

Communication PARP3 Affects Nucleosome Compaction Regulation

Alexander Ukraintsev [†], Mikhail Kutuzov [†], Ekaterina Belousova ⁰, Marie Joyeau, Victor Golyshev ⁰, Alexander Lomzov ⁰ and Olga Lavrik ^{*}

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; kutuzov.mm@mail.ru (M.K.)

* Correspondence: lavrik@niboch.nsc.ru

+ These authors contributed equally to this work.

Abstract: Genome compaction is one of the important subject areas for understanding the mechanisms regulating genes' expression and DNA replication and repair. The basic unit of DNA compaction in the eukaryotic cell is the nucleosome. The main chromatin proteins responsible for DNA compaction have already been identified, but the regulation of chromatin architecture is still extensively studied. Several authors have shown an interaction of ARTD proteins with nucleosomes and proposed that there are changes in the nucleosomes' structure as a result. In the ARTD family, only PARP1, PARP2, and PARP3 participate in the DNA damage response. Damaged DNA stimulates activation of these PARPs, which use NAD⁺ as a substrate. DNA repair and chromatin compaction need precise regulation with close coordination between them. In this work, we studied the interactions of these three PARPs with nucleosomes by atomic force microscopy, which is a powerful method allowing for direct measurements of geometric characteristics of single molecules. Using this method, we evaluated perturbations in the structure of single nucleosomes after the binding of a PARP. We demonstrated here that PARP3 significantly alters the geometry of nucleosomes, possibly indicating a new function of PARP3 in chromatin compaction regulation.

Keywords: nucleosome; atomic force microscopy; poly(ADP-ribose)polymerase; chromatin structure; DNA compaction

1. Introduction

DNA in eukaryotes is mostly packed into chromatin [1]. The compaction is implemented by chromatin proteins and is presumably regulated by modifications of nitrogenous bases in DNA or chromatin proteins. The compaction level can influence the expression of the affected genes via transcription regulation [2]. The basic unit of DNA compaction is the nucleosome. The main functions of nucleosomes are compaction and the protection of DNA and regulation of gene expression [3]. A nucleosome consists of 147 nt of DNA wrapped around a histone octamer consisting of two molecules of each of the following histones: H2A, H2B, H3, and H4. This nucleoprotein complex is also termed the nucleosome core particle (NCP). The structural and functional details are reviewed in Reference [3].

The higher compaction level is usually mediated by linker histone H1. This histone binds to an NCP in the entry–exit region, thus forming a chromatosome, and chromatosomes can then condense into fibers. This compaction of NCPs requires a certain density of DNA wrapping [4]. Parameters of the fiber may depend on the NCP compaction degree. For example, the replacement of the H3 histone with CenpA leads to less compacted NCPs [5,6]. This alteration probably results in an alternative type of NCP compaction in fibers [5]. Functions of different types of DNA compaction in chromatin are being debated. One of the known chromatin changes occurs in response to the binding of poly(ADP-ribose)polymerase 1 (PARP1) [7].

The diphtheria toxin-like ADP-ribosyltransferase (ARTD) family of proteins consists of 17 members. These proteins share the active site of the catalytic domain [8]. Three proteins

Citation: Ukraintsev, A.; Kutuzov, M.; Belousova, E.; Joyeau, M.; Golyshev, V.; Lomzov, A.; Lavrik, O. PARP3 Affects Nucleosome Compaction Regulation. *Int. J. Mol. Sci.* 2023, 24, 9042. https://doi.org/10.3390/ ijms24109042

Academic Editors: Daniela Montesarchio and Giorgio Dieci

Received: 10 March 2023 Revised: 12 May 2023 Accepted: 18 May 2023 Published: 20 May 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). from this family—PARP1, PARP2, and PARP3—are known to be DNA-damage-dependent. These PARPs activate in response to DNA damage. They catalyze the transfer of ADP-ribose from NAD⁺ to an acceptor molecule. Various proteins and DNAs can act as an acceptor for these PARPs [9–11]. PARP1 and PARP2 can synthesize long branched polymers of ADP-ribose (PAR), whereas PARP3 performs only mono(ADP-ribosyl)ation [12]. PARP1 and PARP2 are regulator proteins in base excision repair and double-strand break repair [13–17]. ADP-ribosylation can perform the function of an intracellular signal for the recruitment of DNA repair proteins. On the other hand, as a type of post-translational modification, ADP-ribosylation influences the properties of a target protein [18].

