTRPs”: A Brief Introduction to Terminology and Biology

Capsaicin is best recognized as the active ingredient in hot chili peppers. Chili pepper
is indeed “hot”, because capsaicin and noxious heat activate the very same receptor, now
known as transient receptor potential, vanilloid-1, or briefly TRPV1 [1]. The molecular
cloning of this receptor earned a Nobel Prize (shared with Ardem Patapoutian) for David
Julius in 2021 [2].

TRPV1 is an unusual name for a receptor, and needs some explanation. Vanilloid is
used because capsaicin and its ultrapotent analog, resiniferatoxin, share a vanillyl group
as a motif essential for bioactivity, but differ completely in the rest of the molecule [3].
The specific binding of resiniferatoxin to a site shared by capsaicin provided the first
biochemical proof of the existence of a specific “vanilloid” (capsaicin) receptor [3]. The
term “transient receptor potential” (or briefly, TRP) is related to mutant fruit flies. The eye
of wild-type fruit flies responds to sustained light stimuli with a lasting inward current.
These mutants, however, respond to light stimuli with a transient current [4,5]. Thus,
“transient receptor potential” (TRP) is really a misnomer, since the wild-type receptor, in
fact, produces a lasting current.

Based on its structural similarity to other TRP channels, the vanilloid receptor was
assigned to this receptor superfamily, within which it has its own subfamilies, TRPV1 to
TRPV6. The TRP superfamily has 27 mammalian members, divided into 6 subfamilies:
canonical (TRPC), vanilloid (TRPV), ankyrin (TRPA), melastatin (TRPM), polycystin (TRPP),
and mucolipid (TRPML) [6–8]. The canonical (or classical) TRP family was founded by the
drosophila mutant with defective eye function. The ankyrin family (which is not really
a family, because it has only one member, TRPA1) was named after the unusually long
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ankyrin repeat that it possesses. The first member of the melastatin family was found during
a search for markers that can distinguish benign nevi from malignant melanoma. Finally, the
TRPP and TRPML families were named after diseases they are associated with (polycystic
kidney disease and mucolipidosis, respectively) [6–8]. In fact, mutant TRP channel genes
are responsible for a number of diseases, so-called “TRP channelopathies” [9–11].

As TRP channel subfamilies are based on sequence homology and not function, family
members often have little in common. Generally speaking, TRPs are cation channels
with limited ion selectivity [7]. Some TRPs function as Ca2+ entry channels in the plasma
membrane, whereas others regulate Ca2+ homeostasis in intracellular organelles, including
mitochondria, Golgi network and the endoplasmic reticulum [7,11,12].

Cryo-electron microscopy and X-ray crystallography have provided important insights
into TRP channel structure and function. In contrast to highly selective cation channels, the
selectivity filter of TRPV1 is shallow and dynamic, favoring the influx of larger (e.g., Ca2+)
or smaller (e.g., Na+) cations [13]. This explains the long-recognized “limited selectivity for
Ca2+” nature of the TRPV1 channel.

At high doses, capsaicin can kill neurons by elevating intracellular Ca2+ levels [14].
Mitochondrial “swelling” is an early ultrastructural sign of irreversible capsaicin neurotoxi-
city [15]. Since TRPV1 is expressed in mitochondria [16], mitochondrial Ca2+ overload and
resultant caspase activation may play a role in capsaicin-induced neurotoxicity. Similar,
the mitochondrial TRPV1-mediated “death mechanism” may also operate in cancer cells.
In keeping with this, in chronic myeloid leukemia cells, TRPV1 activation can induce
apoptosis via Ca2+ influx, mitochondrial dysfunction, and caspase activation [17].

TRPV1 is not the only temperature-sensitive TRP channel, or “thermoTRP”. As of
today, eleven TRP channels belonging to the TRPV, TRPM, TRPC and TRPA subfamilies
have been reported to respond to thermal stimulation: in rodents, these channels cover a
broad range of temperatures (Figure 1), from noxious hot (e.g., TRPV1 and TRPV2), through
innocuous warm (e.g., TRPM2 and TRPV3), to cool (TRPC5) and noxious cold (TRPM8) [18].
During evolution, animals developed TRP channel orthologs with altered heat sensitivity
in order to adapt to the environment in which they live. For example, camels living in
desert heat express a TRPV1 protein with dramatically reduced heat sensitivity, due to a
single amino acid mutation in the N-terminal ankyrin repeat [19].
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The exact role of TRP channels in human physiological temperature sensation is still
poorly understood. Historically, “thermoTRPs” have been classified as hot-, warm-, or
cold-sensors. To some degree, at least under pathological conditions, this model is still
applicable. For example, TRPV1-null mice display impaired noxious heat sensation in a hot
plate test [20,21], and study subjects taking small molecule TRPV1 antagonists reported
burn injuries as side-effects [22,23].

Physiological temperature sensation is a complex process. For instance, warm temper-
ature can activate a group of sensory afferents and, at the same time, block another [24].
Furthermore, the same “thermoTRP” may respond to different temperatures, depending
on the neuron in which it is expressed. There is good evidence that TRPV1 responds to
noxious heat in some afferents, but detects mild temperatures in others [24].

It is difficult to extrapolate observations from animal experiments to humans due to
marked species-related differences. A dramatic example of this phenomenon is TRPA1; this
channel is a cold-sensor in mice [25,26], and a heat-sensor in frogs [27] and birds [28]. In
man, the inherent thermosensitivity of TRPA1 is debated. In one study, TRPA1 responded to
both heat and cold [29,30], but in another study, it lacked inherent thermal sensitivity [31].

During evolution, the pepper plant developed capsaicin as a chemical weapon to deter
herbivores [32]. However, birds (which carry a TRPV1 ortholog that does not recognize
capsaicin [33]) can eat the pepper pod and spread the pepper seed in their feces.

Generally speaking, TRP channels are non-selective cation channels [7]. Some TRP
channels such as TRPV1 display a limited selectivity for Ca2+, whereas others (for example,
TRPM7) preferentially allow Mg2+ uptake [7,8,11]. In non-neuronal tissues, TRP channels
have been implicated in cell growth and differentiation [34]. The participation of TRP
channels in malignant transformation, cancer growth and metastasis has been reviewed
elsewhere [35–38].

