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Abstract: In this study, we investigated the role of ferroptosis in the tumor microenvironment (TME)
of clear cell renal cell carcinoma (ccRCC), the leading cause of renal cancer-related death. We analyzed
single-cell data from seven ccRCC cases to determine cell types most correlated with ferroptosis
and performed pseudotime analysis on three myeloid subtypes. We identified 16 immune-related
ferroptosis genes (IRFGs) by analyzing differentially expressed genes between cell subgroups and
between high and low immune infiltration groups in the TCGA-KIRC dataset and the FerrDb V2
database. Using univariate and multivariate Cox regression, we identified two independent prognos-
tic genes, AMN and PDK4, and constructed an IRFG score model immune-related ferroptosis genes
risk score (IRFGRs) to evaluate its prognostic value in ccRCC. The IRFGRs demonstrated excellent
and stable performance for predicting ccRCC patient survival in both the TCGA training set and
the ArrayExpress validation set, with an AUC range of 0.690–0.754, outperforming other commonly
used clinicopathological indicators. Our findings enhance the understanding of TME infiltration with
ferroptosis and identify immune-mediated ferroptosis genes associated with prognosis in ccRCC.

Keywords: ferroptosis; microenvironment; renal cell carcinoma; single-cell; prognosis

1. Introduction

An estimated 3% of adult malignant tumor deaths are caused by renal cell carcinoma
(RCC), one of the three most common genitourinary malignancies [1]. Approximately 75%
of RCC patients have clear cell renal cell carcinoma (ccRCC) [2,3]. Approximately 20–30%
of patients with ccRCC are incidentally diagnosed with metastatic RCC, and approximately
30% of patients with early-stage ccRCC will develop distant metastases within five years
after surgery [4]. Patients with metastatic ccRCC have a poor prognosis, with a five-year
survival rate of 10% [5]. A variety of therapeutic modalities are used to treat ccRCC,
including targeted therapy and immunotherapy [6]. Metastasis-directed therapy, such as
radiation and surgery, is also a potential therapeutic modality for ccRCC [7]. However,
these clinical strategies have limitations due to patient heterogeneity, which can result in
frequent side effects and drug resistance. Tumor heterogeneity may also contribute to these
limitations, especially in terms of drug resistance [5]. Therefore, it is imperative to explore
the molecular mechanisms underlying the initiation and progression of ccRCC, identify
novel targets, and develop accurate prognostic systems.

CcRCC is associated with ferroptosis, a form of programmed cell death that is iron-
and lipid-dependent [8]. It is important to note that despite advances in ccRCC therapy,
some patients remain resistant to treatment due to mechanisms that inhibit apoptosis [9,10].
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Recently, several molecules have been reported to be involved in ferroptosis during ccRCC
progression. Wang et al. [11] found that ccRCC tumors frequently express SUV39H1,
which induces iron accumulation and lipid peroxidation, resulting in ferroptosis. Another
study showed that ccRCC cells were inhibited by KLF2 during migration and invasion
by regulating ferroptosis through GPX4 [12]. Li et al. [13] reported that inhibition of
SLC7A11 leads to ferroptosis in kidney cancer. Ferroptosis has been shown to be beneficial
in the treatment of ccRCC in several studies [11,14]. Importantly, these studies emphasize
the role of ferroptosis in suppressing tumor growth and enhancing therapeutic efficacy.
Yang et al. demonstrated that the Hippo pathway effector TAZ regulates ferroptosis in
ccRCC, suggesting a potential therapeutic target [14]. Similarly, Wang et al. showed that
SUV39H1 deficiency suppresses ccRCC growth by inducing ferroptosis [11]. These findings
collectively suggest that targeting the process of ferroptosis holds promise as an effective
therapeutic strategy for ccRCC. However, it remains unclear how ferroptosis-associated
genes are expressed in the tumor microenvironment (TME), including immune cells that
infiltrate the tumor.

Since tumors reside in a heterogeneous microenvironment composed of a variety of
cell types, immune cells infiltrating tumors play an important role in influencing prognosis
and response to immunotherapies [15]. For the identification of tumor cellular charac-
teristics, bulk sequencing is not appropriate. Single-cell sequencing could identify cell
populations whose gene expression patterns may have been masked or diluted by bulk
sequencing [16,17]. By characterizing the cellular composition and transcriptional state of
ccRCC, single-cell RNA sequencing (scRNA-seq) has been used to investigate the origin
and intratumoral heterogeneity of this cancer [18,19]. Furthermore, scRNA-seq analysis
revealed a variety of cell populations associated with immunotherapy resistance and poor
prognosis in patients with ccRCC [20–22]. It is still unclear how ferroptosis regulates these
changes within the TME of ccRCC, despite significant progress in identifying transcriptional
alterations associated with cancer development and clinical treatment.

To investigate the association between ferroptosis-related genes and tumor-infiltrating
immune cells in the microenvironment, we integrated scRNA-seq (GSE159115) and The
Cancer Genome Atlas (TCGA) (KIRC) data. We identified specific immune-related ferrop-
tosis genes and then developed prognostic models based on these genes. According to our
multiomics analysis focused on the cellular and molecular levels, ferroptosis-related score
is associated with immune-cell infiltration and immune-related pathways. These findings
not only contribute to our understanding of ferroptosis in the tumor microenvironment
(TME) but also have the potential to enhance existing prognostic biomarkers in this context,
thereby improving patient prognosis. Furthermore, these findings may also provide new
therapeutic possibilities for the treatment of ccRCC.