Several authors have revealed an interaction of the PARP1 protein with NCPs and have proposed that there is a change in the NCP structure as a result [19]. PARP1 can affect the chromatin structure via poly(ADP-ribosyl)ation (PARylation) [20]. Under PARylation conditions, PARP1 modifies histone H1, thus causing its dissociation. Recently, a protein involved in histone PARylation (HPF1) was discovered [21,22]. In the presence of this protein, PARP1 and PARP2 can modify (ADP-ribosyl)ate core histones in an NCP. These modifications lead to chromatin relaxation [23].

PARP1 can also directly affect NCPs. It has been shown that in the absence of linker regions, PARP1's binding to an end of nucleosomal double-stranded DNA (dsDNA) causes a significant increase in the distance between adjacent gyres of the duplex, and this process is not accompanied by a loss of histones; moreover, it is reversible after PARylation [24]. Such major distortions of the NCP structure may be a consequence of the ability of PARP1 to strongly interact with DNA through the DNA-binding domain (DBD), which includes three Zn-finger domains, a WGR domain, and even a BRCT domain.

Although PARP2 is the closest homolog of PARP1, its DBD is considerably different. PARP2 does not contain any known DNA-binding motifs but comprises a structure similar to the SAP motif. It also has different DNA-binding properties: a lower affinity for free DNA and compacted DNA as compared to PARP1. It has been demonstrated that during the interaction with compacted DNA, PARP2 forms a bridge between two NCPs in doublestrand breaks [25]. In contrast to PARP1, the interplay between PARP2 and an NCP has not been described in much detail.

In this regard, PARP3 is less characterized compared to PARP1 and PARP2, and the processes involving PARP3 are being researched at present. PARP3 interacts with PARP1 and several DNA damage repair proteins [26–28]. In the cell, PARP3 is reported to be associated with several polycomb group proteins [27]. The latter finding suggests that PARP3 participates in epigenetic regulation of transcription. Notably, this enzyme does not have a structurally separate DBD. The unstructured N-terminus is responsible for this function in PARP3. Nevertheless, PARP3 is strongly activated by DNA strand breaks in vitro and can facilitate non-homologous end joining [27–29].

More detailed information about aspects of structural reorganization during direct binding of a PARP protein to an NCP may be obtained by single-molecule methods such as atomic force microscopy (AFM). AFM is an approach used to directly measure the geometric characteristics of individual molecules placed on mica plaque surfaces. It is one of the most widely used nano-tools for studying protein DNA complexes including NCPs [30–36]. This method can be employed for estimating the NCP compaction degree by measurement of the angle between DNA arms near the entry–exit site of an NCP [31,37]. Using this approach, a stabilizing effect of histone H1 on an NCP has been demonstrated [32].

In our work, we studied the interactions of PARP1, PARP2, and PARP3 with an NCP reconstituted from native core histones and Widom's clone 603 DNA extended by 79 and 120 bp DNA arms. In particular, we determined changes in the geometric parameters of NCPs during their binding to PARP1, PARP2, or PARP3.

2. Results and Discussion

2.1. The Localization of PARP Proteins in NCP-PARP Complexes

First, we determined the site of binding of each PARP protein to our model NCP. For this purpose, reconstituted NCPs were incubated with a PARP followed by immobilization on a mica surface and visualization by AFM scanning in air. Only images of complexes containing both PARP and NCP molecules were chosen for the analysis. According to the positioning of a PARP molecule, the captured images were sorted into two categories: (i) a PARP is located close to the NCP core; (ii) the PARP is located on the linker DNA region. Figure 1 shows typical images of NCPs in their complex with PARPs. While accumulating the data, we found that each of the three PARPs presumably binds near the NCP core: in 153 out of 200 complexes for PARP1, in 148 out of 200 complexes for PARP2, and 158 out of 200 complexes for PARP3.

Figure 1. Representative AFM scans of an NCP. Cores of the NCP are indicated by white arrows. PARP1, PARP2, and PARP3 molecules are pointed out by blue, green, and red arrows, respectively. (**A**) A PARP located close to the NCP core. (**B**) A PARP located on the linker DNA region.

