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Abstract: Several studies in recent years have demonstrated that gut microbiota–host interactions play
an important role in human health and disease, including inflammatory and cardiovascular diseases.
Dysbiosis has been linked to not only well-known inflammatory diseases, such as inflammatory
bowel diseases, rheumatoid arthritis, and systemic lupus erythematous, but also to cardiovascular
risk factors, such as atherosclerosis, hypertension, heart failure, chronic kidney disease, obesity, and
type 2 diabetes mellitus. The ways the microbiota is involved in modulating cardiovascular risk are
multiple and not only related to inflammatory mechanisms. Indeed, human and the gut microbiome
cooperate as a metabolically active superorganism, and this affects host physiology through metabolic
pathways. In turn, congestion of the splanchnic circulation associated with heart failure, edema
of the intestinal wall, and altered function and permeability of the intestinal barrier result in the
translocation of bacteria and their products into the systemic circulation, further enhancing the
pro-inflammatory conditions underlying cardiovascular disorders. The aim of the present review is
to describe the complex interplay between gut microbiota, its metabolites, and the development and
evolution of cardiovascular diseases. We also discuss the possible interventions intended to modulate
the gut microbiota to reduce cardiovascular risk.

Keywords: gut microbiota; cardiovascular disease; systemic inflammation; dysbiosis; atherosclerosis;
non-alcoholic fatty liver disease; inflammatory bowel disease; primary biliary cholangitis

1. Introduction

Cardiovascular disease (CVD) is a leading cause of death and morbidity worldwide.
Identification of possible preventive strategies is of central interest to avoid CVD onset and
progression. In this regard, intensive medical and scientific activity is currently employed
in the management of traditional risk factors, but despite maximum medical therapy, there
is still a residual risk of undetermined etiology. The gut microbiota is gaining increasing
interest as one of the potentially modifiable factors that are involved in the pathogenesis of
several diseases, including CVD. A multitude of microorganisms lives symbiotically with
the human host; 10–100 trillion microbes among bacteria, viruses, fungi, and helminths
are located in the gut [1]. They serve a multitude of functions, which include maintenance
of intestinal homeostasis and defence against external aggressive agents, modulation of
the immune response, and production of metabolites. Being a living entity, the gut mi-
crobiota evolves during growth and changes under external environmental influences;
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owing to the lifestyle of the last 70 years, processed food intake and the increased use of
antibiotics or other drugs has resulted in a modification of gut microbiota composition and
diversity [2]. Furthermore, the gut microbiota is affected by changes of the host organism,
such as pathological conditions that may contribute to generate a quantitative and qualita-
tive imbalance of the bacterial communities called “dysbiosis”. Dysbiosis can be transient,
with the recovery of a new steady state, or persistent, being the background for the devel-
opment of chronic diseases. Indeed, in recent years, several studies demonstrated the role
of gut microbiota and its metabolites in determining the onset and progression of cardio-
vascular and non-cardiovascular pathologies of the host (e.g., inflammatory bowel disease,
colon cancer, hypertension, heart failure, and stroke). Many of these products are specific
metabolic byproducts of certain bacterial species, and the most relevant are short-chain
fatty acids (SCFAs), trimethylamine (TMA), bile acids (BAs), coprostanol, phenylacetylglu-
tamine as well as lipopolysaccharide (LPS); their implication in CVD is of recent interest [3].
Thus, identifying a gut microbiota signature and its related metabolites can be useful for
intervening on an undervalued novel cardiovascular risk factor. The objective of this review
is to explore the relationship between gut microbiota and cardiovascular risk and CVD,
and the possible intervention strategies for its modulation, prevention, and treatment.

2. Relationship between Gut Microbiota and Cardiovascular Risk Factors

The gut microbiota can influence and be affected by virtually all cardiovascular risk
factors known to date.

The gut microbiota of patients with arterial hypertension shows a lower diversity,
and an increased abundance of Clostridiales and Bacterodiales has been observed in men
and mice models of hypertension [4]. In the Coronary Artery Risk Development in Young
Adults (CARDIA) study, the abundance of the Robinsoniella was negatively associated with
systolic blood pressure [5]. Germ-free mice were protected from angiotensin-II-induced
hypertension and from angiotensin-II-induced cardiac inflammation and remodeling [6];
furthermore, when compared with chronic angiotensin-II infusion mice models or healthy
controls, spontaneous hypertensive mice have a high Firmicutes to Bacteroidetes ratio [7].
This suggests a pathogenic mechanism linking arterial hypertension and the gut microbiota.
Cigarette smoke can directly and indirectly alter the gastrointestinal barrier. It can up-
regulate enzymes involved in oxidative stress damage. The gut microbiota has a different
composition in smokers than in non-smokers and resembles that of patients affected by
inflammatory bowel diseases; in particular, an increased relative abundance of Actinobacteria
and Cyanobacteria has been reported in smokers than in non-smokers. There is also limited
evidence on the impact of tobacco cessation on the gut microbiota, which seems mainly to
produce an increase in Firmicutes and a reduction in Bacteroidetes. However, whether these
changes may have an impact on cardiovascular risk is still unclear [8].

Furthermore, the gut microbiota can alter the plasma lipoprotein profile both by reduc-
ing cholesterol biosynthesis [9] and plasma cholesterolemia through different mechanisms
(i.e., incorporation into bacterial cell membranes, deconjugation of primary bile acids
into secondary bile acids, conversion into coprostanol which is eliminated in the feces,
production of SCFAs) [10]. Some bacterial products have shown specific effects on lipid
metabolism; for example, exopolysaccharides (EPSs) derived by Agaricus brasiliensis have a
cholesterol-lowering effect in mice [11]. Gut microbiota can also interact with dietary lipids,
producing active compounds with a regulatory effect on plasma lipoproteins. Among
these compounds, conjugated linoleic acid is able to lower cholesterol, triglyceride, and
lipoprotein levels in vivo and in vitro studies [12].