2. Results
2.1. Identification of ccRCC Single-Cell Subpopulations

The comprehensive analysis workflow is shown in Figure 1. According to the quality
control criteria, we performed quality control, dimensionality reduction, and clustering on
seven clear cell renal cell carcinoma samples from GSE159115. The clinical information is
summarized in Table 1. The quality control results were satisfactory and showed a high
correlation between nCount and nFeature (Figure 2D). We used the harmony method to
eliminate batch effects, and as observed in Figure 2C, the removal of batch effects was
substantial, with sample distributions present in each cell cluster. Using a resolution of 1.6
as the clustering criterion, we then classified the 31 subpopulations into nine distinct cell
types (Figure 2A,B) based on signature markers derived from single-cell correlation papers
(Figure 2E; Table S1): epithelium, endotheliocytes, fibroblasts, myeloid, T cells, proliferating
cells, NKT cells, B cells, and mast cells.
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Figure 1. Overall analysis flow chart.

Table 1. Patients’ baseline characteristics.

Patient Age Gender pTstage pNstage pMstage pStage Treatment

1 71 Male T2 N0 M0 Stage II Radical nephrectomy
2 70 Male T1 N0 M0 Stage I Partial nephrectomy
3 69 Male T1 N0 M0 Stage I Radical nephrectomy
4 76 Male T2 N0 M0 Stage II Partial nephrectomy
5 74 Male T2 N0 M0 Stage II Radical nephrectomy
6 66 Male T1 N0 M0 Stage I Partial nephrectomy
7 71 Male T2 N0 M0 Stage II Radical nephrectomy

2.2. Ferroptosis Activity in Different Immune Cell Types

We performed differential analysis on all cell types and presented the intersection
between differentially expressed genes (adj. p value < 0.05, |log2FC| > 0.5, Table S2)
across cell types and ferroptosis-related genes (Figure 3A). We found that the differentially
expressed ferroptosis-related genes in T cells, NKT cells, and B cells were mostly down-
regulated, such as HMOX1, PEBP1, PDK4, EGR1, TIMP1, IL1B, and TIMP1. In contrast,
myeloid showed the highest number of differentially expressed ferroptosis-related genes,
with a significant number of both upregulated and downregulated genes. Upregulated
genes included IL1B, FTL, CTSB, SLC40A, and CYBB, while downregulated genes included
COX4I2, WWTR1, CP, EGR1, and ENPP2. To determine which immune cell type had the
highest association with ferroptosis, we used the AUCell package to calculate the ferrop-
tosis pathway activity in each cell. As shown in Figure 3B, ferroptosis pathway activity
varied between different immune cells. Myeloid showed the highest ferroptosis activity,
while T cells showed the lowest activity.
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= 1.6, the GSE159115 dataset was divided into 31 cell populations; (B) in the 31 cell populations, 9 
cell types were identified based on cell type-specific markers, and cells without specific markers 
were designated undefined; (C) distribution of various types of cells in 7 patients; (D) correlation 
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Figure 2. Dimensionality reduction clustering of single-cell data (GSE159115): (A) when
resolution = 1.6, the GSE159115 dataset was divided into 31 cell populations; (B) in the 31 cell
populations, 9 cell types were identified based on cell type-specific markers, and cells without specific
markers were designated undefined; (C) distribution of various types of cells in 7 patients; (D) cor-
relation plot of nCount and nFeature in all cells; (E) expression of specific markers of different cell
types in 31 cell clusters.
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tosis genes; (B) activation of 4 immune cell types along the ferroptosis pathway; (C) classification of 
seven myeloid populations based on cell type-specific markers; (D) when resolution = 0.2, myeloid 
are divided into 7 cell populations; (E) distribution of myeloid in 7 patients. 
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Figure 3. Activity of the ferroptosis pathway in different immune cells and subpopulations of
myeloids: (A) various types of cells express different genes, and immune cells express different fer-
roptosis genes; (B) activation of 4 immune cell types along the ferroptosis pathway; (C) classification
of seven myeloid populations based on cell type-specific markers; (D) when resolution = 0.2, myeloid
are divided into 7 cell populations; (E) distribution of myeloid in 7 patients.

2.3. Subtyping of Myeloid

Since the ferroptosis pathway showed the highest activity in myeloid, we extracted
myeloid subgroups for dimensionality reduction and clustering. We then used the harmony
method to remove batch effects, and as shown in Figure 3E, the batch effect removal was
evident, with a relatively uniform distribution of samples across cell clusters. We then
set the resolution to 0.2 as the clustering criterion and classified the seven subgroups into
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three cell types—monocytes, macrophages, and dendritic cells—based on the collection of
myeloid marker genes from the single-cell literature (Table S3 and Figure 3C,D).