TRP channels are widely expressed in various human cancers [39,40]. Here, we
review the practical use of aberrant “thermoTRP” expression, as detected by paraffin
immunohistochemistry for cancer diagnosis and prognostication.

2. The Expression Landscape and Function of “ThermoTRPs” in Normal Tissues
2.1. TRPA1

TRPA1 was originally cloned as ANKTM1, a cold-activated TRP-like channel in murine
nociceptive neurons [26]. Subsequently, TRPA1 was shown to detect a broad range of irri-
tant chemical stimuli, ranging from pleasant (such as allicin in garlic or allyl isothiocyanate
in wasabi) [41] to harmful and noxious (e.g., acrolein and other electrophilic compounds
in tear gas [42], cigarette smoke [43], and diesel fumes [44]). Although the thermal sen-
sitivity of TRPA1 is markedly species-dependent (it responds to cold in mice [25,26], but
it is activated by heat in birds [28]), its role as a general noxious chemical sensor is evo-
lutionary preserved. TRPA1 is a human chemical nociception of ancient origin that first
appeared in insects hundreds of millions years ago [45]. For example, the medicinal plants
Nepeta cataria (commonly known as catnip) and Cinnamosma fragrans repel wild-type, but
not TRPA1−/−, mosquitos [46,47], and the popular insect repellent, citronella, also acts on
the TRPA1 channel both in mosquitos [48] and fruit flies [49].

The role of TRPA1 in human pain sensations is firmly established. A gain-of-function
mutation in the TRPA1 gene is responsible for familial episodic pain syndrome [50], the only
known painful TRP channelopathy. This makes TRPA1 a druggable pain target. Indeed,
TRPA1 is rigorously pursued by pharmacists in order to develop novel analgesic drugs [51].

Apart from nociceptive neurons, TRPA1 is broadly expressed in non-neuronal human
tissues, ranging from the urethra [52] and bladder urothelium [53] and vascular endothelial
cells [54], through keratinocytes [55], endometrial cells [56] and odontoblasts [57], to
cartilage [58]. The physiological role of TRPA1 in these non-neuronal cells is largely
unknown. In odontoblasts and skin keratinocytes, TRPA1 activation is believed to promote
growth and differentiation. In the endothelium, TRPA1 may regulate barrier function. In
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the urothelium, as in nociceptive neurons, TRPA1 may respond to irritant agents in the
urine [53].

2.2. TRPC5

TRPC5 was originally cloned from mouse brain [59,60]. Recombinant TRPC5 expres-
sion in HEK 293 cells potentiated ATP-induced Ca2+ uptake, implying its function as a
store-operated cation channel [59]. In humans, TRPC5 is predominantly expressed in the
brain [61], but TRPC5 expression was also demonstrated in non-neuronal tissues, including
the placenta [62], gingival keratinocytes [63], odontoblasts [64], vascular endothelium and
smooth muscle cells [65], and renal podocytes [66], just to cite a few examples.

TRPC5 has been linked to nephrotic syndromes [67]. Indeed, a small molecule TRPC5
inhibitor was shown to block the progression of experimental kidney disease [68]. Further-
more, TRPC5 has been implicated in the pathomechanism of essential hypertension [69]. In
the hippocampus, TRPC5 plays a central role in guiding neurite growth [70]; this implies
a role for TRPC5 dysfunction in neurological disorders. In peripheral sensory neurons,
TRPC5 responds to cooling [71]. Similarly, TRPC5 expressed in odontoblasts functions as a
dental cold-sensor [64]. Thus, TRPC5 is an intrinsically cold-gated channel [72], with its
cold-sensitivity regulated by the phosphorylation state of the channel protein.

2.3. TRPM2

TRPM2 was cloned from mouse brain as a cation channel activated by intracellular
ADP-ribose, β-NAD+ or arachidonic acid [73–75]. Originally, this channel was called
TRPC7, but later renamed TRPM2 to avoid confusion with canonical TRP channels. Re-
cently, TRPM2 has emerged as an important cellular redox sensor [76] that regulates vulner-
ability to ischemic cell death during ischemic stroke [77] or cardiac ischemia–reperfusion
injury [78].

In the central nervous system, TRPM2 has been linked to bipolar disorder and a num-
ber of neurodegenerative disorders, including Alzheimer’s and Parkinson’s disease [79].
In nociceptive neurons, TRPM2 is activated by warm temperatures [80]. Accordingly,
genetic deletion of the Trpm2 gene alters the behavioral warm sensation of animals [80,81].
Furthermore, TRPM2 is expressed in hypothalamic warm-sensitive neurons, having an
important role in body temperature regulation [82].

2.4. TRPM3

TRPM3 was first cloned from human kidney, where it is predominantly expressed in
the collecting tubules [83,84]. Expressed in HEK293 cells, TRPM3 mediated constitutive
Ca2+ entry, which showed a profound increase when the cells were exposed to hypotonic
solution [83]. These findings implied a role of TRPM3 in renal Ca2+ homeostasis. TRPM3 is
also expressed at lesser levels in the human brain [83,85], pancreas [86], and testes [84].

In mice, TRPM3 is expressed in nociceptive neurons, where it is steeply activated by
heat [87]. In accord, TRPM3 null animals exhibit deficits in avoiding noxious heat [87], but a
complete loss of noxious heat avoidance requires a combined elimination of TRPV1, TRPA1,
and TRPM3 channels [88]. Of note, gain-of-function mutations in the human TRPM3 gene
have been associated with inherited glaucoma and cataracts [89], as well as epilepsy and
learning disabilities [90].

2.5. TRPM4

TRPM4 was identified by scanning the Expressed Sequence Tags database [91]. A
human cDNA clone was found with significant homology to known TRPM proteins [91].
Expressed in HEK293 cells, TRPM4 functions as a Ca2+-activated channel [91] with marked
voltage dependence [92]. In human T-cells, TRPM4 regulates Ca2+ oscillations [93]. In
cerebral arteries, TRPM4 is expressed in smooth muscle, wherein it plays a pivotal role in
maintaining myogenic tone [94]. Nitric oxide was shown to inhibit TRPM4 and thereby
dilate blood vessels [95]. During autopsy, increased TRPM4 protein levels were found
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in vascular endothelial cells of stroke victims [96]. In the heart, TRPM4 mutations were
described in conduction diseases and Brugada syndrome [97,98].

In the range of 15 to 35 C, temperature stimulates TRPM4 channel activity in inside-out
membrane patches [99].