Strong affinity (in the sub-nanomolar range) of PARP1 and PARP2 for DNA containing various structural elements has been demonstrated earlier [36,38]. In those experiments, naked DNA was used. Additionally, our previous data revealed that K_d values are almost identical when complexes of PARP1 with naked DNA and of PARP1 with an NCP are compared [39].

An earlier study uncovered a specific nature of PARP1's binding to NCP and the ability of this protein to modulate chromatin structure through NAD⁺-dependent automodification without disassembly of the NCP core [40]. These authors also showed that PARP1 is associated with chromatin regions depleted of histone H1. PARP1 saturates chromatin in a molar ratio of 1:1 toward the NCP and competes with H1 for the binding to NCPs. A recent study shows the ability of PARP1 to bind DNA near the entry–exit site of an NCP through the BRCT domain of PARP1 in addition to Zn-finger domains [41]. Furthermore, a condensing effect of PARP1 binding on chromatin has been demonstrated [7]. These data are in agreement with our findings about PARP1 localization during its binding to the model NCP. Taken together, all these data may indicate a potential structural role of PARP1.

The binding of PARP1 to an NCP instead of H1 in the absence of DNA damage may lead to a certain temporal pattern of chromatin alterations and to an alternative compaction degree.

Preferential binding of PARP2 to the NCP core was expected here because PARP2 possesses a significantly stronger affinity for NCP compared to naked DNA [39]. The mechanism underlying the interaction of PARP2 or PARP3 with the NCP is not clear, first of all, owing to dramatic differences in the structure of their DBDs from those of PARP1 and differences in subsequent various types of interaction with DNA [42,43]. Moreover, the interaction of PARP2 or PARP3 with the NCP in the absence of DNA damage may be mediated by core histones. In any case, the binding of PARP2 or PARP3 to an NCP may affect its geometry.

2.2. The Impact of PARP Binding on the NCP Compaction Degree

Here, we analyzed only the complexes where a PARP molecule is located close to the NCP core. We measured the angle between the linker DNAs of the NCP, i.e., the opening angle (as described in Materials and Methods), to evaluate the changes in the geometric parameters of the NCP. A similar approach was used previously [32,44].

We analyzed 200 complexes of the NCP under all conditions under study. As a reference sample in the experiment, we utilized an NCP without supplementation with any PARP. Graphical representation of the results is given in Figure 2b. The raw data are presented in Tables A1–A4. The average angle between DNA arms near the entry–exit region for NCPs in native states was estimated as $120^{\circ} \pm 5^{\circ}$. This result is consistent with the data obtained by Jan Lipfert's group [31]. Those authors showed a dual-mode distribution in 2D density plots, which depicted a correlation between the length of unwrapped DNA and an opening-angle distribution. In contrast to their data, we did not observe such a clear-cut dual-mode distribution in our experiments (Figure A2). This discrepancy may be explained by a difference in the nucleotide sequences of the DNA used. In our work, we employed Widom's clone 603 DNA (which is characterized by weaker affinity of binding to core histones) instead of clone 601 DNA as used in Reference [31]. The main difference between these two DNA sequences is the toughness of the NCP core: the NCP based on clone 601 DNA is tougher and therefore has less flexible DNA ends. It is probable that our model NCPs based on clone 603 DNA have insufficient differences in their opening-angle values to discriminate clearly between these two modes.

