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Abstract: Human neuroimaging has demonstrated the existence of large-scale functional networks in
the cerebral cortex consisting of topographically distant brain regions with functionally correlated
activity. The salience network (SN), which is involved in detecting salient stimuli and mediating
inter-network communication, is a crucial functional network that is disrupted in addiction. In-
dividuals with addiction display dysfunctional structural and functional connectivity of the SN.
Furthermore, while there is a growing body of evidence regarding the SN, addiction, and the rela-
tionship between the two, there are still many unknowns, and there are fundamental limitations to
human neuroimaging studies. At the same time, advances in molecular and systems neuroscience
techniques allow researchers to manipulate neural circuits in nonhuman animals with increasing
precision. Here, we describe attempts to translate human functional networks to nonhuman animals
to uncover circuit-level mechanisms. To do this, we review the structural and functional connections
of the salience network and its homology across species. We then describe the existing literature in
which circuit-specific perturbation of the SN sheds light on how functional cortical networks operate,
both within and outside the context of addiction. Finally, we highlight key outstanding opportunities
for mechanistic studies of the SN.
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1. Introduction

For human neuroscience, functional neuroimaging has allowed the study of the human
brain in terms of regional and network properties. Functional magnetic resonance imaging
(fMRI), in particular, allows for whole-brain investigations of correlated activity across
brain regions that may be functionally related but physically distant. At the same time,
nonhuman animal studies have a long tradition of manipulating and measuring specific
neuronal circuits and cell populations. Such studies are aided by invasive molecular
techniques that are not feasible in human experimental studies, including chemogenetics
and optogenetics. In this review, we will aim to bridge the gap between the human network
and nonhuman animal circuit and molecular approaches, with a particular focus on the
salience network in addiction.

Intrinsic functional connectivity networks are sets of brain regions that may be spa-
tially dispersed but display temporally correlated spontaneous neural activity across time,
independent of external stimuli [1,2]. Several networks commonly emerge from neu-
roimaging studies, all of which are relatively stable and reproducible across sessions and
individuals [3–7], although there is also significant inter-individual variability in the precise
locations of the constitutive regions, [8–10]. In many cases, the activity of intrinsic net-
works at rest is correlated with performance during task-based fMRI [11–13]. Furthermore,
although these networks have been primarily identified using resting-state functional
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connectivity, the constitutive regions also often co-activate during tasks. Increasingly, we
expect that the characterization of intrinsic functional connectivity networks will be vital to
identifying and manipulating healthy and aberrant brain functioning [14–16].

Several networks show abnormal intra- and inter-network functional connectivity in
addiction [17–21]. These include the default mode network (DMN), a set of brain regions
that are functionally connected at rest and are characterized by increased activity at rest and
during internally directed processes such as autobiographical memory [22–25], the central
executive network (CEN), which is most active when engaging in task and goal-directed be-
havior [26–28], and the salience network (SN), a set of brain regions involved in identifying
salient stimuli and incorporating this information to inform decision making [3,29,30]. The
SN is also a controller of the DMN and CEN, situating it at the center of a ‘triple network’
model of brain functioning [26,31–35]. Here, we will focus on the SN because of this central
role, its importance in addiction, its cross-species relevance, and because it has not yet been
the subject of a similarly focused review.

The SN as a unified entity was initially defined using resting-state human functional
magnetic resonance imaging (rs-fMRI), during which participants were only required to
remain still [3]. The high functional connectivity among SN regions during rest results from
their correlated blood-oxygen-level-dependent (BOLD) activity. In addition, the subregions
of the SN often co-activate under certain task demands, for example, when engaging in
tasks that require cognitive flexibility (e.g., the Trail Making Test, Go/No Go task, and
Stroop task [3,36]). The SN core cortical nodes are the anterior insular cortex (AIC) and the
dorsal anterior cingulate cortex (dACC). (See below for discussion of additional potential
SN regions.) Human intracranial recordings have also revealed that the AIC and dACC are
more functionally connected electrophysiologically to one another than they are to other
(non-SN) regions [37].

The SN detects the most salient stimuli (a salient stimulus can be novel, important,
or attention-commanding) among competing external and internal cues, and it does so
irrespective of valence. The SN then orients cognitive resources appropriately [3,38–40].
Because of its role in general salience detection, the SN unifies information regarding
conflict monitoring, interoception, autonomic signals, homeostasis, reward information,
and emotion processing [30,41–44].

Additionally, the SN plays a crucial role in coordinating the switch in functional
activity across multiple networks [29,45–47]. The SN, therefore, sits at the center of what
has become known as the ‘triple network’ (DMN, CEN, and SN). In this model, the DMN
directs cognitive resources (such as attention) internally, the CEN directs cognitive resources
externally, and the SN detects salient events to direct the functioning of the DMN vs. CEN.
Invasive recordings in humans suggest that SN regions help to control DMN and CEN
activity [37]. There is even causal evidence of this triple network model from human
patients with traumatic brain injury: SN damage impairs DMN connectivity and cognitive
control [48].