2.6. TRPM5

TRPM5 is highly expressed in the taste buds of the human tongue [100] where it
plays an important role in the perception of sweet, bitter, and unami (savory) tastes [101].
Temperature has a strong influence on how we taste. In fact, cooling or heating of the
tongue can be perceived as taste by many people. Thus, the finding that temperature
can modify the activity of TRPM5 channels by shifting the activation curve was hardly
unexpected [99]. Thermal stimuli (up to 35 C) enhance gustatory nerve responses to sweets
in TRPM5 wild-type, but not in TRPM5-null, mice [99]

In humans, TRPM5 expression has also been demonstrated in hair follicles [102], the
lacrimal sac epithelium [103], pancreatic β-cells [104], and sinonasal mucosa [105], as well
as in the gastro-intestinal tract (stomach, small and large intestine) [106,107]. The glucose
intolerant phenotype of the TRPM5 (−/−) mouse implies a role for aberrant TRPM5
activity in the pathomechanism of type-2 diabetes [108].

2.7. TRPM8

In 2002, TRPM8 was cloned independently in the laboratory of the two recipients
of the 2022 Nobel Prize in Physiology and Medicine, David Julius [109] and Ardem Pat-
apoutian [110], as a channel that senses cold stimuli and menthol.

In humans, TRPM8 mRNA was first detected in the male genito-urinary tract (the
prostate, testicle, seminiferous tubules, scrotal skin, and urinary bladder) [111]. Subse-
quently, functional TRPM8 was found in lung epithelial cells [112], odontoblasts [113],
adipocytes [114], and corneal endothelial cells [115]. TRPM8 is a well-established, drug-
gable target for dry eye disease [116] and cold-hyperalgesia [117].

Clinical trials with TRPM8 agonists for itch (Cryosim-3 gel, Phoenix Pharma, Burlingame,
CA, USA) [118] and cough relief (AX-8, Axalbion, Manchester, UK) [119] are ongoing. The
TRPM8 agonist, D3263 (Dendreon, Seal Beach, CA, USA), was also trialed in a limited number
of patients with solid tumors, including advanced prostate cancer [120].

2.8. TRPV1

As discussed above, TRPV1 was originally cloned as the capsaicin receptor [1]. The
three cardinal activation modes of TRPV1 are capsaicin (and other vanilloids), protons,
and heat [121,122]. In mammals, TRPV1 also functions as a shared receptor for painful
venoms and toxins, such as those present in spiders [123] and jellyfish [124]. As expected,
TRPV1 is highly expressed in primary sensory neurons (in fact, TRPV1 was cloned from a
sensory neuron cDNA library [1]). Unexpectedly, TRPV1 is also expressed, albeit at much
lower levels, in brain nuclei [125], as well as in various non-neuronal tissues, ranging from
keratinocytes [126] and immune cells [127] to vascular smooth muscle [128]. In human
skin, TRPV1 is the predominant “thermoTRP” (Figure 2). In addition to its pivotal role in
nociception, TRPV1 has been implicated in thermoregulation [129], diabetes [130], appetite
control [131], and blood pressure regulation [132].
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Figure 2. The relative transcription of genes encoding TRPV1, TRPA1, TRPV4 and TRPM8 in human
skin (reproduced with permission from [133]). The results are expressed as mean + S.E.M. and
analyzed by one-way ANOVA followed by the Tukey post hoc test. * indicates p < 0.05, significant for
3 genes; # indicates p < 0.05, significant or 1 or 2 genes.

There is a large body of literature on the oncogenic role of TRPV1, with conflicting
results. There is, however, good evidence that TRPV1 is expressed in both sensory afferents
and immune cells in the tumor microenvironment, as well as in the tumor cells them-
selves [134]. This expression pattern may create an intricate, and as yet poorly understood,
interaction between cancer cells, nerves, and immune cells. In fact, chemical ablation of
TRPV1-positive afferents by capsaicin [135] or resiniferatoxin [136] has a profound effect on
tumor growth and metastasis; for example, it caused early metastatic spread in a murine
model of triple negative breast cancer [135]. By contrast, it prolonged (tripled) the survival
of mice inoculated with B16F10 melanoma cells [136].

2.9. TRPV2

Cloned as a capsaicin receptor homologue (vanilloid receptor-like protein-1, VRL-1)
with a high threshold for noxious heat [137], TRPV2 is predominantly expressed in the
brain and dorsal root ganglia. TRPV2 is also expressed in aortic myocytes where, at least
in mice, it responds to osmotic changes [138]. In human lens epithelial cells, TRPV2 is
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activated by a high-glucose environment, and the resultant Ca2+ accumulation leads to cell
death (presumably a mechanism of diabetic cataract) [139]. In addition, TRPV2 expression
was reported in endometrial stromal cells [140], endothelial cells and cardiomyocytes [141],
just to cite a few examples. Indeed, TRPV2 is a remarkably conserved protein, expressed in
almost all human tissues studied [142].

2.10. TRPV3

TRPV3 was identified independently by three groups as a temperature-sensitive
(22 to 40 ◦C) cation channel, predominantly expressed in the skin, brain, spinal cord, and
sensory ganglia [143–145]. In the skin, TRPV3 has been implicated in various functions.
Gain-of-function point mutations in the TRPV3 gene are responsible for a debilitating skin
condition known as Olmsted syndrome [146]. Furthermore, abnormal TRPV3 activity may
cause atopic dermatitis [147] or hair loss [148]. Recently, TRPV3 was found in both the
small and large intestine, with reduced expression in inflammatory bowel disease [149].
TRPV3 as a therapeutic target has been reviewed elsewhere [150].

2.11. TRPV4

TRPV4 (formerly, OTRPC4) was originally identified in kidney, liver and heart as
non-selective cation channel with remarkable sensitivity to changes in volume [151] and
extracellular osmolarity [152]. Indeed, TRPV4 null mice showed impaired osmotic sensa-
tion [153]. Disrupting the Trpv4 gene in mice also reduced the pressure-sensitivity, leaving
heat sensation intact [154]. Based on these observations, an essential role of TRPV4 in
normal osmotic sensation and pressure detection was postulated.

In mouse keratinocytes, TRPV4 responds to modest increases in ambient tempera-
ture [155]. It was speculated that thermal activation of TRPV4 in human keratinocytes
evokes the itchy feeling in rosacea [156]. TRPV4 is also expressed in human sperm, in
which it guides migration towards the warm womb [157].