To explore the enrichment of ferroptosis-related genes in myeloid, we intersected the
differentially expressed genes of myeloid relative to other cell groups with ferroptosis-
related genes and obtained a total of 62 myeloid-related ferroptosis genes (Figure 4A
and Table S4). GO and KEGG enrichment analysis revealed that the 62 myeloid-related
ferroptosis genes were associated with biological processes such as response to hypoxia,
iron ion homeostasis, and cellular iron ion homeostasis; with cellular components such as
organelle outer membrane, mitochondrial outer membrane, and basal plasma membrane;
and with molecular functions such as peroxidase activity, antioxidant activity, and protein
heterodimerization activity. KEGG analysis showed that the 62 myeloid-related ferroptosis
genes were associated with pathways such as ferroptosis, necroptosis, HIF-1 signaling
pathway, and TNF signaling pathway (Figure 4B,C and Table S5).
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Figure 4. GO and KEGG enrichment analyses of 62 ferroptosis genes related to myeloids: (A) inter-
section of myeloid genes and ferroptosis genes; (B) the enrichment of 62 myeloid-related ferroptosis
genes in the biological process (BP), cellular component (CC), and molecular function (MF) categories
was analyzed using GO enrichment analysis; (C) pathways enriched in the 62 myeloid-associated
ferroptosis genes in KEGG pathway enrichment analysis.

To analyze the differentiation of different myeloid subtypes, we used the monocle pack-
age to perform pseudotime analysis on the three myeloid subtypes. As shown in Figure 5A–F,
with the progression of pseudotime, the number of dendritic cells and monocytes gradually
decreased, while macrophages gradually differentiated toward State6 and State7. The de-
crease in monocytes may be due to their gradual transformation into macrophages. Based
on this pseudotime trend, we plotted a heatmap of the expression of the 62 myeloid-related
ferroptosis genes as a function of pseudotime (Figure 5G). The heatmap shows that these
genes exhibit different expression trends, for example, the expression trends of genes such as
CP, CIRBP, and HILPDA increase from low to high; the expression trends of genes such as
FTH1, AKR1C3, NDRG1, IL1B, and HIF1A decrease from high to low; while the expression
trends of genes such as EGR1, ATF3, AMN, and CA9 first increase and then decrease.
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2.4. Identification of Immune-Related Ferroptosis Genes (IRFGs)

To identify IRFGs associated with both immune cells and ferroptosis pathways, we used
the estimate package to evaluate the immune-cell infiltration score of ccRCC samples in the
TCGA dataset, and according to the score, we divided ccRCC samples into high immune-cell
infiltration samples and low immune-cell infiltration samples. We then performed differential
analysis using the DESeq2 package (Figure 6A,B). With adj. p value < 0.05 and |log2FC| > 0.5
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as criteria, a total of 5032 differentially expressed genes were identified, including 3272 upregu-
lated genes and 1760 downregulated genes in high immune-cell infiltration samples (Table S6).
To find the IRFGs related to immune cells and ferroptosis pathways, we took the intersection
of the differentially expressed genes between high and low immune-cell infiltration samples
from bulk RNA-seq data, differentially expressed genes of immune cells compared to other
cell types in single-cell data, and ferroptosis-related genes (Figure 6C). In total, we identified
16 IRFGs: IL1B, FTL, CTSB, TNFAIP3, HMOX1, CD44, TMSB4X, CYBB, ALOX5, GDF15,
PDK4, AMN, FABP4, NR4A1, IFNG, and GABARAPL1.
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Figure 6. Genes and immune-related ferroptosis genes (IRFGs) that differ between samples with
high and low immune-cell infiltration: (A) differences in gene expression between samples with high
and low immune-cell infiltration; (B) gene expression volcano plot of samples with high and low
immune-cell infiltration; (C) in single-cell data, IRFGs were derived from differentially expressed
genes in samples with low and high immune-cell infiltration levels, as well as from genes that are
associated with ferroptosis.
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2.5. Mutation and Methylation Signatures of IRFGs

To further investigate the SNV, CNV, and methylation characteristics of the 16 IRFGs,
we downloaded data for 152 SNV samples, 273 CNV samples, and 141 methylation samples
from the TCGA dataset. By analyzing the overall CNV alterations in the samples, we
found that chromosomal copy number increases in ccRCC mainly occurred in the 5q
region, while decreases were mostly observed in the 1p, 2q, and 9q regions (Figure 7B).
Analyzing the mutation status of the 16 IRFGs in different samples, we found that most
IRFGs did not have gene mutations or chromosomal copy number variations. However,
CTSB, FABP4, ALOX5, CD44, and FTL showed gene mutations or chromosomal copy
number variations in 121 samples, most of which showed a decrease in chromosomal copy
number. In addition, there were no significant differences in chromosomal copy number
variations between samples with high and low immune-cell infiltration samples, but gene
mutations in CTSB, ALOX5, CD44, and FTL were found in individual samples with low
immune-cell infiltration samples, whereas no gene mutations in IRFGs were observed in
samples with high immune-cell infiltration samples (Figure 7A). Further comparison of
the TMB between high and low immune-cell infiltration samples showed no significant
differences (Figure 7C). By analyzing the differences in the 16 IRFGs between high and low
immune-cell infiltration samples, we found that the methylation levels of AMN, IFNG, and
ALOX5 were increased in high immune-cell infiltration samples, while only CD44 showed
a decreased methylation level in high immune-cell infiltration samples (Figure 7D,E).