2. Functions and Connectivity of the Nodes of the Salience Network

The main nodes of the SN—the anterior insular cortex (AIC) and the dorsal anterior
cingulate cortex (dACC)—have individually been the subjects of intensive study. The
anatomy and functions of the SN, as well as of its individual component regions, have
also been the subject of excellent, recent reviews, and we will not try to completely cover
the nuances of these topics here [49–57]. Instead, below, we briefly describe the anatomy
and functions of these two regions. Here, it is worth noting that our knowledge of the
anatomical connections of the AIC and dACC are necessarily derived from nonhuman
animal models (particularly nonhuman primates) [58], and as discussed in more detail
below, the homology with human brain structures may be imperfect.
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2.1. The Anterior Insular Cortex (AIC)
2.1.1. Anatomy of the AIC

The insular cortex is located beneath the lateral sulcus of the Sylvian fissure and
is covered by the frontoparietal operculum and superior temporal cortex (in humans
and nonhuman primates—in rodents, the insular cortex is exposed on the lateral sur-
face) [59,60]. The insular cortex contains three large subdivisions: anterior, middle, and
posterior [53,59,61–69]. Briefly, the anterior region of the insular cortex (which is the region
that is part of the SN), which has both dorsal dysgranular and ventral agranular zones, has
prominent connections (at least in the nonhuman primate) with the orbitofrontal regions,
anterior cingulate regions, anterior temporal regions, and the olfactory cortex [70]. Along
with part of the frontal operculum, the anterior insula also contains the primary gustatory
cortex (in nonhuman primates, but is more medial in humans), with projections from
thalamic neurons coding for taste information [70,71]. The posterior insula, which is granu-
lar, contains prominent connections to the mid-posterior cingulate cortex, somatosensory,
posterior temporal regions, supplementary motor area, and the parietal lobe [50,62,72,73].
The middle insular cortex, which is dysgranular, displays a mix of connections that is
typical for the anterior and posterior insular divisions [74,75]. The anterior to posterior axis
of the insula is present not only in cytoarchitecture, connectivity, and functions, but also in
electrophysiological properties such as oscillations [76].

The dorsal dysgranular and ventral agranular zones of the AIC themselves have differ-
ent connectivity profiles. The dorsal dysgranular AIC connects with the rostral dorsolateral
prefrontal cortex, dACC, precentral operculum, rostral inferior parietal cortex, anterior
inferior frontal gyrus, dorsal anterior temporal lobe, and dorsal striatum [62,63,72,74,77–80].
By comparison, the ventral agranular AIC connects to the pregenual anterior cingulate
cortex, dACC, lateral orbitofrontal cortex, amygdala, ventral striatum, substantia nigra,
and ventral tegmental area [77,81–85]. These connections are likely important for affect-
related processing, and these target regions are often implicated in addiction. The ventral
agranular AIC also contains von Economo neurons and Fork cells. Von Economo cells
are large “spindle cells” with a single basal dendrite that are thought to be crucial for the
rapid transmission of information over long distances [86,87]. Fork neurons have distinct
morphology, a divided apical dendrite and are typically found along with von Economo
neurons [87,88]. Interestingly, it has been proposed that von Economo cells facilitate the
signaling that supports the SN [29,45,88].

2.1.2. Functions of the AIC

Numerous functions, including emotional processing, pain processing, cognition (in-
cluding language), and maintaining a homeostatic balance, have been attributed to the
AIC [6,42,60,62,89–93]. The AIC, the ventral striatum, and the amygdala are consistently
co-activated during neuroimaging studies of general emotional processing [94–96]. Simi-
larly, the AIC, along with the ACC, is involved in the motivational-affective (as opposed to
sensory) aspects of pain [97,98], including seeing other people in pain [91,99]. The AIC’s
involvement in emotion and pain processing extends to empathy: it encodes others’ emo-
tional states [100,101], potentially as they relate to the affective states that others’ emotions
can induce, and potentially because of the decision-making that others’ emotions may
require [91].

The insular cortex is the established region for viscerosensory processing; it is the
part of the brain that encodes body temperature, visceral sensation, and arousal
state [41,42,102–105]. The AIC is also important for interoception, which involves in-
tegrating internal visceral and autonomic changes with salient external stimuli to maintain
homeostasis and inform subsequent behaviors [42,106,107]. In particular, the AIC compares
current states with previous conditions to update information and guide behaviors. This
may be why the AIC is frequently activated in response to novel stimuli [38]: the need to
stay up-to-date about the current interoceptive state means that the AIC finds novel stimuli,
particularly within its functional wheelhouse.
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Furthermore, the AIC is essential in mediating the switch between a restful and
internally focused state (driven by the activity in the DMN) and engaging in tasks (CEN
and SN) [45,90]. The AIC displays activity before the other nodes in the SN (based on
latency analysis), such that it has a strong and causal effect on the activity of the dACC
and leads to an increase in intra-network connectivity [23,45,108]. This occurs before the
inactivation of the DMN and simultaneous activation of the CEN when transitioning to a
task/goal-oriented state. This transition is facilitated by the connections of the AIC with
nodes in the DMN and CEN [29,33,45,102].