Functional TRPV4 expression was reported in human airway smooth muscle cells,
macrophages, oral and vaginal keratinocytes, urothelial cells, cardiac myocytes, etc [158].
Point mutations in the hTRPV4 gene (so-called “TRPV4 channelopathies”) have been linked
to severe skeletal dysplasias and neuromuscular disorders, including brachyolmia and
Charcot–Marie–Tooth disease [159,160].

3. Aberrant “ThermoTRP” Expression in Cancers: Implications for Diagnosis
and Prognostication

Pathologists rely on immunostains performed on paraffin-embedded tissues to de-
termine the lineage of the tumor. For example, carcinomas are positive for cytokeratins,
hematopoietic malignancies express CD45, and melanoma shows Melan-A and/or HMB45-
like immunoreactivity. Unfortunately, these stains do not distinguish between benign and
malignant lesions.

Pathologists also use immunostains to provide information on the prognosis (for
example, “triple-negative” breast cancer usually follows an aggressive course, whereas
ALK-positivity portends a favorable prognosis in anaplastic large cell lymphoma [161]), or
guide clinical treatment decisions. For example, a number of selective BRAF inhibitors (e.g.,
vemurafenib and dabrafenib) are available for patients with metastatic melanoma [162].
Her2/neu-positive breast cancers react to targeted therapy with trastuzumab [163], whereas
CD20- or CD30-positive lymphomas can be treated with the humanized monoclonal anti-
bodies rituximab [164] and brentuximab [165], respectively. BRAF, Her2, CD20 and CD30
can be easily detected by paraffin immunostains.

The antibodies that we use to detect these proteins in everyday practice are well
characterized, and their staining methods standardized. Unfortunately, many broadly
used anti-“thermoTRP” protein antibodies lack specificity. For example, of the five tested
commercially available anti-TRPA1 antibodies, only two proved selective for TRPA1 [166].
Therefore, the previously published data regarding human TRPA1 expression in normal
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and cancerous tissues should be revisited. Similar concerns have been raised about the
specificity of anti-TRPV1 antibodies [167].

a. Squamous cell carcinoma of the skin and the head-and-neck

TRPV1 is highly expressed in human skin keratinocytes (Figure 2), predominantly in
membranous staining patterns (Figure 3). TRPV1-like immunoreactivity is increased in hu-
man oropharyngeal squamous cell carcinoma (SQCC) and skin SQCC cases
(Figure 4), compared to control tissue [168–170]. In normal human oral mucosa, TRPV1-like
immunoreactivity is restricted to the stratum basale, whereas in cancer, it is present through-
out the whole epithelium [168]. Interestingly, in patients with a long history of smoking
and/or alcohol abuse, TRPV1 staining (similar to cancerous tissue [168]) can also be seen
in keratinocytes above the basal layer [171]. The prognostic value of TRPV1 immunostain-
ing in oral SQCC is unknown. Parenthetically, one study described similar TRPV1-like
immunostaining between healthy controls and human skin SQCC samples [172]. The cause
of this discrepancy is unknown. In part, it may be related to the antibody used in the study.
As mentioned above, the specificity of some anti-TRPV1 antibodies is questionable [167]).
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Figure 4. Squamous cell carcinoma of the human skin: TRPV1- and TRPV4-like immunoreactivity, 

along with two major acid-sensitive channels, ASIC1 and ASIC2 (reproduced from [164]). (a–d) H&E 

staining of tumor samples; (e–h) immunohistochemical staining (inserted smaller pictures a 2X 

larger perspective). Scale bars represent 200 µm. 

In addition to SQCC, TRPV1 is highly expressed in basal cell carcinoma (BCC; Figure 

5) [169]. TRPV4-like immunoreactivity was also demonstrated in invasive skin SQCC, 

along with two acid-sensitive ion channels, ASIC1 and ASIC2 (Figure 4) [169].  
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with two major acid-sensitive channels, ASIC1 and ASIC2 (reproduced from [164]). (a–d) H&E 

staining of tumor samples; (e–h) immunohistochemical staining (inserted smaller pictures a 2X 

larger perspective). Scale bars represent 200 µm. 

Functional TRPA1 expression was demonstrated in nasopharyngeal SQCC, using a 

combination of immunohistochemistry, functional (TRPA1 agonist-induced Ca2+-uptake), 

in situ hybridization (RNAScope), and molecular studies (qPCR), at levels much higher 

than in healthy oral mucosa samples [170]. Of all the TRP channels, the TRPA1 gene shows 

the highest expression in head-and-neck SQCC [40]. In fact, the TRPA1 gene is part of the 

Figure 4. Squamous cell carcinoma of the human skin: TRPV1- and TRPV4-like immunoreactivity,
along with two major acid-sensitive channels, ASIC1 and ASIC2 (reproduced from [164]). (a–d) H&E
staining of tumor samples; (e–h) immunohistochemical staining (inserted smaller pictures a 2× larger
perspective). Scale bars represent 200 µm.

In addition to SQCC, TRPV1 is highly expressed in basal cell carcinoma (BCC;
Figure 5) [169]. TRPV4-like immunoreactivity was also demonstrated in invasive skin
SQCC, along with two acid-sensitive ion channels, ASIC1 and ASIC2 (Figure 4) [169].
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Figure 5. Basal cell carcinoma of the human skin: TRPV1- and TRPV4-like immunoreactivity, along
with two major acid-sensitive channels, ASIC1 and ASIC2 (reproduced from [164]). (a–d) H&E
staining of tumor samples; (e–h) immunohistochemical staining (inserted smaller pictures a 2× larger
perspective). Scale bars represent 200 µm.

Functional TRPA1 expression was demonstrated in nasopharyngeal SQCC, using a
combination of immunohistochemistry, functional (TRPA1 agonist-induced Ca2+-uptake),
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in situ hybridization (RNAScope), and molecular studies (qPCR), at levels much higher
than in healthy oral mucosa samples [170]. Of all the TRP channels, the TRPA1 gene shows
the highest expression in head-and-neck SQCC [40]. In fact, the TRPA1 gene is part of
the 12-gene methylation signature panel (REASON score) that predicts adverse clinical
outcome in patients with an early stage of oral SQCC [173].