The binding of PARP1 to an NCP caused slight narrowing of the distribution of the opening arms' angle without a significant effect on the compaction of the NCP ($115^{\circ} \pm 4^{\circ}$). The difference in the measured values of the angle in the nucleosome in the presence and in the absence of PARP1 was not significant (even for a *p*-value of 0.9). As mentioned above, PARP1 can bind an NCP near the entry-exit site and interact with both DNA linkers. This interaction can influence the structural functioning of chromatin similarly to linker histone H1. It has been reported that the presence of H1 narrows the opening-angle distribution (meaning NCP stabilization) and does not change the compaction degree [32]. Furthermore, similarly to histone H1, PARP1 compacts chromatin, which is relaxed under PARylation conditions [7]. The authors of Reference [45] propose that the compaction is accomplished via the bringing of neighboring NCPs together by PARP1 molecules, analogously to the process observed in the polycomb group protein complex. This effect is probably due to loop formation caused by PARP1–PARP1 contacts [46]. It should be noted that the binding of PARP1 to DNA near the entry–exit site leads to the distancing of the two DNA gyres, thereby destabilizing the NCP core [24]. Thus, PARP1 loosens the NCP structure. Nonetheless, in that report, the authors demonstrated separation of fluorescent labels located on the DNA helices wrapping the histone core when PARP1 was bound. These data were obtained by the Forster resonance energy transfer technique, which does not discriminate between directions of the NCP deformation; the changes in NCP structure can occur in one of two directions: radial or axial. Because we did not detect significant changes in the compaction degree of the NCP in the presence of PARP1, the changes probably proceed in the axial direction. In this case, the influence cannot be determined

5 of 25

by the method under study. We also cannot rule out that the previously described NCP structure distortions caused by PARP1 may affect only the DNA region that is in direct contact with the histone core. In this context, the geometry of the entry–exit site of DNA may be unaltered.

Figure 2. The compaction of NCPs depending on the presence of a PARP protein. (**a**) Schematic representation of determined parameters of an NCP. In the image, "11" and "12" are DNA arm lengths, " α " is the angle between DNA arms, and "D" is the diameter of the NCP core. (**b**) The Gauss interpolation of the distribution of " α " angle values. The black curve: NCP samples, the blue curve: samples of NCPs supplemented with PARP1, the green curve: samples of NCPs supplemented with PARP2, and the red curve: samples of NCPs supplemented with PARP2, and the red curve: samples of NCPs supplemented with PARP3. (**c**) Representation of the distribution of " α " angle values. NCP, blue bars: NCP supplemented with PARP1, green bars: NCP supplemented with PARP2, and red bars: NCP supplemented with PARP3.

Even though PARP2 manifests significantly stronger affinity for NCPs than for naked DNA, PARP2 (just as PARP1) does not significantly affect the NCP compaction [39]. In the present work, neither the distribution of opening-angle values nor the compaction degree

of the NCP was changed by the presence of PARP2 ($121^{\circ} \pm 4^{\circ}$). Taking into account the standard deviation, the difference in the measured values of the angle in the nucleosome in the presence and in the absence of PARP2 was not significant (even for a *p*-value of 0.8). In the absence of blunt DNA ends, PARP2 probably binds to NCPs through histones. In this case, it is highly likely that PARP2 mostly binds outside the entry–exit site. Therefore, the impact on the compaction degree may be small.

Meanwhile, PARP3 exerted a distinctive effect on the compaction of the NCP core. We observed an increased compaction degree of the NCPs in the presence of PARP3 ($104^{\circ} \pm 4^{\circ}$). Taking into account the standard deviation, the difference in the measured values of the angle in the nucleosome in the presence and in the absence of PARP3 was significant (a *p*-value of 0.001). Moreover, the presence of PARP3 induced the narrowing of the opening-angle distribution. It is worth mentioning that PARP3 is widespread in the nucleus as a part of polycomb group protein complexes. The molecular function of the polycomb group is important for homeotic gene regulation and is consequently suppressed during cell differentiation with the transition of genes into the heterochromatic state. Thus, the effect of PARP3 on NCP compaction may be required for the regulation of the access of other proteins to undamaged DNA via DNA compaction regulation.

In our work, we investigated changes in the NCP architecture during interactions with PARP1, PARP2, or PARP3 in the absence of (ADP-ribosyl)ation. The observed effects can be dramatically altered by the presence of lesions in DNA and NAD⁺. These alterations could also be important, especially because of the different abilities of PARP proteins to synthesize various PAR chains on an acceptor molecule, starting from the transfer of one ADP-ribose (as PARP3 does). What is more, the contribution of accompanying factors such as HPF1 could be substantial during the (ADP-ribosyl)ation and consequent NCP compaction reorganization.

Nevertheless, our study simulates the scenario where DNA is undamaged and the basic ADP-ribose transfer activity of PARPs is weak. To summarize, PARP3 is a new probable player in chromatin compaction regulation.