2.6. Impact of IRFGs on ccRCC Prognosis

To facilitate reproducibility of the data, we performed univariate and multivariate
Cox regression to investigate the impact of the 16 IRFGs on the overall prognosis of ccRCC
patients. Through these analyses, we identified two independent risk factors for ccRCC
prognosis, which are the AMN and PDK4 genes. Based on these two genes, we constructed
an overall IRFGs score called immune-related ferroptosis genes risk score (IRFGRs). Based
on the results in Figure 8, we observed an association between “AMN gene only” and
“PDK4 only” with ccRCC prognosis. We first calculated the optimal cut-off value using
surv_cutpoint and divided the TCGA training set and ArrayExpress validation set into
high- and low-score groups based on the cut-off value, and then plotted the survival curves
for each group. The results showed significant differences in prognosis between the two
groups (training set p value < 0.001, validation set p value = 0.031; Figure 9A,B). We then
calculated the AUC of IRFGRs in both the training and validation sets and found that the
AUC of one-, two-, and three-year training sets were 0.723, 0.690, and 0.730, respectively
(Figure 9C), while the AUC of one-, two-, and three-year validation sets were 0.754, 0.743,
and 0.696, respectively (Figure 9D). The accuracy of survival prediction in the validation
set was similar to that in the training set, and the short-term survival prediction within
one–two years was even more accurate than in the training set.
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Figure 7. Mutation and methylation signatures of IRFGs: (A) SNV and CNV profiles of 16 IRFGs;
(B) overall chromosomal copy number variation in ccRCC samples; (C) TMB differences between
samples with high and low immune-cell infiltration; (D) methylation differences between samples
with high and low immune-cell infiltration in a volcano plot; (E) methylation differences between
samples with high and low immune-cell infiltration.
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Figure 8. Impact of “AMN gene only” and “PDK4 gene only” on ccRCC prognosis: (A) impact of
AMN gene on ccRCC prognosis in the TCGA dataset; (B) impact of AMN gene on ccRCC prognosis in
the validation dataset; (C) impact of PDK4 gene on ccRCC prognosis in the TCGA dataset; (D) impact
of PDK4 gene on ccRCC prognosis in the validation dataset.

To further investigate the impact of IRFGRs and other common clinicopathological
indicators on the overall survival of ccRCC, we performed univariate and multivariate Cox
regression analyses on these factors and constructed a forest plot (Figure 10A). The results
of the multivariate analysis showed that only IRFGRs, pNstage, pMstage, and age were
independent risk factors for the overall survival of ccRCC, with IRFGRs having the most
significant impact (Figure 9E). To accurately assess the influence of each independent risk
factor and the nomogram on overall survival, we calculated the AUC for each factor. As
shown in Figure 10B, the predictive performance and stability of the integrated nomogram
were optimal, with AUC values above 0.8 for 1–5 years. The predictive performance and
stability of the IRFGRs followed closely, with AUC values above 0.7 for 1–5 years. Clinical
decision curve analysis demonstrated similar findings, with the nomogram exhibiting the
widest range of net patient benefits and thresholds, followed by IRFGRs. To generated
the stability of the nomogram, we conducted concordance curves for 1-, 2-, and 3-year
survival (Figure 10D–F), which revealed that the nomogram predictions were in general
agreement with the actual outcomes. Taken together, these results underscore the accuracy
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and stability of the nomogram constructed using IRFGRs for predicting overall survival
and patient benefit in ccRCC.
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Figure 9. Effects of the immune-related ferroptosis genes risk score (IRFGRs) on overall survival in
ccRCC: (A) IRFGRs survival curves in the training set; (B) IRFGRs survival curves in the validation
set; (C) efficacy of the IRFGRs in predicting overall survival in the training set; (D) efficacy of the
IRFGRs in predicting overall survival in the validation set; (E) results of multivariate Cox analysis of
the IRFGRs combined with multiple clinicopathological indicators.
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Figure 10. Construction of the nomogram and assessment of its efficiency: (A) the nomogram
constructed from the IRFGRs combined with multiple clinicopathological indicators; (B) AUC values
of independent risk factors and the nomogram for the overall survival of ccRCC in 1–5 years;
(C) clinical decision curves of independent risk factors and the nomogram; (D) training set consistency
curve for overall survival over one year; (E) training set consistency curve for overall survival over
two years; (F) training set consistency curve for overall survival over three years.

2.7. Exploring the Gene Modules and Their Functions Associated with the IRFGRs

Given the significant impact of IRFGRs on the overall survival of ccRCC, we further ex-
plored the related gene modules and functions by performing weighted gene co-expression
network analysis (WGCNA) on the training set for the gene modules with the highest corre-
lation to the IRFGRs score. No outlier samples were found by cluster analysis (Figure 11A).
We then constructed a scale-free network with a soft threshold of 4 and set a minimum of
30 genes per module to form 19 modules (Figure 11B). We then merged similar modules
by setting a minimum module distance of 0.2, resulting in a final count of 15 modules
(Figure 11C). By calculating the correlation between the modules and clinical features, we
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created a correlation heatmap (Figure 11D) and selected the pink module with the highest
correlation with IRFGRs, as the core module. This module contained 242 genes (Table S7).
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Figure 11. Weighted gene co-expression network analysis (WGCNA): (A) Elimination of outlier
samples by cutting the height; (B) Determination of the optimal soft threshold power; (C) Formation
and merging of modules; (D) Association of modular genes with the IRFGRs (positive correlations
are indicated by blue, while negative correlations are indicated by red).
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To further explore the gene functions of the pink module, we performed GO and
KEGG enrichment analyses. The GO analysis results revealed that the genes in the pink
module were related to biological processes such as small molecule catabolic process,
xenobiotic export, and organic acid biosynthetic process. They were associated with
cellular components such as the basal plasma membrane, apical part of the cell, and
basolateral plasma membrane, and with molecular functions such as transaminase activity,
organic acid transmembrane transporter activity, and ligand-gated anion channel activity.
KEGG analysis showed that the 62 myeloid-related ferroptosis genes were involved in the
ECM-receptor interaction, TGF-beta signaling pathway, IL-17 signaling pathway, and focal
adhesion (Figure 12A,B and Table S8).
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Figure 12. Correlation analysis between immune cell enrichment scores and the IRFGRs using GO
and KEGG analyses of the pink module: (A) KEGG pathway enrichment analysis of pink module
genes; (B) GO enrichment analysis of pink module genes reveals enrichment in biological processes
(BP), cellular components (CC), and molecular functions (MF); (C) correlation analysis between
immune cell enrichment scores and the IRFGRs in ccRCC samples from TCGA (darker blue means
higher correlation, while darker red means lower correlation).