Functional TRPM8 expression was reported in two human SQCC cell lines derived
from tongue cancer, HSC3 and HSC4 [174]. TRPM8 activation was augmented by menthol,
whereas the small molecule TRPM8 antagonist RQ-00203078 blocked the migration of
cancer cells in gelatin [174].

TRPM2-like immunoreactivity was also described in human tongue SQCC [175]. In
this study, TRPM2 staining was virtually absent in the controls. If this finding is verified by
other investigators, TRPM2 may be a novel immunohistochemical marker to distinguish
between reactive and malignant oral mucosa lesions.

The TRPC4 gene is highly expressed in head-and-neck SQCC [40]. Strong TRPC4-like
immunoreactivity was demonstrated in skin SQCC, but not in BCC [176]. Therefore, the
BerEP4 (positive in BCC and negative in SQCC)–TRPC4 (negative in BCC and positive in
SQCC) combination may be useful in the differential diagnosis of BCC and SQCC cases.

b. Pulmonary small cell carcinoma and adenocarcinoma

TRPV1 expression in pulmonary adenocarcinoma portends adverse prognosis [177–179]
and predicts resistance to certain chemotherapeutic agents such as cisplatin or 5-fluorouracil [180].
The prognostic significance is based on the measurement of TRPV1 mRNA in tumor and control
lung tissues, and is yet to be validated by immunostaining.

TRPV3 immunostaining may also identify a subset of patients with bad progno-
sis [181]. High TRPV3 levels were detected in 68% of the cancer cases tested (65 out
of 96 patients) [181]. Importantly, TRPV3 expression inversely correlated with cancer
differentiation [181].

By contrast, in a cohort of 95 patients with lung adenocarcinoma, TRPC3 expression
as determined by mRNA levels (real-time RT-PCR) identified a group with good progno-
sis [182]. In this study, immunostains were performed with an anti-TRPC3 antibody (cat:
54616, AnaSpec, San Jose, CA, USA); the tumor cells showed strong cytoplasmic staining,
whereas control pneumocytes were either negative or weakly positive. This study implies
both the diagnostic and prognostic value of TRPC3 immunohistochemistry in the work-up
of suspected lung adenocarcinoma.

In four human small cell carcinoma cell lines (H69, H146, H187 and H510), high TRPA1
mRNA expression was demonstrated using RT-PCR [183]. In these cells, TRPA1 activation
promoted tumor cell survival and growth. This is interesting because small cell carcinoma
is a disease of smokers, and TRPA1 is a well-established target for irritant compounds in
cigarette smoke [43]. Furthermore, pulmonary small cell carcinoma has a dismal prognosis
and few effective therapeutic options. Therefore, it may be worth exploring if TRPA1 can
be targeted by antagonists to halt (or at least slow) the progression of small cell carcinoma.

c. Prostate cancer

In prostate carcinoma, TRPV2 expression has been associated with the aggressive,
castration-resistant phenotype [184]. Accordingly, no TRPV2 expression was observed in
pT2 tumors; TRPV2 occurred only in advanced tumors with metastatic disease [184].

TRPM8 is the predominant “thermoTRP” in normal prostate (Figure 6). In prostate
cancer, TRPM8 expression shows a strong correlation with grade (ISUP grade 4 or higher)
and perineural invasion (Figure 7) [185]. Of note, circulating TRPM8 mRNA is a molecular
signature of high-risk disease [186]. Taken together, these studies suggest that TRPV2 and
TRPM8 (along with NKX3.1) may constitute a valuable immunohistochemical panel to
diagnose prostate cancer, and may identify patients at risk of aggressive disease who need
early therapeutic intervention (as opposed to watchful waiting).
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Figure 6. The relative transcription of genes encoding TRPV1, TRPA1, TRPV4 and TRPM8 in the
human prostate (reproduced with permission from [133]). The results are expressed as mean + S.E.M.
and analyzed by one-way ANOVA followed by the Tukey post hoc test. * indicates p < 0.05, significant
for 3 genes.
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In principle, TRPM8-positive cancer cells can be found and visualized in the body
by radiohalogen ligands [187]. This finding may open a new window of opportunity for
detecting metastatic prostate cancer. TRPM8 is a promising therapeutic target in advanced
prostate cancer [188,189]. In fact, clinical trials with D3263 have already been completed in
a small number of patients [120], the outcome of which is yet to be disclosed.

Using in situ hybridization, TRPV6 could not be detected in benign prostatic tissue
(including benign prostatic hyperplasia), prostatic intraepithelial neoplasia (high-grade
PIN), or small, incidental adenocarcinoma [190]. In a study of 96 prostatectomy speci-
mens, TRPV6 mRNA transcript levels were positively correlated with Gleason/ISUP score,
extraprostatic extension, and lymph node metastasis [190]. If these observations can be
validated by immunohistochemistry, TRPV6 may be another useful surrogate marker of
aggressive disease.

d. Bladder cancer

TRPV1 protein is easily detectable in the normal urothelium (Figure 8a). In non-
invasive papillary urothelial carcinoma, TRPV1 expression is reduced (but still detectable)
compared to normal urothelium [191], whereas in invasive urothelial carcinoma, TRPV1
staining is virtually absent (Figure 8b) [192,193]. According to these observations, TRPV1
immunostaining may help distinguish between non-invasive and invasive urothelial car-
cinoma. Moreover, Kaplan–Meier curves demonstrated a significantly shorter survival
for patients with TRPV1 mRNA downregulation [193]. Thus, the absence of TRPV1-like
immunoreactivity may have an independent negative prognostic significance in patients
with bladder cancer.
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Figure 8. (a) TRPV1-like immunoreactivity in a normal human urothelium and non-invasive urothe-

lial carcinoma (reproduced from [188]). L-lumen of the bladder; A-normal urothelium; B-papillary 

urothelial carcinoma; C-in-situ urothelial carcinoma; (b) TRPV1-like immunoreactivity is absent in 

invasive urothelial carcinoma. Image captured at 10X magnification. 
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human TRPV2 polyclonal antibody, Santa Cruz Biotechnology) in the superficial layer, 

mostly in umbrella cells [194]. By contrast, in urothelial carcinoma, strong and uniform 

Figure 8. (a) TRPV1-like immunoreactivity in a normal human urothelium and non-invasive urothe-
lial carcinoma (reproduced from [188]). L-lumen of the bladder; A-normal urothelium; B-papillary
urothelial carcinoma; C-in-situ urothelial carcinoma; (b) TRPV1-like immunoreactivity is absent in
invasive urothelial carcinoma. Image captured at 10× magnification.
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The normal human urothelium expresses TRPV2 protein (detected by the goat anti-
human TRPV2 polyclonal antibody, Santa Cruz Biotechnology) in the superficial layer,
mostly in umbrella cells [194]. By contrast, in urothelial carcinoma, strong and uniform
nuclear and cytoplasmic staining was seen throughout the tumor [194]. The TRPV2 im-
munoreactivity score correlated with the stage of the cancer.