3. Pathogenic Role of the Gut Microbiota in CVD: Focus on Metabolites and Inflammation

The gut microbiota is a metabolically active superorganism. Its products comple-
ment the metabolic functions of the host and can influence human health. In addition,
the gut microbiota has an enormous immunological potential, being capable of trigger-
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ing a systemic inflammatory response with consequences also for the cardiovascular
system (Figure 1).
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Figure 1. Gut dysbiosis is linked to endogenous and exogenous risk factors, the latter related to
several systemic inflammatory and metabolic conditions. Modifications in the gut microbiome
composition can lead to alterations of its metabolic pathways and facilitates the translocation of
bacteria and their fragments and products in the bloodstream. This can enhance the pro-inflammatory
milieu and produce metabolic perturbations that are a fertile ground for cardiovascular disorders.
IBD: inflammatory bowel disease; T2DM: type 2 diabetes mellitus; NAFLD: non-alcoholic fatty liver
disease; NASH: non-alcoholic steatohepatitis; LPS: lipopolysaccharide; SCFAs: short-chain fatty acids;
TMAO: trimethylamine N-oxide; IL-6, IL-1, IL-27: interleukin-6, -1, -27; TNF-α: tumor necrosis factor
alpha. Created with Biorender.com ®.

3.1. Trimethylamine N-Oxide

Trimethylamine N-oxide (TMAO) is an endothelial toxic factor produced by the gut
microbiota from ingested foods [13]. Indeed, meat, egg yolk, and high-fat dairy prod-
ucts normally contain choline, phosphatidylcholine, and carnitine-trimethylamine that
are subjected to a two-step modification process: (1) are metabolized by the gut micro-
biota into TMA, which is absorbed and reaches the liver through the portal circulation;
(2) in the liver, TMA is oxidized to TMAO by flavin-monooxygenase-3 (FMO3), and
then re-enters the systemic circulation. Although, the precise mechanism through which
TMAO enhances cardiovascular risk is not fully understood, TMAO plays a critical role
in endothelial cell dysfunction and atherosclerotic plaque formation, mainly promoting
inflammation and stimulating platelet reactivity through extracellular signal-regulated
protein kinases 1 and 2 (ERK1/2) and Jun N-terminal kinase (JNK) phosphorylation [14,15].
An in vitro study showed that in endothelial and smooth muscle cells, TMAO induces
the expression of genes involved in the inflammatory response, such as cyclooxygenase
2 and interleukin (interleukin)-6, and enhances the adhesion of leukocytes to the vascu-
lar endothelium causing a vascular endothelial inflammatory damage [16]. Furthermore,
TMAO promotes foam cells formation, which are the main component of atherosclerotic
plaques, by stimulating the adhesion of monocytes to the vascular endothelium and up-
regulating scavenger receptors on the macrophage membrane [17]. In humans, TMAO



Int. J. Mol. Sci. 2023, 24, 9087 4 of 20

plasma concentration ranges from 0.09 to 141.2 µM (mean 6.96 µM, median 3.07 µM);
high levels are an independent risk factor for CVD and correlate with incidence of major
adverse cardiac events (MACE) [18]. A recent study including 956 subjects, 471 of whom
with stable chronic heart failure, reported that high serum levels of trimethyllysine (TML),
a TMAO precursor, were associated with a higher risk of CV death, all-cause mortality,
and re-hospitalization [19]. Another recent clinical study demonstrated that high levels
of TMAO were predictive of a 4-fold increase in the risk of mortality for all causes in pa-
tients with stable coronary artery disease and angiographic evidence of significant stenosis
(COURAGE-like patient cohort). The 5-year risk of mortality was independent of tradi-
tional risk factors, high-sensitivity C-reactive protein, and estimated glomerular filtration
rate, thus confirming the important prognostic role of TMAO [20]. The PEGASUS-TIMI
54 trial also confirmed the prognostic role of TMAO in stable patients with prior myocardial
infarction, emphasizing that high levels of TMAO were associated with cardiovascular
death and stroke, but not with recurrent myocardial infarction. Furthermore, TMAO in-
duced cardiac inflammation and fibrosis, leading to cardiac dysfunction in animal models.
A study also reported a high rate of apoptosis and necrotic cell death after myocardial
infarction following TMAO or a high choline diet in myocardial infarction mice and in pri-
mary cardiac fibroblasts cultures. This is probably due to different mechanisms, such as an
increased transformation of fibroblasts into myofibroblasts and by enhancing inflammation
and promoting cardiomyocytes death [21].

3.2. Short-Chain Fatty Acids

Acetate, butyrate, and propionate are metabolites that derive from the intestinal bacte-
ria fermentation of indigestible polysaccharides and are classified as SCFAs. SCFAs exert
beneficial effects not only in the gut, promoting intestinal barrier integrity by enhancing
the expression of proteins of the cellular junction and serving as energy substrates for ep-
ithelial cells, but also on metabolic functions and inflammation. Indeed, they can modulate
glycemic control and lipid metabolism, exhibit anti-inflammatory and anti-tumorigenic
activity, decrease oxidative stress, and modulate the secretion of inflammatory cytokines
and chemokines [22]. Some data suggest that SCFAs may have protective effects on
atherosclerosis and CVD. Propionate moderately reduces blood pressure through vasodila-
tion, mediated by the activation of G-protein-coupled receptors 41 (Gpr41), localized on
the vascular endothelium; the chronic reduction in blood pressure could be mediated by
the improvement of endothelial dysfunction [23]. Moreover, propionate has been shown
to exert cardioprotective properties, being associated with reduced cardiac remodeling in
hypertensive subjects. In hypertensive left ventricular hypertrophy, there is a different spa-
tial redistribution of gap junctions, which causes a potential risk of pathological electrical
activity. It has been shown that oral propionate supplementation in the animal model can
reduce electric remodeling by a reduced lateralization of connexin 43 in cardiomyocytes,
thus reducing susceptibility to ventricular tachycardia in vivo [24]. An intriguing relation-
ship between SCFAs and blood pressure has also been described. In fact, some human
studies have found that a lower blood pressure was associated with SCFA-producing gut
microbiota. A murine study has suggested that hypertension is related to reduced blood
levels but high fecal concentrations of butyrate, possibly because of dysfunctional butyrate
intestinal transporter [25]. Histone deacetylases (HDAC) activation has been associated
with arterial hypertension; in fact, in animal models, its long-term inhibition mediated by
valproic acid could attenuate not only the increased inflammatory response, but also mean
arterial pressure and cardiac remodeling and hypertrophy [26]. SCFAs could affect blood
pressure through HDAC inhibition, acting directly on vascular and renal receptors, but also
through the gut–brain axis via afferent enteric and colonic vagus nerve signaling [27–29].
Nevertheless, butyrate is a negative modulator of inflammation, and this anti-inflammatory
activity is mediated by inhibition of HDAC, which normally regulates innate immunity
pathways, controlling myeloid cell differentiation and inflammatory response mediated
by toll-like receptors (TLR)- and interferon (IFN)- inducible gene expression [30,31]. Thus