2.8. Investigating the Relationship between IRFGRs and Immune-Cell Infiltration

To further explore the relationship between IRFGRs and immune-cell infiltration,
we used CIBERSORT to assess the infiltration scores of 22 immune cell types in ccRCC
samples from TCGA. We then used the corrplot package to plot the correlation analysis
between the 22 immune-cell infiltration scores and IRFGRs as well as their constituent
genes (Figure 12C). From the plot, it can be observed that IRFGRs showed a positive
correlation with the infiltration levels of immune cells such as plasma cells, T cells CD4
memory activated, T cells follicular helper, and M2 macrophages, while they showed a
negative correlation with the infiltration levels of immune cells such as T cells CD4 memory
resting, NK cells resting, and mast cells resting.
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3. Discussion

Immune checkpoint inhibitors including PD-1/PD-L1 and CTLA4 antibodies have
been clinically approved for the treatment of metastatic ccRCC [2,23,24]. Although PD-1
antibodies have been shown to be effective, some patients are still non-reactive to them [25].
Recent studies have shown that the prognosis of ccRCC is influenced by ferroptosis-related
genes [26]. There is a crosstalk between ferroptosis and the immune system [27–29]. Despite
this finding, no study has focused on ferroptosis in the microenvironment, including
immune cells, and its prognostic significance, and we hope that our analysis has illustrated
this correlation.

Using publicly available single cell RNA-seq data and bulk RNA-seq data, we inves-
tigated ferroptosis and its impact on tumor immunity. We found that myeloids had the
most differentially expressed FRGs and identified IRFGs associated with immune cells and
the ferroptosis pathway. A score derived from these IRFGs could be used to predict the
outcome of patients with ccRCC.

In this study, ferroptosis was identified as a susceptibility of ccRCC. There is evidence
that ether phospholipids can drive ferroptosis by acting as additional substrates for lipid
peroxidation, further indicating their importance in the development of ferroptosis suscep-
tibility in ccRCC [30]. Cheerin has also been shown to suppress fatty acid oxidation, prevent
ferroptosis, and maintain fatty acid levels in another multiomics approach [31]. There-
fore, therapies targeting ferroptosis may resensitize resistant tumors to immunotherapy in
ccRCC patients with specific metabolic features.

In our study, we observed the highest enrichment of “myeloid-related ferroptosis
genes” in the context of hypoxia and oxygen level response. According to the study by
Green et al., inhibition of ISCA2 reduces the expression of hypoxia-inducible factor (HIF)
and induces ferroptosis in ccRCC. This suggests that increased HIF1a activity in ccRCC
may be associated with ISCA2 inhibition, beyond just VHL loss [32]. Ferroptosis is a
specific cell death pathway characterized by the accumulation of intracellular free iron
and increased oxidative stress. Therefore, these pathways can be considered pathways
specifically associated with ferroptosis [33].

In the TME of ccRCC, the ferroptosis pathway activity is highest in myeloid, which
can be further divided into three types: monocytes, macrophages, and dendritic cells.
There was a gradual decrease in dendritic cells and monocytes, and a gradual differentia-
tion of macrophages. Previous studies have reported that tumor-associated macrophages
(TAMs) and immunosuppressive M2-polarized macrophages are recruited in patients with
increased ferroptosis [34]. One study showed that removing GPX4 from TAMs can reduce
the viability of M2 TAMs without affecting M1 TAMs, as ferroptosis resistance was higher
in M1 than in M2 [35]. It appears that macrophages are an important component of the im-
mune system and may play a role in ferroptosis. Liu et al. revealed that NCOA4-mediated
ferroptosis promotes M2 polarization of macrophages in COPD emphysema. Their study
showed that ferroptosis in bronchial epithelial cells, mediated by NCOA4, contributes to
the M2 polarization of macrophages [36]. This indicates a potential association between
ferroptosis and the polarization state of immune cells. An immunosuppressive TME may
be reversed by targeting macrophages with ferroptosis.