2.2. Dorsal Anterior Cingulate Cortex (dACC)
2.2.1. Anatomy of dACC

The anterior cingulate cortex (ACC) is situated rostrally in the medial wall of each
hemisphere [109]. The ACC has heterogeneous cytoarchitectural and connectivity pat-
terns [81,82,85,110]. It is composed of at least three subdivisions: area 25 is situated beneath
the corpus callosum, area 32 is rostral, extending around the genus of the corpus callosum
(and, in humans, extending dorsally to area 24), and area 24 is dorsal to the rostral corpus
callosum. The dorsal ACC (dACC, area 24 in nonhuman primates, and 24 and dorsal 32 in
humans [111]) is the part of the ACC most consistently implicated in the SN.

The dACC connects with an intriguing mix of limbic, cognitive, and motor brain
regions. These include the posterior cingulate cortex, amygdala, hypothalamus, dorsolat-
eral prefrontal cortex, orbitofrontal cortex, both the ventral and dorsal striatum, inferior
temporal lobe, and multisensory temporal cortical regions. In addition, the dACC also
contains cingulate motor areas (CMAs) (called cingulate motor zones in nonhuman pri-
mates) [112,113]. These regions have direct projections to premotor areas, the motor cortex,
and even the spinal cord. Generally, connections with emotion-related regions are concen-
trated more rostrally in the dACC, whereas connections with motor-related regions are
concentrated more caudally in the dACC, and connections with cognitive structures are
strongest in between [82,85,110,114].

2.2.2. Functions of dACC

The dACC, similar to the AIC, has been implicated in many cognitive and emotional
functions. Chief among these is decision-making and pain processing. During reward-
guided decision-making, the dACC monitors rewards, errors, and conflict [84,115–117].
This may be in service of future movements, such that dACC can facilitate changes in ac-
tions, such as promoting alternative choices in subsequent trials [118–121]. Pain processing
is focal in the ventral subregion of the dACC [122–124], the stimulation of which evokes the
will to persevere [125]. Such findings reveal mechanisms of cognitive control over physical
and psychological pain [126,127]. The dACC’s role in cognitive control extends to negative
emotion and affect via connections with the amygdala and ventral striatum [128,129].

2.3. Additional Regions

Although we have focused here on the dACC and AIC, other brain regions are some-
times assigned to the SN, including the paracingulate, ventrolateral prefrontal, superior
temporal, opercular, supplementary motor, and pre-supplementary motor cortices [3,130].
Subcortically, it is often associated with the amygdala, mediodorsal thalamus, hypothala-
mus, periaqueductal gray, substantia nigra, and ventral tegmental area [3,30]. Confusingly,
SN regions can be functionally connected and/or co-active with brain regions canonically
belonging to other networks, particularly in the dorsolateral prefrontal cortex, which is
usually assigned to the CEN [3]. Perhaps this is due to triple network interactions across
networks (although such an explanation does raise the problem of how, precisely, the SN is
defined). In general, these issues are not unique to the SN; the interacting nature of these
brain networks means that definitions may vary according to the measurement used, and
while core regions (the dACC and AIC) remain consistent, others fluctuate across contexts
and studies.
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2.4. Relationship with the Cingulo-Opercular Network

The SN seemingly overlaps with the cingulo-opercular network (CON) [131,132]. The
CON was identified in human fMRI studies using a region of interest (ROI) approach
along with graph theory metrics to identify groups of regions that display functional
connectivity [131,132]. This analysis identified the CON as consisting of two core regions—
the dACC and dAIC/frontal operculum—along with other prefrontal and parietal regions
implicated in various control functions [131,132]. Functionally, the CON is active in tasks
requiring executive control, particularly when establishing and maintaining task sets and
tonic alertness [132–136].

The first papers detailing the SN and CON were released at roughly the same
time [3,131,132]. While the two networks were initially viewed as identical, further stud-
ies suggest a possible distinction in the locations of their core nodes: the CON may be
anchored more dorsally and the SN more ventrally in the AIC [36,54,79,132,134,137,138].
Unsurprisingly, because of the similarities between the networks, there are instances in
which the names CON and SN are used interchangeably or lumped together [6,139,140].

Similarities and differences between the CON and the SN are yet to be established.
There is a possibility that the SN’s core nodes dynamically interact with different cortical
regions to accomplish different tasks based on specific cognitive demands. To resolve
this issue, studies that go beyond solely examining the functional imaging literature but
instead also explore the anatomical basis of these networks will be valuable. For example,
as described above, anatomical connectivity and cytoarchitecture differentiate the dorsal
vs. ventral AIC, which could also support distinct functional connectivity. Moreover, some
of these subregions may be more or less well represented in nonhuman animal species
used for preclinical studies. The cross-species study of the SN by Tsai and colleagues (2020)
(discussed in detail below) provides an excellent example of this approach [141].