Int. J. Mol. Sci. 2023, 24, 9087 5 of 20

butyrate, via HDAC inhibition, suppresses the production of pro-inflammatory cytokines,
such as tumor necrosis factor-α (TNF-α), IL-12, and interferon-γ (IFN-γ), enhancing the
production of IL-10 by monocytes in vitro, which exerts anti-inflammatory properties [32].
Finally, SCFAs are also involved in the intestinal metabolism of cholesterol. An inverse
correlation has been found between serum levels of cholesterol and the conversion of
cholesterol to coprostanol in patients with high SCFAs fecal concentrations; this may be
due to a different composition of the gut microbiota, although the exact mechanisms have
yet to be fully clarified [33].

3.3. Bile Acids

Bile acids (BAs) are involved in metabolic disease, inflammatory bowel disease, and
gastrointestinal carcinoma, but also in CVD. For example, cardiac toxicity of BAs is known
since the 1960s, and to date, we learned that BAs can cause cardiac remodeling and
electrophysiological alterations, predisposing to fatal arrhythmic events. BAs interact
with nuclear receptors, such as the farnesoid-X receptor (FXR) and vitamin D receptor,
which are also expressed in the heart. In cardiomyocytes, FXR activates mitochondrial
permeability transition pore (MPTP), a protein involved in starting the cellular apoptotic
process and linked to heart failure. The relationship between BAs and heart disease
is best highlighted by the two main cholestatic disorders in humans: primary biliary
cholangitis (PBC) and primary sclerosing cholangitis (PSC), which are associated with
impaired cardiovascular function. In particular, PBC patients have a prolonged QTc interval
and an abnormal left ventricular (LV) ejection time in response to the assumption of upright
position to clinostatism; these changes have been identified as possible consequences of
an impaired BAs metabolism [34]. Another recent study showed that circulating BAs
levels are predictive of coronary heart disease (CAD) in humans [35]. Moreover, BAs
may contribute to endothelial dysfunction and atherosclerosis. Indeed, BAs enhance the
expression of intracellular adhesion molecule-1 (ICAM-1) and vascular adhesion molecule-1
(VCAM-1), through an interaction with FXR, commonly expressed at the level of human
endothelial cells, so contributing to the leucocyte-induced inflammation in vascular tissues.
However, FXR stimulation may have other metabolic and vascular effects such as decreasing
inflammatory gene expression in macrophages and blocking the proliferation, migration,
and activation of vascular smooth-muscle cells [36].

3.4. Coprostanol

Coprostanol is a non-absorbable sterol produced in the gut by the conversion of
cholesterol and eliminated with feces. The conversion of cholesterol to coprostanol has a
biologically relevant effect, because it is associated with a reduction in blood cholesterol
levels [37]. However, the amount of coprostanol produced in humans is extremely variable,
with a predominance of high converters over low or inefficient converters. [38]. Intestinal
bacteria such as Eubacterium coprostanoligenes, Bacteroides spp., Lactobacillus spp., and Bifi-
dobacterium spp. are able to convert cholesterol into coprostanol. A cholesterol-inducible
enzyme named intestinal steroid metabolism A (IsmA) has been recently discovered and
is involved in the oxidation of cholesterol to 4-cholesten-3-one and of coprostanol to co-
prostanone. Interestingly, this enzyme is overexpressed in E. coli and the presence of IsmA
genes in other microbial species has been associated with a reduction in blood cholesterol
levels [39]. Sekimoto et al. described that an increased coprostanol/cholesterol ratio in the
stool is inversely proportional to blood cholesterol levels [40]. The study of coprostanoli-
genic strains may be of clinical interest in order to reduce cardiovascular risk by modulating
the microbiota [10].

3.5. Phenylacetylglutamine

Phenylacetylglutamine (PAGln) is a metabolite derived from the conjugation of glu-
tamine and phenylacetate operated by the gut microbiota. PAGln has been associated
with increased platelet activity and thrombosis potential [41]; recent studies point out that
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PAGln serum levels are correlated with coronary atherosclerosis severity and the incidence
of CVD and MACE. Another study shows that high levels of PAGln are independently
associated with an increased risk of coronary in-stent restenosis, which is a factor related to
a worse prognosis in patients with CAD [42].

3.6. Vitamin K2

Vitamin K2 or menaquinone (MK) is a vitamin K isoform and a cofactor involved
in the carboxylation of various proteins [43]. Among these, some are involved in main-
taining the structural and functional integrity of the vascular wall, such as the Matrix
Gla-protein (MGP). MGP binds calcium crystals and inhibits the pro-mineralizing factor
bone morphogenetic protein-2 (BMP-2), preventing arterial calcifications [44]. Quantitative
changes in gut microbiota composition, as in the case of small intestinal bacterial over-
growth (SIBO), are associated with alterations in vitamin K2 metabolism. In particular,
serum levels of dephosphorylated-uncarboxylated matrix Gla-protein, the inactive form of
MGP, are significantly higher in patients with SIBO compared with controls, independently
to vitamin K2 daily intake. Patients with higher levels of inactive MGP showed early
signs of vascular dysfunction, documented by an increase in arterial stiffness measured by
pulse-wave velocity [45].