Next, we examined the microenvironment for ferroptosis-associated genes, which
are significantly associated with poor prognosis in ccRCC patients. In our study, IL1B
expression was found to be increased in the myeloids of ccRCC patients. Li et al. [37] inves-
tigated the cellular characteristics of renal tumors using single-cell and spatial sequencing
and concluded that IL1B signaling from macrophages drives an invasive phenotype at the
tumor-normal kidney interface. Furthermore, we found that CTSB and FTL expression was
increased in myeloids and that mutations in these genes were associated with low levels
of immune infiltration. Chen et al. [38] investigated the role of CTSB in RCC and showed
that inhibition of CTSB expression in vitro and in vivo inhibited RCC growth. Li et al. [39]
found that the extracellular matrix (ECM) was degraded by CTSB in RCC, which enhanced
the ability to invade and metastasize. Hu et al. [40] found that FTL levels were positively
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associated with tumor infiltration, and Mou et al. [41] found that the interaction of FTL with
NCOA4 in ccRCC was correlated with a poor prognosis and impaired immune infiltration.
In our study, we found that the methylation levels of ALOX5 and IFNG were positively
associated with the level of immune infiltration. Based on the findings from recent studies,
the role of the identified genes in the immunotherapy of renal clear cell carcinoma (RCC)
appears to be associated with potential benefits rather than detriments. Fang et al. reported
that prognosis-related genes, which were found to participate in the immunotherapy of
RCC, potentially target dendritic cells. Dendritic cells play a critical role in the initiation
of immune responses by presenting antigens to T cells and activating the immune system.
Therefore, the involvement of these genes in targeting dendritic cells suggests a positive
impact on immunotherapy outcomes [42]. Martini et al. investigated angiogenic and
immune-related biomarkers in RCC patients treated with axitinib and pembrolizumab, an
immunotherapy combination. The results indicated that certain biomarkers were associated
with improved outcomes in terms of response to treatment and overall survival [43]. In
addition, CD44, a marker of cancer stem cells, is also associated with iron homeostasis and
immune infiltration, as shown in previous studies [44–47]. Some of the genes, including
HMOX1, AMN, and PDK4, were found to be IRFGs. In ccRCC, they have been shown
to be independent prognostic predictors of overall survival and correlated with tumor
immunity [48–50].

However, several limitations remain, and further research is needed. First, there was a
lack of racial diversity in the samples, and the number of samples was limited. In addition,
a traceability database was used to build and validate the model. The clinical efficacy
of ferroptosis in ccRCC has not yet to be proven, and the molecular mechanisms behind
its action have not yet been identified. Further experiments and clinical data are needed
to determine whether immunoferroptosis genes and renal clear cell carcinoma interact.
We plan to address the score in future studies by including a more contemporary cohort
that encompasses patients treated with immunotherapy. This will enable us to assess the
score’s performance in this specific treatment setting and further validate its clinical utility.
Nevertheless, our study provides insight into ferroptosis as a biomarker and therapeutic
target in ccRCC using transcriptional and clonotypic analyses of immune cells.

Although our study provides insights into the association of IRFGs with tumor biology,
it is crucial to evaluate whether these genes can serve as potential biomarkers for predicting
immunotherapy response [51]. It is worth noting that the existing PD-1 has been shown to
be a poor biomarker in RCC [52]. Therefore, future evaluations of our model’s predictive
value in terms of immunotherapy checkpoint inhibitor response may be necessary, as it
remains an unmet need in the field. However, several factors need to be considered to
determine its feasibility. This includes the availability of standardized and reproducible
testing methods, integration of the model into existing diagnostic frameworks, and the
establishment of clinical guidelines for interpreting the results. Additionally, large-scale
validation studies involving diverse patient cohorts and different treatment regimens are
required to assess the robustness and generalizability of the model. These efforts will
ultimately contribute to the translation of our findings into clinical practice.

4. Materials and Methods
4.1. Single-Cell Data Acquisition

We obtained single-cell sequencing and clinical information datasets of patients with
clear cell renal cell carcinoma (ccRCC) from the Gene Expression Omnibus (GEO) database
(GSE159115) [53]. This dataset was generated using 10× Genomics technology and se-
quenced on the Illumina HiSeq 2500 platform. The dataset includes seven ccRCC tissue
samples, six normal kidney tissue samples, and one chromophobe renal cell carcinoma
sample. In this study, we only included the seven ccRCC tissue samples to focus our
single-cell analysis on the tumor tissues.
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4.2. Acquisition of Ferroptosis-Related Genes

We downloaded 369 ferroptosis-driving genes, 348 ferroptosis-suppressing genes,
and 11 ferroptosis marker genes from the FerrDb V2 database (http://www.zhounan.
org/ferrdb/current/) (accessed on 25 February 2022) [54]. After merging and removing
duplicates, we obtained 484 unique ferroptosis-related genes (FRGs). Detailed information
is provided in Table S9.

4.3. Bulk RNA-Seq Data Acquisition

To further integrate single-cell sequencing data with large-scale bulk RNA-seq analysis,
we used the TCGAbiolinks package [55] to download ccRCC and adjacent normal tissue
samples from TCGA as a bulk RNA-seq training set. The TCGAbiolinks package facilitates
the download of the latest 613 ccRCC samples and corresponding clinicopathologic survival
information from the Genomic Data Commons (GDC, https://portal.gdc.cancer.gov/) (ac-
cessed on 3 April 2022). In addition, we downloaded the E-MTAB-1980 ccRCC dataset [56]
from ArrayExpress (https://www.ebi.ac.uk/arrayexpress/) (accessed on 5 April 2022) [57].
This dataset was generated using the Agilent Human Gene Expression 4x44K v2 Microarray
platform and contains 104 ccRCC tissue samples and corresponding clinical information.

Our study included bulk RNA-seq data of the primary tumor of ccRCC with complete
information on age, gender, AJCC TNM staging, and survival to eliminate the interference
of other factors. In addition, we excluded patients who had a survival time of less than
30 days, whose samples were collected after neoadjuvant treatment, or whose pathological
type was other than ccRCC. Using these criteria, we obtained 246 ccRCC tissue samples
from TCGA as a training set. All bulk RNA-seq differential analyses in this study utilized
original count data from LUAD, while other analyses employed log(TPM + 1) formatted
data. In parallel, after processing and annotating the E-MTAB-1980 dataset using the limma
package, we obtained 101 ccRCC microarray samples as a validation set (see Table 2).