3. The Salience Network in Addiction

Decades of human neuroimaging work have not only demonstrated that the SN is
abnormal in addiction but have coalesced around many of the specifics of its pathophys-
iology. First, the SN is structurally altered in addiction; specifically, evidence points to
reductions in volume, gray matter density, and white matter integrity in regions of the SN
in addiction [107,142–148]. For example, alcohol use disorder and nicotine addiction are
associated with a reduction in gray matter density in the AIC and ACC [20,143,149,150],
as well as reduced cerebral blood flow to the AIC [149,151–153]. Interestingly, there is a
reduced density of VENs in the AIC of individuals with alcohol dependency compared
with controls [154]. Furthermore, reduced AIC volume correlates with higher levels of
impulsivity and compulsivity in individuals with alcohol dependency [20]. Similar findings
have also been identified for individuals with cocaine dependency [155,156]. Addition-
ally, AIC cortical volume is negatively associated with the severity of alcohol dependency
symptoms; thus, there is reduced volume of the AIC and ACC in alcohol dependency [20].
Furthermore, aberrant white matter fractional anisotropy (a measure from diffusion MRI
used as a proxy for white matter integrity) found in the cingulum bundle, which is adjacent
to the dACC, is correlated with alcohol, heroin, and cocaine use [157–159]. Notably, the
SN is not solely involved in addiction: several different psychiatric diagnoses (including
addiction) are associated with reduced gray matter density in the dACC and the AIC [160].

Second, the individual nodes of the SN are functionally disrupted in addiction. In
general, in the SN, addiction seems to be associated with reduced activity and connectivity
in response to non-drug, salient stimuli but with enhanced activity and connectivity in re-
sponse to drug-related stimuli, although activity can be differentially modulated according
to the drug and current state [161–164]. For instance, methamphetamine dependence is as-
sociated with reduced activity in the AIC while performing decision-making tasks [165,166]
and when viewing negative, non-drug stimuli [167]. Blunted insula activity is also observed
in adolescent light smokers viewing pleasurable food [168]. Increased AIC and dACC
activity while viewing smoking cues predicts relapse, and attention was biased towards
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smoking-related cues [169–171]. Augmented insular reactivity to smoking cues is also
associated with increased activity in the SN [170]. Similarly, dACC activity increases with
self-reported drug craving [172]. Likewise, coherent activity in the dACC is negatively
associated with decision latency in alcohol use disorder [173]. Diminished activity in the
dACC is observed in cocaine users; furthermore, the amount of substance used is negatively
correlated with activity in this region [174–176]. Moreover, heroin addiction is associated
with elevated functional coupling between the dACC and the ventral striatum [177]. The
alteration in functional activity is associated with disrupted functions, such as disrupted
decision-making, strong associations between drugs of abuse and reward, interoception,
and emotion regulation [107,163,178,179].

The SN also interacts with other distributed networks to create the aberrant cognition
and behaviors observable in addiction. During nicotine deprivation, there is an increase in
DMN activity; thus, attention is thought to be internally focused, which is often associated
with withdrawal [180]. Likewise, abstinent heroin and cocaine users display elevated
functional connectivity between the insular cortex and amygdala [181,182]. Conversely,
during nicotine administration, the SN mediates an increase in CEN activity, allowing
for engagement in self-administration [17,183,184]. This implies that SN dysfunction,
which would result in aberrant switching between the CEN and DMN, could be crucial in
addiction formation and maintenance by potentially producing the hyper/hypo activation
of one network (DMN vs. CEN) relative to the other.

Finally, there is some causal evidence of the role of the SN in addiction in humans.
Smokers who have sustained damage to the insular cortex display a reduction in addictive
smoking behaviors and are more likely to quit smoking than smokers who sustained dam-
age to other brain areas and have reduced propensity for relapse [142,185,186]. This fits the
observation that the insular cortex has reduced activity during abstinence [145]. Further-
more, damage to the insular cortex has been linked to a decrease in nicotine withdrawal
symptoms [187]. Smoking addiction was disrupted following lesions to brain regions that
display positive functional connectivity with the dorsal cingulate cortex, lateral prefrontal
cortex, and insula cortex [188]. Interestingly, when insula damage is combined with basal
ganglia damage, the effects tend to be stronger, with a higher propensity for quitting
smoking [189]. The strong, consistent finding that lesions to the insula disrupt addiction
sits in apparent contradiction to the equally strong finding that addiction is associated
with reduced gray matter volumes (see above) [163]. This discrepancy has not yet been
resolved, but may, on further study, be explained by the different cognitive, emotional,
and interoceptive processes necessary to cease drug use permanently vs. those induced by
continued drug use vs. those at play in individuals who have never abused drugs. Another
possibility is that different subregions of the insula (or the overlying white matter) may be
responsible for lesion vs. volumetric effects, or that the efficacy of insular signaling may be
affected. Although further research is necessary to resolve these issues, the different types
of studies do consistently point to the AIC as central to addiction.