3.7. Gut Microbiota-Derived Inflammation

Inflammation is associated with the development of cardiovascular disease [46]. Sys-
temic inflammation is strictly connected with accelerated atherosclerosis [47]. The gut
microbiota may also influence cardiovascular risk through a pro-inflammatory effect, ex-
erted not only by its metabolites but also by bacteria themselves, especially under conditions
of dysbiosis [48]. LPS, a part of the outer membrane of Gram-negative bacteria that is
released in the systemic circulation at the time of cell death, is a well-known trigger of
systemic inflammation in conditions of increased translocation of intestinal bacteria or their
products in the bloodstream [49]. Scientific evidence over the past twenty years supports a
contribution of LPS in the development of atherosclerosis, especially as regards to foam cells
formation and cholesteryl ester accumulation from native low-density lipoproteins. Further-
more, through its pro-inflammatory effects, LPS promotes the secretion of TML, a TMAO
precursor, and other pro-inflammatory cytokines from monocytes-macrophages. LPS is
able to bind TLRs, activating a series of immune reactions. In particular, in the endothelium
of blood vessels, LPS binds TLR4, which activates myeloid differentiation primary response
88 (MYD88) and nuclear factor kappa B (NFκB) pathways, leading to an enhanced synthesis
of IL-6, IL-1, IL-27, and TNF-α, with pro-inflammatory effects. Increased LPS serum levels
have been documented in subjects with coronary artery disease, supporting a possible
role as a disease marker [50]. The correlation between gut microbiota and inflammation
also occurs through platelet hyperactivation mediated by TMAO. In particular, it has been
proven that plasma rich in TMAO enhances human platelet reactivity not specifically linked
to a specific stimulus, rather to multiple agonists, including adenosine diphosphate (ADP),
thrombin, collagen, and arachidonic acid. In fact, TMAO interacts with the phospholipids
of platelet membrane promoting cellular activation in response to sub-maximal agonist
stimulation; this effect is also mediated by the enhancement of agonist-dependent release
of Ca2+ from intracellular platelet stores and increase of the inositol-1,4,5-trisphosphate
(IP3)-related signaling [51]. Activated platelets also release CD40 ligand (CD40L) and
other mediators, triggering an inflammatory response in the endothelium, which results in
endothelial dysfunction [52]. The gut microbiota also has a strong modulating effect on the
immune response [53]. Nod-Like Receptor Protein 3 (NLRP3) inflammasome is a multipro-
tein complex belonging to the innate immune system, which coordinates the activation of
the inflammatory response triggered by a variety of stimuli, such as pathogens and their
products (the so-called PAMPs, Pathogen-Associated Molecular Patterns) and molecules
released from damaged enterocytes (the so-called DAMPs, Damage-Associated Molecular
Patterns). The NLRP3 inflammasome can undergo two different types of activation, the
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canonical and the non-canonical one. In the canonical inflammasome pathway, a first signal
mediated by microbial components and cytokines, i.e., ligands for toll-like receptors (TLRs)
or cytokine receptors, primes the NLRP3 inflammasome to activate the transcription factor
NF-κB, which upregulates the expression of NLRP3 and pro-IL-1β (priming phase). The
NLRP3 inflammasome is then activated by bacterial and fungal toxins, viral RNA, extracel-
lular matrix components, ATP, ionic flux (in particular potassium efflux), reactive oxygen
species (ROS), and mitochondrial dysfunction (activation phase). In this phase, NLRP3
oligomerizes with an ASC, i.e., apoptosis-associated speck-like protein containing a caspase
recruitment domain (CARD), and induces pro-caspase-1 activation in caspase-1, as well as
IL-18 and IL-1β release. It has been shown in a murine model that NLRP3 inflammasome
deficiency in mice may alter gut microbiota composition by increasing mucosal bacteria
and favoring systemic bacterial translocation [54]. Moreover, increased levels of IL-1β and
IL-18 by inappropriate activation of the NLRP3 inflammasome due to cholesterol crystals
and oxidized low-density lipoprotein (oxLDL) have been shown to be leading mechanisms
in the pathogenesis of atherosclerosis [55–59]. The non-canonical pathway is triggered by
the intracellular activation of caspase-11 in mice and caspases-4 and 5 in humans by LPS,
without TLR interaction. Caspase-11 directly activates the NLRP3 inflammasome, inducing
pyroptosis through the cleavage of gasdermin D and release of IL-1β and IL-18 [60]. In a
murine study, it has been shown that caspase-11 has a protective function against intesti-
nal inflammation, probably via the release of IL-18; in fact, caspase-11-/- mice are more
susceptible to dextran sodium sulphate (DSS)-induced colitis, and their gut microbiota is
characterized by a markedly reduced prevalence of the phylum Prevotella [61].

4. Gut Microbiota Composition in CVD: What We Know So Far
4.1. Atherosclerosis and Coronary Artery Disease

The close correlation between atherosclerosis and gut microbiota has been extensively
described in literature. Dysbiosis and microbial metabolites (i.e., TMAO) play a role in
the pathogenic mechanisms of atherosclerosis, such as systemic inflammation, endothelial
dysfunction, and lipid homeostasis, and are associated with the severity of the disease.
The increase in Enterobacteriaceae is associated with larger coronary plaque fibrotic area
and more severe coronary atherosclerosis [62]. Recent studies have shown a correlation
between specific intestinal bacteria (i.e., Dysgonomonas, Paraprevotella, Succinatimonas, and
Bacillus) and plaque vulnerability, intended as the presence of a thin-cap fibroatheroma,
lipid-rich plaque with necrotic core, macrophages, microvessels, cholesterol crystals, and
large plaque burden [63]. Moreover, marked overexpression of TMA-producing intestinal
microbial enzymes was observed in patients with coronary artery disease compared with
healthy controls [64].