Table 2. Baseline characteristics.

Factors Level
E-MTAB-1980 TCGA

101 246

age (mean (SD)) 63.48 (11.50) 61.54 (11.91)
gender (%) female 24 (23.8) 100 (40.7)

male 77 (76.2) 146 (59.3)
race (%) asian - 4 (1.6)

black or african american - 17 (6.9)
unkown - 4 (1.6)

white - 221 (89.8)
tumor.history (%) no - 212 (86.2)

yes - 34 (13.8)
pStage (%) Stage I 66 (65.3) 102 (41.5)

Stage II 10 (9.9) 34 (13.8)
Stage III 13 (12.9) 71 (28.9)
Stage IV 12 (11.9) 39 (15.9)

pTstage (%) T1 68 (67.3) 106 (43.1)
T2 11 (10.9) 42 (17.1)
T3 21 (20.8) 93 (37.8)
T4 1 (1.0) 5 (2.0)

pNstage (%) N0 94 (93.1) 233 (94.7)
N1 3 (3.0) 13 (5.3)
N2 4 (4.0) 0 (0.0)

pMstage (%) M0 89 (88.1) 207 (84.1)
M1 12 (11.9) 39 (15.9)

4.4. Mutation Data Acquisition and Processing

We used the TCGAbiolinks package [55] to download the latest TCGA ccRCC sim-
ple nucleotide variation (SNV) and copy number variation (CNV) data from the GDC.

http://www.zhounan.org/ferrdb/current/
http://www.zhounan.org/ferrdb/current/
https://portal.gdc.cancer.gov/
https://www.ebi.ac.uk/arrayexpress/
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After intersecting with transcriptomic samples, we ultimately included 152 SNV sam-
ples and 273 CNV samples for gene mutation analysis and tumor mutational burden
(TMB) assessment. SNV data were analyzed using the maftools package [58] to calcu-
late TMB for nine mutation types: Frame_Shift_Del, Frame_Shift_Ins, In_Frame_Del,
In_Frame_Ins, Missense_Mutation, Nonsense_Mutation, Nonstop_Mutation, Splice_Site,
and Translation_Start_Site. CNV data were preliminarily processed using the GISTIC2.0
tool in GenePattern (https://cloud.genepattern.org/gp/pages/index.jsf) (accessed on 22
April 2022) [59] and subsequently analyzed using the maftools package as well.

4.5. Methylation Data Acquisition and Processing

We employed the TCGAbiolinks package to download the latest TCGA ccRCC Illu-
mina Human Methylation 450 microarray data from the GDC. After overlapping with
transcriptomic samples, we ultimately included methylation data from 141 samples for
analysis. The impute package was used to fill in missing values, and the ChAMP pack-
age [60] was utilized for quality control filtering of methylation data and identification of
differentially methylated genes.

4.6. Single-Cell Data Processing

We used the original UMI counts data for single-cell analysis, with preprocessing,
quality control, normalization, and dimensionality reduction clustering performed using
Seurat v4.0 [61]. Quality control standards included expression of each gene in at least
three cells, expression of at least 500 genes in each cell, number of genes and counts in
each sample based on median ± 3 * median absolute deviation (MAD) standard screening,
the proportion of mitochondrial genes with 20% threshold, the proportion of hemoglobin
genes with 1% threshold, and duplicate cells filtered using the DoubletFinder package [62].
Subsequent data normalization, identification of highly variable genes, and dimensionality
reduction clustering were performed based on Seurat’s default parameters and standard
workflow. We used the harmony package to integrate data from different samples. Cell
cluster naming was performed by collecting marker genes from literature and manual
annotation. The FindAllMarkers function was used to calculate differentially expressed
genes between cell subpopulations (immune cell-related differentially expressed genes,
ICRDEGs) based on the Wilcoxon test, with a selection criterion of adj. p value < 0.05 and
|log2FC| > 0.5.

To identify ferroptosis-related immune-cell subpopulations, we used the AUCell
package [63] to enrich activity scores of ferroptosis pathways within immune cell sub-
populations. We then extracted the immune cell population with the highest scores for
further subgrouping.

4.7. Pseudotime Analysis

We utilized the well-established monocle2 package [64] to perform pseudotime anal-
ysis on cell subpopulations that showed the highest association with ferroptosis. The
single-cell data were processed by creating monocle objects, performing normalization,
and filtering out low-quality cells. By selecting highly variable genes, we reduced the
dimensionality of the data using the DDRTree approach. We then performed pseudotime
analysis of different cell types and essential genes after ordering the cells.

4.8. Identification of Immune-Related Ferroptosis Genes

To discover immune-related ferroptosis genes (IRFGs), we used the estimate pack-
age [64,65] to assess immune-cell infiltration scores within different TCGA ccRCC samples.
Based on the median value, we divided the ccRCC data into high and low immune infiltra-
tion groups. Subsequently, we utilized the DESeq2 package [66] to calculate differentially
expressed genes between high and low immune infiltration groups (immune subtype-related
differentially expressed genes, ISRDEGs), with a selection criterion of |logFC| > 0.5 and
adj. p value < 0.05. Finally, we obtained IRFGs by intersecting ISRDEGs, ICRDEGs, and FGs.

https://cloud.genepattern.org/gp/pages/index.jsf
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4.9. Mutations and Methylation of IRFGs

To further investigate the SNV and CNV mutation profiles of IRFGs, we utilized the
maftools package to generate SNV and CNV mutation maps for IRFGs in different samples.
By comparing the methylation levels of IRFGs between high and low immune infiltration
groups using the ChAMP package, we generated volcano plots and heatmaps illustrating
the methylation differences of IRFGs between the two groups.