There is also evidence that the SN interacts with the brain’s dopaminergic system,
which is critical, not only for identifying environmental stimuli that are behaviorally
relevant, signaling reward prediction errors, and responding to surprising stimuli [190,191],
but also for developing and maintaining addiction. Drugs of abuse typically lead to an
increase in dopamine activity [21,192–198], and after repeated use of drugs, basal levels
of dopamine decrease below those in the pre-drug state. Additionally, during short-
term abstinence from drugs, dopamine activity is also depreciated [178,199,200]. These
dopaminergic effects have complex relationships with cortical areas, including those in the
SN. For example, the AIC contains a high density of dopaminergic D1 receptors and receives
strong dopaminergic inputs, and its signaling can be modified by dopamine [201–203].
In addition, the direction of influence can be reversed: the insula does appear to have
some control over dopaminergic signaling. Transcranial magnetic stimulation targeted
to the insula decreases dopamine levels in key reward circuitry, including the substantia
nigra and striatum [204]. To directly probe the relationship between the SN and dopamine,
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McCutcheon and colleagues combined positron emission tomography (PET) to measure
dopamine synthesis and release capacity with rs-fMRI in humans [205]. They showed that
dopamine synthesis capacity (measured with 18F-DOPA PET) in limbic dopamine regions
is associated with stronger connectivity strength within the SN, and this effect is fairly
specific to the SN compared with other networks. Surprisingly, this effect is reversed for
limbic dopamine release capacity (weaker SN connectivity associated with greater limbic
dopamine release). One obvious functional link between the insula and dopamine is via the
insula’s roles in interoception, which may add a unique contribution to how a substance
is consumed and valued [206]. That is, not only salient external cues but also internal
physiological and visceral sensations may be encompassed into the experience of reward
through the insula [178,207].

4. Cross-Species Salience Network

The salience network was first identified in humans; however, there are limitations
to the experimental studies that can be conducted with human subjects. Hence, the com-
plementary use of nonhuman animals, such as rodents and monkeys, will be crucial to
furthering our understanding of the SN and addiction. Thoughtful experimental designs
can directly manipulate specific circuits to tease apart each component of the SN.

The SN has been described in mice, rats, marmosets, and rhesus macaques
(Figure 1) [36,141,208–211]. Critically, all of the individual regions of the human SN appear
to have homologues in these species, although some of the details of subregion designation
may be controversial. For instance, there is some historical debate about whether non-
human brains contain an AIC: insular primary sensory cortices appear to extend to the
rostral edge of the macaque insula, perhaps leaving little room for a cognitive or emotional
zone [42]. However, other authors treat the macaque AIC as homologous to the human AIC,
with a conserved rostroventral to a dorsocaudal gradient of function, although perhaps the
cognitive and emotional territories occupy proportionally less volume in macaques [70,103].
In marmosets, an orbital area that extends rostrally beyond the lateral sulcus has been
proposed as a homologue to the human AIC [212,213]. However, there is some discrepancy
about this region as Paxinos et al. 2012 classified this region as OPAI and OPro. Neverthe-
less, Reser and colleagues suggest that despite the difference in nomenclature, based on
anatomical connectivity patterns (especially with the medial prefrontal cortex and AIC),
this region in marmosets is likely to be the human AIC homologue [212–214].

The homology of the rodent AIC is drastically understudied, especially in mice with
respective dorsal–ventral AIC divisions. However, a region of the mouse and rat brains
appears cytoarchitectonically and connectionally similar to the AIC in primates [215–217].
Given that there are many possible criteria to establish homology [218], some of which are
more challenging to assess across species, one possibility is that functional connectivity
itself and the structure of the SN may provide valuable insights about AIC homology.

The dACC is also present in these species, but again, there is some question about
the details. Humans have an extension of area 32 (called area 32′) in the dorsal portion
of the dACC. The region of the dACC in macaque that is in a similar location, the dorsal
bank of the cingulate sulcus, is a territory of some dispute, with some arguing that it is not
cingulate cortex at all [119,219]. Still, both macaques and humans appear to have a dACC
that contains rostral–caudal gradients of function and connectivity. For example, the rostral,
middle, and caudal parts of the dACC receive dense anatomical inputs carrying affective,
cognitive, and executive information, respectively, from the prefrontal cortex [114]. The
marmoset brain also appears to contain an area 24 (dACC) caudal to area 32 [212]. Finally,
in mice and rats, area CG (cingulate) is likely homologous to at least parts of the primate
dACC [220,221]. However, in rats, striatal connectivity of area CG appears most similar
to the connectivity of the caudal dACC, leaving the rostral dACC of primates potentially
poorly represented in rodents [119]. In general, homologies of specific primate cortical
regions can be challenging to ascribe to rodent brains; however, with the AIC and dACC,
there is at least some evidence of homology across species.
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Figure 1. The SN of the mouse, rat, marmoset, rhesus macaque, and human. For all species, yellow