4.2. Heart Failure

The gut microbiota of patients with chronic heart failure is characterized by a decreased
abundance of beneficial butyrate-producing bacteria and an increase in pathogenic bacteria,
including Campylobacter, Salmonella, Shigella, Yersinia enterocolitica, and Candida species [1].
Patients with chronic heart failure and cardiac cachexia also show intestinal wall congestion
and oedema, impaired microcirculation, and increased intestinal permeability; this results
in gut dysbiosis with a predominance of Firmicutes, Bacteroidetes, and Proteobacteria, as
well as in the translocation of bacteria and their metabolites with potential effects on
cardiovascular health [65].

4.3. Stroke

It has been observed that a gut microbiota enriched with SCFAs-producing bacteria,
such as Akkermansia, Victivallis, Ruminococcaceae, and Odoribacter, may lead to increased
risk of cerebrovascular events and correlates with their severity. Conversely, stroke has
been linked to gut dysbiosis and intestinal barrier dysfunction [66]. After stroke, a lower
blood supply leads to ischemic intestinal damage and this results in the production of
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excessive nitrate through free radical reactions, but also in changes in the gut microbial
community, with the increased abundance of Enterobacteriaceae. A recent animal study
investigated the association between acute ischemic stroke and gut dysbiosis, showing
how Enterobacteriaceae represent a biomarker of primary poor outcome; functionally, this
is explained by increased systemic inflammation, worsening brain ischemia. The authors
also highlighted that the administration of aminoguanidine or superoxide dismutase could
be useful in counteracting brain injury by restoring gut dysbiosis [67]. Moreover, after
stroke, the production of neurotransmitters is altered and the release of noradrenalin
leads to changes in intestinal permeability, causing the activation of corticotropin-releasing
hormones and glucocorticoid hormones, and promotes bacterial translocation [68]. Finally,
TMAO promotes endothelial dysfunction, vascular inflammation, and changes in small
cerebral arteries including lipohyalinosis, fibrinoid necrosis, and microaneurysm formation,
thus favoring the onset of hemorrhagic stroke. In a Chinese study involving 622 patients
with a first stroke, a significant correlation was found between the TMAO serum level and
first hemorrhagic stroke [69].

5. Dysbiosis as a Condition Predisposing to CVD

Many inflammatory and metabolic diseases associated with gut dysbiosis also have a
close association with CVD.

Several meta-analyses of cohort studies have reported associations between inflam-
matory bowel diseases (IBDs) and CVD [70,71]. In particular, increased carotid intimal
thickness, wall stiffness, and endothelial dysfunction [72,73], a 4-to-5 fold increase in ho-
mocysteine serum level [74], and a higher prevalence of acute myocardial infarction (AMI)
have been observed in patients with IBD compared with those without inflammatory
intestinal diseases, with the highest risk of AMI in young women aged 30–34 years [75].
A Danish cohort study has also reported that patients affected by IBD have an increased
risk of stroke [76,77], as well as a higher rate of atrial fibrillation and hospitalization for
heart failure, even in young patients, and especially during acute flares or in case of per-
sistently active disease [78,79]. It is well-established that IBDs are associated with gut
dysbiosis [80,81] and several studies have shown a generalized decrease in microbial diver-
sity and a reduction in specific beneficial bacterial taxa, including Lactobacillus, Eubacterium,
and butyrate-producing bacteria such as Faecalibacterium prausnitzii [82–88]. Non-alcoholic
fatty liver disease (NAFLD), which can be considered the hepatic manifestation of metabolic
syndrome, also finds its roots in dysbiosis and increased intestinal permeability [89]. Sev-
eral studies have identified a reduced gut microbiota diversity and various changes in gut
microbiota composition in patients with NAFLD [90–92]. Dysbiosis, in turn, is responsible
for the dysregulation of intestinal endothelial and vascular barrier function, with enhanced
translocation of bacteria and their products (PAMPs: endotoxins, LPS, peptidoglycan) and
molecules released from damaged intestinal cells (DAMPs); after reaching the liver through
the portal circulation or the bloodstream through mesenteric lymph nodes, PAMPs and
DAMPs trigger various cellular signaling pathways that induce a systemic inflammatory
response [93,94]. Alterations in the gut microbiota were found in patients with coronary
artery disease and NAFLD, mainly characterized by a decrease in Parabacterioides and
Colinsella [95]. A prospective study has also shown that TMAO concentrations were higher
in patients with NAFLD, being significantly and independently associated with an in-
creased risk of all-cause mortality [96]. Intriguingly, this association was not present in
subjects without NAFLD. This confirms that altered gut dysbiosis may influence progres-
sion of metabolic syndrome-associated diseases as NAFLD [97]. Another interesting setting
are patients with PBC, an autoimmune cholestatic liver disease that is characterized by
hypercholesterolemia and affects middle-aged women. However, there is limited data
on the incidence of atherosclerosis and CVD in these patients, with only recent studies
showing an increased risk [98]. Patients with PBC have a doubled prevalence of lower
extremity arterial disease (LEAD) compared with age-matched general female population,
and the gut microbiota seems to be associated with this finding [99]. Indeed, vascular
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adhesion molecule-1 (VCAM-1) and TNF-α were independent predictors of LEAD, and
Acidaminococcus, a bacterial genus highly abundant in PBC women, was positively corre-
lated with serum levels of TNF-α. A final remark should be made on rheumatic diseases
such as rheumatoid arthritis (RA) and systemic lupus erythematous (SLE). RA has been
associated with periodontitis [100], and high serum titers of Porphyromonas gingivalis an-
tibodies have been found in patients with more severe disease activity and functional
impairment [101,102]. Interestingly, P. gingivalis DNA was detected also in atherosclerotic
plaques of subjects with periodontitis. Clinical and animal studies have pointed out that P.
gingivalis accelerates atherosclerosis [103,104]; the mechanisms can be multiple, and include:
(a) intracellular influx of oxidized-LDL and its conversion to cholesterol crystals,
via increased expression of CD36 and fatty acid binding protein 4 (FABP4) on
macrophages [105,106]; (b) activation of NLRP3 inflammasomes by cholesterol crystals’
damage to the phagolysosomes and P. gingivalis-induced production of reactive oxygen
species, with consequent activation of the inflammatory cascade [107,108]; (c) down-
regulation of the cholesterol transporters ATP-binding cassettes (ABCA1) on macrophages,
which promotes cholesterol accumulation [109]. The pathogenesis of SLE has been as-
sociated with dysbiosis, which is mainly characterized by a lower Firmicutes/Bacteroides
ratio and overabundance of Ruminococcus gnavus, Enterococcus gallinarum, Streptococcus
anginosus, Streptococcus dispar, Veillonella, and Campylobacter, and contributes to disease
development and progression through pro-inflammatory stimulation and production of
anti-dsDNA antibodies [110–112]. The pro-inflammatory milieu interferes with blood
pressure regulatory mechanisms, such as the renin–angiotensin system and the sympa-
thetic nervous system [113]; in particular, circulating TNF-α, which is increased in patients
with SLE and correlates with disease activity, is involved in the development of hyperten-
sion; indeed, in female murine models of SLE, a decrease in mean arterial pressure has
been observed after treatment with the anti-TNF-α antibody etanercept [114,115]. Further-
more, LPS increases the expression of TLR4 in blood vessels, which results in increased
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-dependent superoxide
production, inflammation, and endothelial dysfunction [116,117]. Elevated levels of plasma
LPS have been reported in both patients and hypertensive mice affected by SLE [118,119].
Lastly, in patients with SLE, intestinal dysbiosis is associated with an altered production of
SCFAs [120].