In conclusion, the clear difference between PARP1, PARP2, and PARP3 in their actions during this process may open up a new research field: the elucidation of PARP3's function in chromatin compaction in the absence of DNA damage. The question is how to find the conditions (the biological process) where the observed effect is indispensable. The effect may be clarified when higher-order DNA compaction is studied in this context.

3. Materials and Methods

3.1. Reagents and Equipment

The following reagents and materials were used: 3.5 kDa cutoff dialysis membranes (Spectrum Laboratories Inc., Rancho Dominguez, CA, USA); bromophenol blue and xylene cyanol (Fluka, Buchs, Switzerland). Most of the reagents used in the study were purchased from Sigma (St. Louis, MO, USA). Recombinant Taq DNA polymerase was kindly provided by Prof. Svetlana Khodyreva (Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (ICBFM SB RAS)). Recombinant proteins—human PARP1, murine PARP2, human PARP3, and histone octamers H2A, H2B, H3, and H4 from *G. gallus*—were prepared and isolated as described in References [11,47,48]. AFM imaging was performed on Multimode 8 (Bruker, Billerica, MA, USA) with the help of NSG30_SS probes (TipsNano, Tallinn, Estonia). The synthesis of 1-(3-aminopropyl)-silatrane (APS) was performed as described elsewhere [49]. NCP assembly products were visualized after separation in a polyacrylamide gel by means of a Typhoon FLA 9500 system (GE Healthcare Life Science, Barrington, IL, USA) and Amersham Imager 680 (GE Healthcare Life Science, Barrington, IL, USA).

3.2. Preparation of DNA Substrates

The DNA-603-containing substrate used in the experiments was generated by PCR from a pGEM-3z/603 plasmid vector (AddGene, Watertown, MA, USA) with unique

primers. The DNA construct contains 147 bp of strong positioning of Widom's clone 603 DNA sequence surrounded by plasmid DNA sequences of 120 and 79 bp:

5'-GGGCGAATTCGAGCTCGGTACCCGGGGATCCTCTAGAGTCGGGAGCTCGGA ACACTATCCGACTGGCACCGAAACGGGTACCCCAGGGACTTGAAGTAATAAGGA CGGAGGGCCTCTTTCAACATCGATGCACGGTGGTTAGCCTTGGATTGCGCTCTAC CGTGCGCTAAGCGTACTTAGAAGCCCGAGTGACGACTTCACACGGTAGGTGGGCG CGCGAACTGGGCACCCGAGAGTGTCGATTATTTTACGGCTCACGCTGGGGTGATTT GTACTAGGAAAACGCCTATTCGTGTATTCCGCCTTGGTCATTAGGATCCCGGACCTG CAGGCATGCAAGCTTGAG-3'.

Primer oligonucleotides 5'-GGGCGAATTCNAGCTCGGTAC-3' and 5'-CTCAAGCTTG CATGCCTGCAG-3' were synthesized in the Laboratory of Biomedical Chemistry at the ICBFM SB RAS (Russia). The following program in PCR was used: 3 min at 94 °C; 30 cycles of 30 s at 94 °C, 20 s at 65 °C, and 1 min at 72 °C; with final extension for 3 min at 72 °C.

After the PCR-based synthesis, the DNA substrate was purified by gel electrophoresis and isolated from the gel by the protocol from reference [50].

3.3. NCP Assembly

The NCP assembly was carried out in accordance with our previously described protocol [51]. Briefly, by quick reconstitution of NCPs in analytical amounts, the correct ratio of DNA–histones' species was determined. Then, preparative reconstitution was performed by gradient dialysis according to the determined ratio.

3.4. Preparation of NCP Samples Containing a PARP

Sample preparation for AFM imaging was performed as described before [52]. Freshly cleaved mica was functionalized with a solution of APS for sample deposition.

The reaction mixture was composed of 10 nM NCP, NCP buffer (20 mM NaCl, 0.2 mM EDTA, 1.6 mM CHAPS, 10 mM Tris-HCl pH 7.5, and 5 mM β -mercaptoethanol) and one of PARPs at a concentration of 10 nM (PARP1), 35 nM (PARP2), or 66 nM (PARP3). The reaction mixture was incubated for 15 min at 37 °C. Then, samples were diluted tenfold with Milli-Q water and immediately deposited on the mica surface. After 120 s of deposition, the mica surface was rinsed three times with 1 mL of Milli-Q water and dried in a gentle stream of argon. The samples were stored in a desiccator before the imaging.