In a retrospective study of 156 archived paraffin-embedded urothelial carcinoma cases,
strong and uniform TRPM8-like immunoreactivity was detected in 54% of the cancers;
the matched non-cancerous tissue samples showed lower intensity staining in scattered
cells [195]. A Kaplan–Meier curve analysis indicated a shorter overall survival time for
patients with strong TRPM8 staining [195].

e. Breast cancer

TRPV1 is expressed in normal breast tissue (Figure 9). In invasive ductal carcinoma,
three distinct TRPV1 staining patterns have been described using the Abcam (Cambridge,
MA, USA) anti-TRPV1 antibody: “classical” (diffuse staining in membrane and cytology),
“non-classical” (endoplasmic reticulum/Golgi pattern), and “mixed” (Figure 10) [196].
The classical pattern was predominantly seen in Luminal A and B cancers, whereas the
non-classical pattern has been associated with Her2-positive and triple-negative (BCL-like)
breast cancer and adverse clinical outcome [196]. The inter-observer variability of this
staining pattern recognition is yet to be determined. Of note, TRPV1 expression in breast
cancer cell lines and animal models has a large body of literature which is beyond the scope
of this review.
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Figure 9. The relative transcription of genes encoding TRPV1, TRPA1, TRPV4 and TRPM8 in
the human female breast (reproduced with permission from [133]). The results are expressed as
mean + S.E.M. and analyzed by one-way ANOVA followed by the Tukey post hoc test.
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Figure 10. Non-classical TRPV1-like immunoreactivity patterns can identify more aggressive breast
carcinomas (reproduced with permission from [196]). (A) The immunofluorescence of antibodies
directed against the C- and N-termini of the TRPV1 protein confirmed the expression of TRPV1
in breast cancer. (B) The two TRPV1 paraffin immunohistochemistry staining patterns in breast
cancer: “classical” in plasma membrane and cytosol, and “non-classical” with TRPV1 aggregates in
endoplasmic reticulum (ER) and Golgi. (C) The “classical” TRPV1 staining was predominantly seen
in Luminal A (LA) and Luminal B (LB) carcinoma. In triple negative (TN) cases, the “non-classical”
pattern was seen more often. (D) Survival (Kaplan-Mayer) curves: the “non-classical” TRPV1 staining
pattern was associated with worse prognosis.
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In triple-negative breast cancer, TRPV2 expression seems to identify a group of patients
with a favorable prognosis [197].

In a study of 59 women with invasive ductal carcinoma, TRPV6 expression was found
to be elevated compared to both adjacent non-cancerous tissue and ductal carcinoma in
situ (DCIS) [198]. TRPV6 expression was also associated with metastatic disease [199].

In breast cancer biopsy tissues, TRPC3 and TRPC6 proteins (determined by Western
blotting) were upregulated compared to normal breast tissue [200]. This study is yet to be
validated with paraffin immunohistochemistry.

TRPM8 was also reported to be overexpressed in breast carcinoma, having a positive
correlation with the mitotic (Ki67) index and the Scarff–Bloom–Richardson grade [198].

f. Gastric adenocarcinoma

Using the Abcam anti-TRPV1 antibody (cat: ab3487), markedly reduced (or virtually
absent) TRPV1 protein expression was found in gastric adenocarcinoma [201]. Strong
TRPV2 [202] and/or TRPM8 [203] protein expression was found in a subset of patients
with adverse outcomes (shorter overall survival). The TRPV2 study involved a total of
1524 cancer samples both at the mRNA and protein level. Furthermore, TRPV2 expression is
predictive of resistance to cisplatin therapy [204], which may provide a partial explanation
for the negative predictive value of the TRPV2 expression. TRPV4 expression has been
associated with early lymph node metastasis and poor overall survival [205].

g. Colorectal adenocarcinoma

With immunohistochemistry using an anti-TRPV1 antibody (Cell Signaling Technolo-
gies, Boston, MA), decreased TRPV1 protein expression was found in cancer biopsies
compared to adjacent normal tissue [206].

In a study of 93 patients, decreased TRPV3 and TRPV4 mRNA was found in colonic
adenocarcinoma compared to normal tissue [207]. Using RT-PCR, increased TRPM8 mRNA
expression was found to render negative prognostic value [208]. Unfortunately, these
studies did not include paraffin immunostains; therefore, they cannot be applied to rou-
tine pathology.

h. Pancreatic ductal adenocarcinoma

Both TRPM7 and TRPM8 proteins are absent in normal pancreatic ducts [209], but are
present in a subset of pancreatic ductal adenocarcinoma patients [209–212], where TRPM8
expression heralds adverse outcomes [213]. Since TRPM8 is also expressed in a broad
range of adenocarcinomas (such as breast [198] and stomach [203]), TRPM8-positivity lacks
specificity for determining the primary site of the cancer.

In human pancreatic adenocarcinoma cell lines, robust functional TRPA1 expression
was demonstrated [214]. This is yet to be verified in actual human tumor samples.

i. Endometrial and ovarian carcinoma

Of all the 27 human TRP channel genes examined, TRPV2 shows the highest expression
in endometrial carcinoma [40], where elevated TRPV2 mRNA expression heralds an adverse
outcome [215,216]. These mRNA studies need to be correlated with TRPV2 immunostaining.

In ovarian carcinoma, TRPV1 expression is increased compared to normal control or
borderline lesions [217]. Patients with high TRPV1 protein and low pTEN expression seem to
have especially bad prognosis [217]. This extensive study involved 217 carcinoma patients
and 157 benign ovarian tumors. TRPV1-immunoreactivity was determined by the anti-TRPV1
polyclonal antibody raised in rabbits (Alomone, Jerusalem, Israel; cat ACC-030).