In summary, dysbiosis is involved in the pathogenesis of several diseases that are
also associated with cardiovascular dysfunction. Microbial-derived inflammation but
also metabolites are the driving force of this link, but it is not possible to exclude further
mechanisms that have not been clarified to date.

6. Evidence on the Impact of Gut Microbiota Modulation in Reducing Cardiovascular Risk

The recognition of the gut microbiota as a key player in the pathogenesis of CVD
suggests that specific therapeutic interventions aimed at its modulation may potentially
reduce cardiovascular risk. Several studies have focused on this topic; however, they have
shown mixed results.

6.1. Dietary Intervention

Diet has multiple effects on the gut microbiota, being able to modify its composition
and function [121]; these effects are not immediate and have greater impact if maintained
for a long period [122]. A diet rich in plant products modulates the intestinal bacteria
community favoring the growth of species able to ferment fibers, resulting in increased pro-
duction of SCFAs and phosphatidylcholine. Conversely, a high-fat diet leads to unfavorable
changes in the gut microbiota, fecal metabolomic profile, and systemic inflammation [123].
All of these changes are associated with adverse effects on human health, because in the
long term they lead to increase the risk of obesity, metabolic syndrome, and cardiovas-
cular risk [124,125]. A controlled-feeding trial conducted in China on 217 healthy volun-
teers highlighted that a high-fat diet modifies the gut microbiota composition, increasing
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Bacteroides and Alistipes, more abundant in patients with type 2 diabetes mellitus (T2DM),
and reducing Faecalibacterium, a butyrate-producing microorganism. Conversely, in the
low-fat diet group, an increased abundance of Faecalibacterium and Blautia was found,
which favorably affect lipid metabolism [126]. Changes in the gut microbiota community
reflect in fecal metabolomic profiles. In fact, a high-fat diet leads to a reduction in SCFAs
and an increase in arachidonic acid and LPS biosynthesis, with consequent elevation in
circulating pro-inflammatory factors (i.e., plasminogen activator inhibitor-1, IL-1, and
TNF-α mRNA) [127]. In a randomized, controlled, crossover study conducted in subjects
with ischemic heart disease, a 4-week consumption of a diet rich in plant-based products
(vegetarian diet), has been shown to reduce oxidized low-density lipoprotein cholesterol
and to change the relative abundance of intestinal bacteria, in particular of Ruminococcaceae
and Barnesiella, and their metabolites compared with Mediterranean diet. An improvement
in cardiovascular risk profile derived from reduction in oxidized LDL cholesterol was re-
ported in the vegetarian diet group, but no significant difference in TMAO production was
observed [128]. Another study showed that a Mediterranean diet has anti-inflammatory
properties, with a negative correlation between SCFAs production and the expression of
inflammatory cytokines such as vascular-endothelial growth factor (VEGF), monocyte
chemoattractant protein-1 (MCP-1), IFN-γ-induced protein 10 (IP-10), IL-17, and IL-12. In
addition, Mediterranean diet increased the abundance of Enterorhabdus, Lachnoclostridium,
and Parabacteroides [129]. Another observational study conducted by Dong D. Wang et al.
supports the hypothesis that a controlled diet may produce beneficial changes in the gut mi-
crobiota composition in prevention of CVD [130]. Long-term adherence to a Mediterranean
diet exerts a gradual selective pressure on the adult gut microbiota, resulting in a relative
abundance of fiber-metabolizing bacterial species (Faecalibacterium prausnitzii, Bacteroides
cellulosilyticus, and Eubacterium eligens), compared to other pathogens mainly associated
with a Western-type diet and red meat intake (such as Ruminococcus torques, Clostridium
leptum, and Collinsella aerofaciens). For example, the selection of particular taxa responsible
for the conversion of BAs (i.e., C. aerofaciens) may lead to adverse cardiometabolic effects
by a dysregulation of the BAs pool; in fact, such compounds behave as hormones that
interact with nuclear and G protein-coupled receptors interfering with certain metabolic
processes. Other authors also refer to Prevotella copri, the role of which has not yet been
sufficiently clarified, but seems to be associated with an increase in the biosynthesis of
branched-chain amino acids, which are linked to an increased cardiovascular risk through
insulin resistance in humans [131]. The adoption of a Mediterranean diet, according to
Dong D. Wang et al., is able to mitigate this risk, as it is likely that such subjects do not
acquire or retain P. copri. Another hypothesis is that the Mediterranean diet exerts its
beneficial effects on CVD prevention only in P. copri non-carriers [130]. Many of the clinical
trials currently available in literature have the major limitation of being restricted to a
limited period; therefore, whether dietary changes can be maintained over time is still a
matter of debate, and future studies are needed to test the resilience of the gut microbiota.
The intake of particular foods within a balanced diet can produce a benefit for human
health. Plant-based omega-3 fatty acids, α-linolenic acid, and polyunsaturated fatty acids
(PUFAs) have been shown to exert benefits on the cardiovascular system. Notably, several
of these substances can be classified as prebiotics, which are substrates selectively used
by host microorganisms conferring a health benefit [132]. Walnuts are a main source of
these and many other compounds, such as hydrolyzable tannins and fibers, which can be
metabolized by gut bacteria and confer additional benefits in term of cardiometabolic risk.
A recent randomized controlled trial involving 42 patients at cardiovascular risk (defined as
overweight and obese middle-aged men and women, with dyslipidemia and hypertension)
showed that a whole walnut-based diet and a walnut fatty acid–matched diet are able
to change the intestinal bacterial composition, in particular increasing the abundance of
Roseburia, a butyrate-producing bacteria. Moreover, ellagitannins naturally contained in
walnuts, are metabolized by gut bacteria to form urolithins, which may provide additional
cardiovascular benefit [133]. Dietary PUFAs are also associated with multiple cardiovascu-
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lar effects mediated by changes in the gut microbiota; in fact, omega-3 PUFAs increase the
abundance of several SCFAs-producing bacteria, decreasing those associated with TMA
production. Additionally, omega-3 PUFAs would help maintain intestinal barrier integrity,
thereby preventing the translocation of intestinal products into systemic circulation and
reducing the production of pro-inflammatory cytokines [134]. A similar effect was also
described for the polyphenol hesperidin, found in citrus fruits. Polyphenols are natural
products of plant extraction potentially used as prebiotics. Dietary supplementation of
polyphenols has proven to have cardiovascular benefits, because they reduce blood pres-
sure and improve endothelial dysfunction and lipid profile [135]. Hesperidin promotes
the growth of beneficial bacteria, such as Lactobacillus and Bifidobacterium, stimulates the
production of SCFAs, and lowers plasma levels of pro-inflammatory cytokines such as IL-
1β, TNF-α, and IL-6 [136]. Finally, there are scant results from human intervention studies
with SCFAs in order to reduce blood pressure; Roshanravan et al. have demonstrated in a
randomized, double-blind, placebo-controlled trial that oral butyrate supplements tend to
significantly lower blood pressure in patients with metabolic syndrome [137].