Int. J. Mol. Sci. 2023, 24, 9083 9 of 22

indicates stronger functional connectivity. Reprinted with permission from Ref. [141]. 2020, Elsevier
Reprinted with permission from Ref. [211]. 2014, Elsevier; Reprinted with permission from Ref. [36].
2016, Elsevier; Reprinted with permission from Ref. [31]. 2016, Elsevier. Mouse SN: Bilateral seed in
the insula revealed BOLD functional connectivity with the dACC and striatum. Rat SN: Seed region
in the ventral AIC revealed functional connectivity with CG1(7), CG2(8), dorsal AIC (5), ventral
AIC (6), ventral orbitofrontal cortex (1), lateral orbitofrontal cortex (2), prelimbic cortex (3), and
infralimbic cortex (4). Marmoset SN: AIC connectivity with the medial prefrontal cortex (1), ACC
(2), orbitofrontal cortex (3), gustatory cortex (4), and AIC (5). Thalamic connections were not noted
(as in Belcher et al., 2013 [209]). Rhesus Macaque: (A) The ventral AIC seed is shown in the first
panel; (B–D) display functionally connected regions—the dACC, subgenual cingulate, orbitofrontal
cortex, amygdala, putamen, and temporal cortex (regions not previously observed in mouse, rat,
and marmoset). Human SN: As described in the text, human SN includes the canonical AIC, dACC
(a), ventral striatum (b), and ventral tegmental area (c). Abbreviations: CPu, caudate-putamen;
Cg, cingulate cortex; dAC/ACC, dorsal anterior cingulate cortex; Acb, nucleus accumbens; Ins,
insular cortex; vAI VO/LO, ventral/lateral orbital cortex; PrL, prelimbic cortex; IL, infralimbic cortex;
AID/AIV, dorsal/ventral agranular insular cortex; Cg1/Cg2, primary/secondary cingulate cortex;
mPFC, medial prefrontal cortex; OFC, orbitofrontal cortex; MCC, mid cingulate cortex; VTA, ventral
tegmental area.

What do we know about the SN’s presence/absence and organization in these nonhu-
man species? An essential property of intrinsic networks is that the activity is “bilateral and
homotopic” [211]. Sforazzini and colleagues, using independent components analysis on
resting-state fMRI data (BOLD and cerebral blood volume (CBV)) from anesthetized mice,
identified an intrinsic SN meeting these criteria. They showed a network with bilateral
AIC connectivity with the dACC and ventral striatum [211]. The seed region used in this
study was a large anterior insular seed spanning both dorsal and ventral subregions, and it
is unclear how a more restricted seed might affect the results (or not). Nevertheless, this
network appears quite similar to the SN identified in humans.

Tsai and colleagues also demonstrated the presence of an SN in rats [141]. Using a
seed-based analysis on resting-state fMRI data from anesthetized animals, they showed that
the ventral anterior insular cortex was functionally connected with the rest of the AIC and
CG (the likely homologue of primate dACC). However, there were also many other frontal
regions involved. A similar (though not identical) network structure was derived from
anatomical tract-tracing data. This group then directly compared the SN of rats, marmosets,
and humans by examining the resting-state functional connectivity of a ventral AIC seed.
Again, there were many commonalities across the three species, including connectivity
with the dACC and the broader AIC. However, using this analysis, only the human SN
included the striatum. The marmoset and rat SNs, by contrast, were the only ones that
included the orbitofrontal cortex [141].

Touroutoglou and colleagues detailed a homologous SN in the rhesus macaque [36].
A seed-based analysis similar to an earlier study [208] concluded that nonhuman primates
also have an intrinsic SN anchored in the ventral agranular insular cortex [36]. In addition,
the ventral agranular insular cortex displayed intrinsic connectivity with the dACC, or-
bitofrontal cortex, amygdala, putamen, and fronto-insular cortex [36]. However, unlike the
human SN, the nonhuman primate SN displayed additional connectivity with superior
temporal and frontal regions [208]. According to this study, macaques do not possess what
is termed the ‘dorsal salience network,’ which, as described above, is probably what would
now be considered the CON [36]

Notably, anatomical projections between the core nodes of the SN and dACC have been
established in nonhuman animals, particularly through the tract-tracing studies mentioned
above (e.g., [63,64]). These findings have been commonly cited as evidence that functional
interactions within the SN arise from direct anatomical connections [55]. However, the
observation of human dACC–AIC connections with dMRI tractography remains scarce [75].
Establishing a cross-species homology is important for probing SN functions in animal
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models and translating the ground-truth knowledge from tract-tracing studies into human
neuroanatomy to guide dMRI tractography investigations [68,130].

Circuits/Manipulations of the SN

Studies of the SN in humans have been important in establishing the network, identify-
ing many of its cognitive and emotional functions, and determining disorders in which it is
impacted. However, human studies have inherent limitations relative to nonhuman animal
work. Molecular and genetic tools have been developed for use in nonhuman animals
that are simply not suitable for human subjects. These tools allow for the dissection of the
specific circuit components that are important to different characteristics of the SN. Chiefly,
we are concerned below with the application of optogenetics and chemogenetics to the SN.
In brief, optogenetics uses genetically coded light-driven ion channels and pumps (opsins)
that can excite or inhibit neuronal activity [222–225]. Chemogenetics uses genetically mod-
ified G-protein coupled receptors—designer receptors exclusively activated by designer
drugs (DREADDs)—that can also inhibit or excite cellular activity depending on the ex-
ogenous receptor type [226–229]. Once expressed, DREADDs are activated by the binding
of an actuator ligand [230–233]. Optogenetics has excellent temporal resolution, which
can rapidly activate or deactivate cells, whereas DREADD-induced effects are typically
slower but last for a longer period of time [234–237]. Nevertheless, both techniques allow
for studying specific cell types and projections in the SN.