According to an analysis of The Cancer Genome Atlas and Genotype-Tissue Expression
databases, strong TRPV4 expression predicts multidrug resistance and resultant adverse
outcomes in ovarian carcinoma [218]. Again, this study needs to be confirmed with paraffin
immunohistochemistry.
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j. Renal cell carcinoma

Of human TRP genes, TRPM2 shows the highest expression in conventional (clear
cell) renal cell carcinoma (ccRCC) [40]. A second study analyzed TRPM2 expression in
the Tumor Immune Estimation Resource (TIMER) and Gene Expression Profiling and
Interactive Analysis (GEPIA) databases: TRPM2 mRNA was elevated in ccRCC compared
to non-neoplastic kidney, and TRPM2 upregulation predicted poor survival [219].

TRPV1 protein expression is strong in normal renal tubules (goat polyclonal anti-
TRPV1 antibody, Santa Cruz, CA, USA), whereas it is diminished or lost in ccRCC [220].
The loss of TRPV1 staining correlated with the Fuhrman grade of the tumor and predicted
poor survival [220].

k. Hepatocellular carcinoma

Normal liver is devoid of TRPV1 staining. By contrast, TRPV1-like immunoreactivity
was detected in 81% of the cirrhosis, and 48% of the hepatocellular carcinoma cases [221].
Patients with TRPV1-positive carcinoma had a better prognosis [221].

Increased TRPV2 protein expression was found in 84% of cirrhosis cases compared to
normal liver [222]. In this study, 29% of hepatocellular carcinoma cases showed high TRPV2
protein expression; these were predominantly poorly differentiated cancers with evidence
of portal vein invasion [222]. Taken together, these findings imply that a combination of
TRPV1 and TRPV2 immunostains may separate low risk (TRPV1+/TRPV2−) and high-risk
(TRPV1−/TRPV2+) hepatocellular carcinoma patients.

In hepatocellular carcinoma, increased TRPV4 protein and mRNA levels were found
compared to paired non-tumoral liver tissue [223]. The prognostic significance of TRPV4
expression in liver cancer is, however, unclear.

l. Melanoma

TRPM1 (also known as melastatin) plays a pivotal role in normal melanocyte pigmen-
tation, and its expression positively correlates with melanin content [224]. Although TRPM1
expression does not reliably distinguish between benign nevi and malignant melanoma, the
loss of TRPM1 mRNA in melanoma predicts metastatic disease and poor survival [225]. In
fact, quantification of TRPM1 mRNA by chromogenic in situ hydridization (CISH) revealed
a steep TRPM1 loss at the transition of the melanoma from the radial growth phase into
the vertical growth phase, with adverse prognostic significance [226,227]. This observa-
tion implies that TRPM1 CISH may help differentiate between in situ and tumorigenic
melanoma cases. TRPM1 CISH may also help distinguish Spitz nevi from melanoma;
complete absence of TRPM1 mRNA was observed in 27 out of 33 (82%) of melanomas, but
only 1% (1 in 95) of Spitz nevi [228].

Though beyond the scope of this review, it is worth mentioning that autoantibodies
are responsible for the melanoma-associated retinopathy target TRPM1 cation channel of
retinal ON bipolar cells [229]. TRPM1 was also identified as a potential risk gene (along
with 35 other genes) in familial melanoma [230].

TRPM8 is expressed in the human melanoma cell line, G361 [231]. This is of interest
because TRPM8 is an established and already clinically pursued oncotarget. TRPV1 pro-
tein expression was demonstrated in melanoma (Figure 11), but it was also detected in
benign nevi (Figure 12); therefore, it cannot differentiate between benign and malignant
melanocytic proliferations [169].
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In the Cancer Genome Atlas database, TRPM4 and TRPV2 were identified as negative 
prognostic markers in uveal melanoma. TRPV2-positive cases had particularly dismal 
prognoses; over half of the patients died within one year of the diagnosis with metastatic 
disease [232].  
m. Gliomas, including glioblastoma multiforme (GBM) 

Figure 11. Benign melanocytic nevus of the human skin: TRPV1- and TRPV4-like immunoreactivity,
along with two major acid-sensitive channels, ASIC1 and ASIC2 (reproduced from [164]). (a–d) H&E
staining of tumor samples; (e–h) immunohistochemical staining (inserted smaller pictures a 2× larger
perspective). Scale bars represent 200 µm.
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Figure 12. Malignant melanoma of the human skin: TRPV1- and TRPV4-like immunoreactivity,
along with two major acid-sensitive channels, ASIC1 and ASIC2 (reproduced from [164]). (a–d) H&E
staining of tumor samples; (e–h) immunohistochemical staining (inserted smaller pictures a 2× larger
perspective). Scale bars represent 200 µm.

In the Cancer Genome Atlas database, TRPM4 and TRPV2 were identified as negative
prognostic markers in uveal melanoma. TRPV2-positive cases had particularly dismal
prognoses; over half of the patients died within one year of the diagnosis with metastatic
disease [232].



Int. J. Mol. Sci. 2023, 24, 9098 18 of 30

m. Gliomas, including glioblastoma multiforme (GBM)

In a study of 33 patients with GBM, gene expression profiling identified significant
increases in the expression level of several “thermoTRP” genes, including TRPM2, TRPM3,
TRPM8, TRPV1 and TRPV2 [233].

Using paraffin immunohistochemistry, TRPV1 and TRPA1 protein expression was
found in 62% of the WHO grade II astrocytomas, 37.5% of the anaplastic astrocytomas
(WHO grade III), and 16.3% of GBM cases [234]. Another study using immunofluorescence
also demonstrated TRPV1-like immuoreactivity in high-grade gliomas [235].

n. Hematolymphoid malignancies

The expression pattern of “thermoTRP” genes in hematological malignancies, includ-
ing leukemias, lymphomas, and plasmacell neoplasms, has been studied extensively using
molecular approaches [236–238]. For example, there is emerging evidence that TRPV2 ex-
pression may be an independent negative prognostic marker in plasma cell myeloma [238].
However, these observations have to be verified with paraffin immunohistochemistry
before they can be introduced into the practice of diagnostic hematopathology.

4. Conclusions and Future Research Directions

With over a thousand research papers and 22 reviews, the literature on TRP channels
and cancer is vast. The complete literature is probably even larger, since many relevant
studies had been published before the term TRP channel was introduced. For example, the
archetypal “thermoTRP” channel is the capsaicin receptor, TRPV1 [1]. Using the keywords
capsaicin and cancer, PubMed lists close to a thousand papers published since 1978.