6.2. Probiotics

The role of probiotics in reducing cardiovascular risk is an issue that is gather-
ing scientific interest, especially in light of new scientific evidence supporting a role
for the gut microbiota in the pathogenesis of CVD. A pilot study including 21 men
with stable coronary artery disease showed that a 6-week daily supplementation with
Lactobacillus plantarum 299v (Lp299v) has a favorable impact on CVD inducing changes
in gut microbiome-derived circulating metabolites. Supplementation with Lp299v can
improve endothelium-dependent vasodilation of the brachial artery, through the increase
in nitric oxide bioavailability, and reduce systemic inflammation. These effects appear
to be independent of traditional cardiovascular risk factors, and not related to TMAO
serum levels [138]. Some studies show that Bacteroides depletion in humans is associated
with higher incidence of symptomatic atherosclerosis. Nevertheless, in animal models,
oral supplementation of Bacteroides vulgatus and Bacteroides dorei reduced atherosclerotic
plaque inflammation and slowed its formation. In particular, Bacteroides supplementation in
atherosclerosis-prone mice reduces LPS production, and successfully ameliorates endotox-
emia, suppressing pro-inflammatory immune responses [139]. Akkermansia muciniphila is a
component of the gut microbiota that exerts favorable effects on the pathogenesis of CVD
and arterial hypertension [4]. Probiotic bacteria in milk, yogurt bacteria, and cheese starter
bacteria are able to produce bioactive peptides with antihypertensive function. A study
has shown that Lactobacillus helveticus produces angiotensin converting enzyme (ACE) in-
hibitory tripeptides, which play an antihypertensive role in renin-angiotensin system [140].
Studies conducted on spontaneous hypertensive rats reported that oral supplementation
of high doses of Lactobacillus casei strain C1 led to a significant reduction in systolic and
diastolic blood pressure at 8 weeks [141]. Trials conducted in humans underline that the
reduction of systolic and diastolic blood pressure by probiotic supplements is modest
but significant; the main limits on the effectiveness are the duration of treatment, dosage,
age of the subjects, and type of strain used [142]. Probiotics may also be a therapeutic
opportunity for the treatment of stroke. A recent study conducted in mice models of is-
chemic stroke showed that ischemic brain injury was reduced by 52% and the neurological
outcome ameliorated after treatment with probiotic bacteria (such as Bifidobacterium breve,
Lactobacillus bulgaricus, Lactobacillus casei, and Actobacillus acidophilus); the neuroprotective
effect was probably due to the anti-inflammatory properties and modulation of oxidative
stress damage [143].