3.5. AFM Imaging

The visualization was performed in tapping mode in air at a tip resonance frequency of 240–440 kHz. A typical resulting image had a size of 2 μ m × 2 μ m at 1024 pixels/row or 4 μ m × 4 μ m at 2048 pixels/row. The scanning rate was either 1.0 or 0.5 Hz, respectively.

3.6. Data Analysis

All images were first processed in the Gwyddion software (http://gwyddion.net/, accessed on 1 March 2023). The ImageJ software (https://imagej.nih.gov/ij/, accessed on 1 March 2023) was employed to measure parameters of the NCP core disk and of the NCP core in complex with PARPs, the length of the NCP DNA arm, and the angle between DNA arms. The arm length was estimated by measuring the DNA from the end point to the point of "entry" into the NCP disk. Diameters of the core and core PARP were estimated as the maximal distance between two parallel tangents to the disk. The angle between NCP DNA arms was defined as an angle formed by two beams from the center of the core disc to the "entry" points of DNA arms. On the basis of the obtained data, histograms and graphs were constructed using the SigmaPlot software v.11.0 (Systat Software Inc., Chicago, IL, USA). Variances in measured values were calculated by means of Student's *t* distribution with 95% confidence intervals. Measured values are shown diagrammatically in Figure 2a. When sorting PARP–NCP complexes, we chose a distance of 3 nm between the NCP core and a PARP as the border point. The resolution of the cantilever used in this work allowed us to uniquely identify a PARP separated from the NCP core when the distance was more

than 3 nm. Therefore, when the proteins were located closer to the NCP core, we assumed that they were directly interacting. The workflow is illustrated in Figure A1.

Author Contributions: Conceptualization, M.K. and E.B.; methodology and formal analysis, A.U. and M.J.; validation, V.G. and A.L.; writing—original draft preparation, M.K.; writing—review and editing, O.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Russian Science Foundation (project No. 22-74-10059). The purification of PARP3 was supported by the Russian state-funded project for ICBFM SB RAS (grant number 121031300041-4).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data needed to reproduce our results are contained within the article. Raw data are available upon request.

Acknowledgments: We would like to thank the entire Laboratory of Bioorganic Chemistry of Enzymes (ICBFM SB RAS) for feedback on the manuscript. We acknowledge Svetlana Khodyreva for preparation of the recombinant Taq DNA polymerase.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Figure A1. The workflow.

Figure A2. The 2D density plot of wrapped length versus the opening-angle distribution of NCPs.

NCP #	α, °	D, µm	l1, μm,	12, μm
1	230	0.011	0.025	0.03
2	59	0.015	0.031	0.015
3	103	0.011	0.032	0.017
4	121	0.016	0.04	0.026
5	128	0.018	0.035	0.024
6	172	0.013	0.029	0.015
7	267	0.011	0.042	0.021
8	106	0.019	0.041	0.028
9	66	0.025	0.057	0.026
10	148	0.021	0.045	0.019
11	124	0.021	0.05	0.03
12	83	0.021	0.045	0.023
13	180	0.016	0.045	0.046
14	136	0.021	0.042	0.017
15	94	0.019	0.039	0.025
16	94	0.018	0.045	0.028
17	68	0.011	0.057	0.036
18	46	0.018	0.037	0.038
19	96	0.023	0.04	0.022
20	169	0.024	0.047	0.021
21	109	0.026	0.029	0.028
22	88	0.017	0.039	0.034
23	111	0.021	0.037	0.03
24	148	0.022	0.033	0.025
25	71	0.021	0.032	0.026
26	280	0.016	0.056	0.026
27	191	0.024	0.041	0.024
28	124	0.021	0.037	0.018
29	102	0.018	0.047	0.038
30	68	0.02	0.035	0.021
31	115	0.022	0.025	0.023
32	90	0.02	0.038	0.027
33	77	0.024	0.033	0.019
34	143	0.02	0.034	0.028
35	162	0.017	0.045	0.027
36	112	0.018	0.04	0.02
37	125	0.016	0.044	0.018
38	124	0.018	0.042	0.025

Table A1. NCP parameters.