Both optogenetics and chemogenetics have been applied chiefly in mice, but also in
rats, marmosets, and macaques. However, because of the uncertain homologies discussed
above, it is worth noting that there are unique challenges associated with performing these
methods outside of mice, and especially when performing them in nonhuman primates. In
mice (and sometimes in rats but rarely in marmosets), circuit specificity can be achieved
by developing a transgenic line of animals [222,228,238–240]. In other species (especially
macaques), viral approaches are needed [224,241–243]. Viral vectors can be designed such
that the target opsin or DREADD is encoded and delivered to the target brain region or
circuit. Additional circuit specificity can be achieved via intracranial infusion of ligand [244],
targeted light delivery [245–248], or via an intersectional viral approach (such as the Cre-
DIO system). However, outside of mice, there is reduced capability to encode for specific
cell types, and factors such as the virus being used, the carrying capacity, and the size of the
genetic material being delivered must also be considered [249,250]. Furthermore, different
virus serotypes can interact differentially with the target region’s cellular composition to
alter the expression of opsins or DREADDs [251]. Another non-negligible challenge is the
sheer difference in brain sizes across species [224]. Hence, in nonhuman primates, a larger
volume of tissue has to be targeted. Importantly, this has to be performed in a manner that
will yield high expression without causing significant damage to the tissue.

With these caveats in mind and having established that the SN is present in these
nonhuman animal model species (even if it may not be completely identical to the human
SN), it is possible to utilize molecular and genetic tools to dissect the circuit underpinnings
of the SN. The activity of the SN affects not only the dynamics among its nodes but also the
dynamics of other closely linked networks, particularly the DMN and CEN.

Homologues of each of the three components of the triple network were previously
known to exist in nonhuman brains [26,32,35]; however, whether the individual networks
combine in a manner that is similar to the triple network identified in humans was un-
known [26,36,141,211].

To investigate the triple network framework in nonhuman animals, Mandino and
colleagues combined many methods (awake and resting-state fMRI datasets, optogenetic
neuromodulation, and viral tract tracing) and multiple species (humans, macaques, and
mice) [35]. Rs-fMRI data were decomposed into functional networks for mice, macaques,
and humans. Qualitatively, the CEN, DMN, and SN were represented in all three species [35].
This reinforced that the triple network is not only a feature of humans but also macaque
and mouse brains.
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One open question is whether the features of specific psychiatric disorders can be reca-
pitulated in nonhuman animals. Indeed, in a rodent model of depression induced through
chronic social stress [252,253], the DMN was hyperactive, and the SN was hypoactive,
mirroring results in humans [35]. Thus, not only were cross-network features recapitulated,
but the aberrant underlying networks were also consistent across models. This property
makes it feasible to study these aberrant activities in nonhuman models.

Mandino et al., (2022) then went one step further, using the molecular tools available in
rodents to probe the biological underpinnings of the triple network. First, they injected viral
tract tracers into nodes of the three networks to assess anatomical connectivity and found
that these nodes received projections from mainly non-overlapping upstream regions.
In other words, the DMN, SN, and CEN receive most of their inputs (in mice) from
different brain regions. Next, using optogenetics, they activated the CamKII-positive
insular neurons and dorsal raphe ePet-positive (serotonergic) neurons while performing
fMRI. Both resulted in activation patterns consistent with the SN, emphasizing the potential
role of the insula and dorsal raphe serotonergic neurons in this network. Although the
link between the SN and serotonin was, in the words of the authors, “unexpected,” there is
evidence of serotonin’s involvement in other networks, particularly the DMN [254,255],
and these findings highlight the importance combining molecular methods with fMRI.
Finally, although stimulation of insular neurons did not lead to positive conditioned place
preference, the extensive inter-subject variability in behavioral response was associated
with differential network engagement across the SN and DMN.

To directly probe the role of the AIC in modulating other networks, Menon and
colleagues also combined optogenetic stimulation and rs-fMRI, although in rats [256].
Optogenetic stimulation of the AIC increased both AIC activity and functional connectivity
with other regions of the SN [45,102,256,257]. However, the effects of AIC stimulation were
not limited to the SN. Stimulation also suppressed activity in the DMN, reduced functional
connectivity within the DMN, and reduced functional connectivity between the SN and
the DMN. This result suggests that the AIC has an influential inhibitory input to the DMN
and may be key to the dynamic relationships among the DMN, CEN (although the CEN
was not addressed here), and SN. Moreover, this study directly assessed and proposed a
circuit mechanism that could facilitate the dynamic switch in activity—DMN inactivation
and concurrent activation of the SN—observed in typical brain functioning and altered
in addiction disorders. They also note that the DMN hub in rodents (retrosplenial cortex)
does not receive a direct projection from the AIC and suggest that the CG, prelimbic cortex,
and/or claustrum may be acting as intermediaries in this circuit. This represents a crucial
mechanistic insight into the triple network model, although future work will be needed to
understand not just how the SN may control the DMN, but also how it may control the
balance between the DMN and CEN.