The role of TRP channels, including temperature sensitive “thermoTRP” proteins, in
malignant transformation, tumor growth and metastasis has been the subject of excellent re-
views [35–38,38,239–245]. Briefly, TRP channels are expressed both in cancer cells and in the
tumor microenvironment, including nerves, blood vessels and immune cells [134]. Many
TRPs function as Ca2+ channels, and dysregulated intracellular Ca2+ has been implicated
in carcinogenesis [246]. Furthermore, TRP channel expression in sensory afferents and
immune cells is thought to create an intricate, and as yet poorly understood, neuro-immune
network that can impact the survival, proliferation, and metastatic spread of cancer. In
keeping with this concept, chemical ablation by resiniferatoxin of sensory afferents has been
shown to accelerate the growth of experimental breast carcinoma [135], and, conversely,
inhibit the progression of melanoma [136].

TRP channels, as promising oncotargets, have also been reviewed elsewhere [247,248].
For example, human nasopharyngeal squamous cell carcinoma cells express functional
TRPA1 and TRPV1 channels [170]. In vitro, TRPA1 and/or TRPV1 activation has been
shown to kill squamous cell carcinoma cells [170]. These observations imply a therapeutic
value of TRPA1 and/or TRPV1 agonists in the management of inoperable nasopharyngeal
squamous cell carcinoma. TRPM8 is an established and already clinically pursued target in
cancer therapy. The TRPM8 agonist, D3263 (Dendreon, Seal Beach, CA, USA), has already
been trialed in a limited number of patients with solid tumors, including advanced prostate
cancer [120].

The wide distribution of “thermoTRPs” [133] suggests a diverse function beyond heat
sensation. For example, the mechanosensitive TRPA1 [249] and TRPV4 [250] channels are
expressed in the gastrointestinal tract, implicating them in motility disorders [251]. In fact,
TRPA1 activation can stimulate bowel motility [252]. Therefore, TRPA1 agonists may be
clinically useful in postoperative ileus [252] and atonic colon/chronic constipation, also known
as “lazy bowel syndrome”. By contrast, TRPA1 antagonism may relieve colic pain with added
antidiarrheal activity [251]. Even TRPV1, long considered to be a marker of nociceptive
neurons [253], is detectable in a wide range of tissues, ranging from keratinocytes [126] and
melanocytes [169] to glia [235] and lymphocytes [127]. As predicted by this tissue distribution,
TRPV1 expression has been described in carcinomas [168–171,177–179], melanomas [169],
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gliomas [235], and hematological malignancies [236–238]. No “thermoTRP” examined so far
has had acceptable specificity in determining the lineage of a tumor.

A number of “thermoTRPs” may aid pathologists in distinguishing between benign
and malignant lesions (Table 1). For example, TRPV1 is expressed in normal or inflamed
gastric mucosa, but is absent in gastric adenocarcinoma [201]. Furthermore, TRPV1 is
expressed both in the normal urothelium [254] and non-invasive papillary urothelial car-
cinoma [191]. By contrast, no TRPV1 expression was seen in invasive urothelial carci-
noma [192,193]. Although not temperature-sensitive, TRPM1 is worth mentioning, since
TRPM1 mRNA CISH may distinguish between melanoma and Spitz nevi [228]. Melanomas
with strong and uniform TRPM1 mRNA CISH positivity are aggressive, commonly with
early metastasis and death [225].

Table 1. Altered “thermoTRP” protein expression in various human cancers, and their potential use
in diagnosis.

Tumor Increased Decreased

Oral SQCC TRPV1, TRPA1, TRM2
BCC TRPV1

Prostate cancer TRPM8, TRPV2
Urothelial carcinoma TRPV2, TRPM8 TRPV1

Breast carcinoma TRM8, TRPV6, TRPC3, TRPC6
Gastric adenocarcinoma TRPV1

Colorectal adenocarcinoma TRPV1, TRPV3, TRPV4
Pancreas adenocarcinoma TRPM7, TRPM8

Endometrial carcinoma TRPV2
Ovarian carcinoma TRPV1

Renal cell carcinoma TRPM2 TRPV1
Hepatocellular carcinoma TRPV1, TRPV2

SQCC, Squamous cell
carcinoma

BCC, Basal cell carcinoma

The use of “thermoTRP” immunohistochemistry to predict good or dismal clinical
outcomes looks promising (Table 2). A good example is TRPM8 expression in prostate
cancer. TRPM8 expression predicts aggressive behavior with early metastatic disease
and adverse prognoses [185]. TRPM8 expression can also identify patients who may be
potential candidates for future clinical trials with TRPM8 antagonists [120,188,189]. Another
example is TRPV1. TRPV1 expression can dissect a subset of pulmonary adenocarcinoma
patients with bad prognosis [177–179] and resistance to a number of commonly used
chemotherapeutic agents such as cisplatin and 5-fluorouracil [180].

Table 2. Altered “thermoTRP” protein expression in various human cancers, and their potential use
in prognostication.

Tumor Favorable Adverse

Oral SQCC TRPA1
Lung adenocarcinoma TRPC3 TRPV1, TRPV3

Lung small cell carcinoma TRPA1
Prostate cancer TRPV2, TRPV6, TRPM8

Urothelial carcinoma TRPM8
Breast cancer TRPV2

Gastric adenocarcinoma TRPV2, TRPV4, TRPM8
Pancreatic adenocarcinoma TRPM8

Endometrial adenocarcinoma TRPV2
Ovarian carcinoma TRPV1

Renal cell carcinoma TRPM2
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Despite the extensive literature on “thermoTRP” expression and cancer, very few
comparative studies are available. For example, we know that pulmonary adenocarcinoma
is strongly positive for TRPC3 [182], but we do not know whether or not other adenocar-
cinomas are also TRPC3-positive. Another big problem is the questionable specificity of
some commonly used anti-TRP antibodies, as exemplified by TRPA1 [166], TRPV1 [167],
and TRPM8 [255]. It is possible that the literature is littered with reports of non-specific im-
munostaining. A growing number of papers are analyzing public cancer genome databases
to find TRP channels with prognostic potential [39,40,218,219,232]. These findings have to
be correlated with paraffin immunostains.
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