6.3. Drugs

Many non-antibiotic medications can modulate microbiota composition and function,
influencing health outcomes. For example, proton pump inhibitors are among the most
widely used drugs that can modify the gut microbiota, leading to a decreased colonization-
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resistance to enteric infections (i.e., Clostridium difficile infection) and to the oralization
of the colonic microbiota [144,145]. Several antidiabetic drugs, such as metformin and
liraglutide, exert their therapeutic effects and additional metabolic benefits by changing
the gut microbiota composition and metabolism [146]. Among the novel sodium/glucose
cotransporter 2 inhibitors (SGLT2i), empagliflozin also shows an effect in increasing the
richness and diversity of the gut microbiota, improving inflammatory parameters. In a
recent study, empagliflozin was able to promote a selection of SCFAs-producing bacte-
ria, such as Roseburia, Faecalibacterium, and Eubacterium over potentially harmful bacteria,
including Escherichia-Shigella, Bilophila, and Hungatella [147]. In another study, a 28-day
treatment with dapagliflozin, another SGLT2i, significantly improved cardiac function
in the non-diabetic myocardial infarction mice model and modified the gut microbiota
composition, increasing the abundance of beneficial bacteria such as Lactobacillaceae [148].
Muribaculaceae and Lactobacillaceae were the main components of the intestinal microbial
community after treatment with dapagliflozin, while Muribaculaceae and Erysipelotrichaceae
were the ones associated with myocardial infarction. Antihypertensive medications, such
as the angiotensin-converting enzyme inhibitor captopril, have shown beneficial effects on
hypertension-associated gut pathology, in particular reducing intestinal permeability, thick-
ness of the muscularis layer and increasing the length of villi by 55% [149]. Pharmacological
effect of cholesterol-lowering drugs is partly impaired by gut microbiota, and dysbiosis can
generate further pharmacological variability [150]. In an animal model, it has been shown
that the hypolipidemic effect of statins, particularly simvastatin, is partially reduced with
concomitant administration of antibiotics [151]. Other studies focused on the modulating
effect of statins on the gut microbiota composition; for example, in animals the administra-
tion of rosuvastatin increased the abundance of Lachnospiraceae and Erysipelotrichaceae and
decreased the abundance of Proteobacteria, Coriobacteriaceae and Akkermansia [152]. Finally,
antibiotic treatment disrupts gut microbiota homeostasis, and leads to potentially harmful
dysbiosis. Rifaximin exerts anti-inflammatory and eubiotic effects, producing a positive
modulation of the gut microbiota and reducing intestinal bacteria adherence, internaliza-
tion, and translocation [153]; however, its effects on cardiovascular risk reduction have
not yet been investigated. At present, the use of broad-spectrum antibiotics in reducing
cardiovascular risk remains controversial, due to the potential side effects and the induction
of bacterial resistance [1]. The concept of pharmacomicrobiomics, which means the impact
of the gut microbiota on drug bioavailability, bioactivity, or toxicity by direct and indirect
mechanisms, is currently emerging [154]. The role of the gut microbiota in influencing the
effectiveness of a therapeutic treatment has already been investigated in various diseases
such as ulcerative colitis, Crohn’s disease, and RA. Pharmacomicrobiomics is also applied
in the cardiovascular field; in fact, it is known that digoxin, a drug used in heart failure,
is ineffective in 1 in 10 patients because it is likely converted into an inactive form, dihy-
drodigoxin, by Eggerthella lenta [155]. In summary, pharmacomicrobiomics emphasizes the
importance of pursuing a personalized medicine that focuses on the microbiota.

6.4. Small Molecule Antimicrobial Enzyme Therapeutics

Blocking microbial TMA production is a potential therapeutic strategy for the pre-
vention and treatment of atherosclerosis. Selective enzymes structurally similar to choline
have been developed and are being studied to reduce cardiovascular risk. In particular,
3,3-dimethyl-1-butanol (DMB) can inhibit microbial TMA-lyase and reduce both TMA
production and serum levels of TMAO in mice fed a high carnitine or choline diet. DMB
showed direct effects on atherosclerosis, inhibited dietary choline-dependent accumulation
of cholesteryl ester in macrophages (foam cell formation) and development of aortic root
atherosclerotic plaque [156]. New choline TMA-lyase inhibitors, including iodomethyl-
choline (IMC) and fluoromethylcholine (FMC), have been recently developed, but data are
currently limited [17]. Other studies focused on the suppression of the FMO3 in animal
models through an antisense oligonucleotide-based approach, highlighted a marker reduc-
tion of diet-enhanced atherosclerosis paralleled by a decrease in TMAO serum levels [157].
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6.5. Faecal Microbiota Transplantation

Fecal microbiota transplantation (FMT) is an effective therapeutic strategy in multi-
ple gastrointestinal pathologies and consists of transferring a structured community of
intestinal bacteria derived from a stool donor in the affected subject. Although the possi-
ble implications of FMT in CVD have not yet been investigated in humans, preliminary
results are encouraging. In particular, a recent study reported that the gut microbiota
of spontaneously hypertensive rats was characterized by increased abundance of Turi-
cibacter, which was positively associated with arterial hypertension, and by an altered
T helper-17/regulatory T cells (Th17/Tregs) balance in mesenteric lymph nodes. When
transplanted in normotensive rats, this dysbiotic microbiota induced endothelial dysfunc-
tion and hypertension, through both T cell activation and IL-17 production. Conversely,
FMT from normotensive rats in spontaneously hypertensive rats improved systolic blood
pressure, endothelial dysfunction, oxidative stress, and vascular inflammation, as well as
the imbalance between Th17/Tregs [158].

7. Conclusions

Over the last decade, several studies have strengthened the concept of gut microbiota
as a dynamic living entity, which can generate, sustain, and worsen various pathological
processes, but at the same time influenced by diet, drugs and other stimuli from the external
environment. CVD is a global health problem affecting millions of people, and it is of
paramount interest to identify effective prevention and treatment strategies to reduce health
care costs. Currently, scientific evidence proves the existence of a two-way relationship
between the gut microbiota and CVD. The mechanisms involved in this relationship are
multiple and extremely complex because they concern immune regulation, inflammatory
response, gastrointestinal barrier integrity, metabolic pathways, and much more. Many of
these effects are mediated by bacterial-derived products that play a significant role in gener-
ating and sustaining chronic inflammation. Human and animal studies have attempted to
characterize dysbiosis in CVD, effectively identifying the species most frequently involved,
and have analyzed different therapeutic approaches (i.e., dietary intervention, probiotics,
prebiotics, drugs, FMT), with encouraging results. Our review sheds light on the com-
plex relationship between intestinal microbiota and CVD by reviewing the latest scientific
evidence, focusing on some metabolic diseases. However, further research is needed in
order to identify effective microbiome-based preventive and therapeutic approaches to be
adopted as additional weapons in the management of CVD.
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