To investigate the electrophysiological basis of the SN and DMN, Chao and colleagues
recently combined fMRI with simultaneous fiber photometry recording of neuronal activity
(via GCaMP, a calcium indicator) in awake and resting rats [258]. GCaMP recordings
revealed significant functional connectivity among and between nodes of the DMN (retros-
plenial cortex and medial prefrontal cortex) and the SN (AIC and medial prefrontal cortex),
indicating that the pattern of functional connectivity canonically identified using fMRI is
also present in low-power spectral power fluctuations of GCaMP signals. GCaMP changes
also preceded network-level activations and deactivations in the DMN and SN. Critically,
similar to Menon et al., (2023), Chao et al., (2023) found that AIC had an inhibitory effect
on the retrosplenial cortex and medial prefrontal cortex, and thus, on the DMN [256,258].
Furthermore, an auditory oddball paradigm resulted in an increase in GCaMP activity in
the AIC, but a decrease in DMN areas, consistent with prior findings in human fMRI [45].

The dACC is a crucial region in the human SN. However, it is also a highly connected
central hub region of the brain, such that the ACC facilitates communication across and
between many brain regions. Accordingly, Peeters and colleagues [259] investigated how
inhibition of CG (the rodent dACC homologue) activity could alter communication in the



Int. J. Mol. Sci. 2023, 24, 9083 12 of 22

brain. Following unilateral designer receptors exclusively activated by designer drugs
(DREADDs) expression in the CG, functional connectivity changes were assessed with fMRI.
CG inhibition increased activity in the retrosplenial cortex, insular cortex, and basolateral
amygdala. This was coupled with a simultaneous decrease in activity in the visual cortex
and thalamus [259].

The medial prefrontal cortex in the rodent is a large region that likely contains nodes
of multiple networks. Rocchi et al., (2022) targeted the infralimbic, prelimbic, and ante-
rior cingulate cortices in mice, likely involving, at a minimum, the DMN and SN [260].
Specifically, by using transgenic rodents, researchers explored the effects of acute and
chronic inhibition on network organization and dynamics. The medial prefrontal cortex
was studied under conditions of chronic and acute inhibition. The literature on func-
tional connectivity suggests that altering the activity of a critical brain region within a
network would result in reduced functional coupling between the target region(s) and
other brain regions that received direct anatomical projections from the target [260–263].
Surprisingly, rsfMRI showed that chronic and acute inhibition of the medial prefrontal
cortex resulted in hyperconnectivity of midline structures such as the posterior cingulate
cortex and mediodorsal thalamus. This study highlights the complex interplay between
direct anatomical connectivity and functional connectivity. One possible explanation is that
the involvement of multiple competing networks may explain the counterintuitive results.

There is a vast literature on specific neural circuit and cellular mechanisms that con-
tribute to addiction-like processes in nonhuman animals [200,200,264,265]. Together with
the human clinical literature (reviewed above), these studies highlight the role of the dACC
in drug-related disruptions in inhibitory control and the role of the AIC in interoception,
craving, and relapse (e.g., [147,266–270]). A thorough review of this expansive literature
is beyond the scope of this paper. However, generally missing is an approach that eval-
uates all of the regions of the SN, as well as other relevant networks. Nevertheless, very
frequently, key SN regions are highlighted. For example, chemogenetic stimulation of the
rat AIC reduced alcohol consumption and enhanced cerebral blood volume in both the AIC
and the medial prefrontal cortex, which is suggestive of possible SN involvement [271].

5. Conclusions

The SN interplay with addiction is becoming more evident as researchers actively
explore the dynamics between anatomical connectivity, functional brain networks, the
brain regions that comprise these networks, and the aberrations that underlie and support
addiction. Functional networks are not only a feature of the human brain, but homologous
brain states and functional properties are also present in nonhuman animals commonly
used in research. Furthermore, while the aberrant network activity identified in human
addiction studies has not been directly replicated in nonhuman animal models, the discov-
ery of homologous regions and networks and the successful recapitulation of other brain
disorders is promising on this front. Moreover, although not the focus of this review, there
are extensive studies on how individual nodes of the SN are involved in specific addiction
processes in nonhuman animals [272–274]. This information can help to guide future mech-
anistic network studies. Finally, both the AIC and the ACC are the subjects of extensive
functional study in humans and nonhuman animals, separate from examinations of the SN.
Such studies use promising computational approaches to evaluate these regions’ roles in
decision-making, affect, and cognition. Just as we expect circuit and network approaches
to complement one another as they move towards common explanations, we expect com-
putational, region-specific studies of the AIC and ACC to inform our understanding of
the SN.
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