4.10. Constructing of the IRFGRs and Exploring Their Role in Prognosis

To elucidate the relationship between IRFGs and the overall survival of ccRCC patients,
we used univariate and multivariate Cox regression analyses to identify independent risk
factors among IRFGs and constructed an IRFGs risk score model. The calculation of the
immune-related ferroptosis genes risk score (IRFGRs) is as follows:

IRFGRs = β1 × expG1 + β2 × expG2 + . . . + βn × expGn

Subsequently, we normalized the data to provide a consistent standard. We utilized
the survivalROC package [67] to evaluate the predictive performance of IRFGRs on the
survival of ccRCC patients in both the TCGA training set and the ArrayExpress validation
set, and generated survival curves accordingly.

To further investigate whether IRFGRs is an independent risk factor for ccRCC, we
again used univariate and multivariate Cox regression analyses to comprehensively evalu-
ate the impact of IRFGRs and other clinicopathologic characteristics on the overall survival
of ccRCC patients. We constructed nomograms using the rms package, calculated the area
under the curve (AUC) for the effect of different factors on survival using the survivalROC
package, and validated the stability of the nomograms with calibration curves. Additionally,
we used the ggDCA package to evaluate the clinical decision curves of each independent
risk factor, exploring the benefit to patients in different scenarios.

4.11. Weighted Gene Correlation Network Analysis

Given that IRFGs are independent risk factors for overall survival in ccRCC, we
employed weighted gene correlation network analysis (WGCNA) [68] to identify gene
modules and genes associated with IRFGs. WGCNA is a systems biology method used
to describe gene association patterns across different samples, identify highly co-varying
gene sets, and determine potential genes or therapeutic targets based on the intramodular
connectivity of gene sets and their associations with clinical features. We used the expres-
sion matrix of differentially expressed genes between high and low immune infiltration
groups as input files and calculated the optimal soft-thresholding power with the pickSoft-
Threshold function. With this power, we constructed a scale-free network, calculated the
topological matrix, and performed hierarchical clustering. We set the minimum module
gene count to 30 to construct gene modules and merged similar modules by setting the
minimum module distance to 0.2. We established correlations between each module and
clinical features by correlation analysis, selected the module with the highest correlation
with IRFGs as the core module, and selected the genes with the highest module association
as IRFGs-related genes.

4.12. Relationship between Immune Cell Enrichment Scores and IRFGs

CIBERSORT [69] is an immune-cell infiltration estimation tool that can be used to
assess the abundance of constituent cell types within mixed cell populations using gene
expression data. We used the CIBERSORT R script to evaluate ccRCC data in TCGA and
analyzed the enrichment scores of 22 immune cell types in different samples. Furthermore,
we utilized the corrplot package to generate a heatmap showing the correlations between
the 22 immune cell types and IRFGs, as well as their constituent genes.
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4.13. Enrichment Analysis

Gene ontology (GO) [70] defines concepts used to describe gene functions and the
relationships between these concepts, and divides gene functions into three aspects: biological
process (BP), molecular function (MF), and cellular component (CC). The Kyoto Encyclopedia
of Genes and Genomes (KEGG) [71] is a collection of pathway maps representing molecular
interactions and reaction networks covering a wide range of biochemical processes.

The clusterProfiler package [72] is a comprehensive R package that allows GO and
KEGG analysis of the given data, with enrichment criteria set at p value < 0.05 and
q value < 0.05. The p value correction method used is Benjamini-Hochberg (BH).

4.14. Statistical Analysis

In this study, all data calculations and statistical analyses were performed using R
software (https://www.r-project.org/, version 4.1.2) (accessed on 30 December 2021). To
compare two groups of continuous variables, the Mann-Whitney U test (also known as
the Wilcoxon rank-sum test) was used to analyze the differences between non-normally
distributed variables. Unless otherwise stated, correlation analyses were performed using
Spearman’s correlation analysis in the cor function of the R base package. Univariate and
multivariate Cox regression analyses were mainly performed using the survival package,
AUC calculations were based on the survivalROC package, forest plots were generated
using the forestplot package, and nomogram plots were generated using the rms package.
All statistical p values were two-sided, and for single-cell and bulk RNA-seq differential
gene selection, a p value < 0.05 or an adj. p value < 0.05 was considered statistically
significant. For other statistical tests, the pvalue or adj. p value criteria were as described in
the text.

5. Conclusions

In conclusion, our single-cell multiomics analysis revealed that tumor-infiltrating
immune cells in the TME regulate ferroptosis signaling pathways. Furthermore, a scoring
scheme called the IRFGRs was constructed, tested, and found to be positively correlated
with immune-cell infiltration and prognosis in patients with ccRCC. The use of the IRFGRs
scoring scheme in clinical practice may provide insight into the underlying mechanisms
of immune ferroptosis and subsequent TME infiltration in ccRCC patients, and may help
predict prognosis in this disease.
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