Table A1. Cont.

99 109 0.02 0.028 0.016 40 126 0.023 0.044 0.028 41 74 0.017 0.0445 0.034 42 113 0.022 0.024 0.027 43 104 0.02 0.061 0.027 45 173 0.02 0.041 0.017 46 104 0.017 0.029 0.03 47 133 0.019 0.041 0.012 48 174 0.015 0.042 0.022 50 83 0.015 0.043 0.022 51 142 0.015 0.052 0.02 52 124 0.016 0.045 0.02 53 179 0.023 0.032 0.018 54 111 0.016 0.041 0.025 56 115 0.017 0.041 0.025 57 196 0.022 0.048 0.032 <th>NCP #</th> <th>lpha, °</th> <th>D, μm</th> <th>l1, μm,</th> <th>12, μm</th>	NCP #	lpha, °	D , μm	l1, μm,	12, μm
40 126 0.023 0.04 0.028 41 74 0.017 0.045 0.034 42 113 0.022 0.024 0.027 43 104 0.02 0.046 0.023 44 121 0.02 0.043 0.022 46 104 0.017 0.029 0.033 47 133 0.019 0.041 0.014 48 174 0.015 0.042 0.022 50 83 0.015 0.042 0.022 51 142 0.018 0.037 0.038 52 124 0.018 0.037 0.038 53 179 0.023 0.033 0.024 54 111 0.016 0.045 0.02 55 85 0.02 0.022 0.024 56 115 0.017 0.041 0.032 57 196 0.022 0.043 0.024 58 0.15 0.037 0.031 59 9	39	109	0.02	0.028	0.016
41 74 0.017 0.045 0.037 43 104 0.02 0.046 0.027 43 104 0.02 0.046 0.027 44 121 0.02 0.046 0.027 45 173 0.02 0.043 0.022 46 104 0.017 0.029 0.03 47 133 0.019 0.041 0.014 48 174 0.019 0.043 0.032 50 83 0.015 0.042 0.022 50 83 0.015 0.043 0.024 51 142 0.015 0.052 0.02 52 124 0.018 0.037 0.038 53 179 0.023 0.032 0.014 55 85 0.02 0.025 0.024 56 115 0.017 0.041 0.025 60 101 0.023 0.024 0.018 61 73 0.016 0.048 0.031 6	40	126	0.023	0.04	0.028
42 113 0.022 0.024 0.023 44 121 0.02 0.061 0.023 45 173 0.02 0.043 0.022 46 104 0.017 0.029 0.031 47 133 0.019 0.041 0.014 48 174 0.015 0.042 0.022 50 83 0.015 0.038 0.024 51 142 0.018 0.037 0.038 53 179 0.023 0.032 0.018 54 111 0.016 0.045 0.02 55 85 0.02 0.026 0.024 56 115 0.017 0.041 0.032 57 196 0.022 0.043 0.024 58 103 0.027 0.036 0.031 61 73 0.016 0.044 0.032 63 91 0.022 0.055 0.035 <td>41</td> <td>74</td> <td>0.017</td> <td>0.045</td> <td>0.034</td>	41	74	0.017	0.045	0.034
43 104 0.02 0.046 0.027 44 121 0.02 0.043 0.022 46 104 0.017 0.029 0.03 47 133 0.019 0.043 0.032 49 109 0.015 0.043 0.032 49 109 0.015 0.043 0.022 50 83 0.015 0.038 0.024 51 1.42 0.015 0.052 0.02 52 1.24 0.015 0.045 0.02 53 1.79 0.023 0.032 0.024 56 1.15 0.017 0.041 0.032 57 196 0.022 0.043 0.022 58 1.15 0.018 0.059 0.036 59 97 0.016 0.048 0.032 61 7.3 0.016 0.048 0.032 62 67 0.022 0.055 0.035 64 91 0.022 0.055 0.035	42	113	0.022	0.024	0.027
44 121 0.02 0.061 0.022 45 173 0.02 0.043 0.022 46 104 0.017 0.029 0.03 47 133 0.019 0.041 0.014 48 174 0.015 0.042 0.022 50 83 0.015 0.032 0.021 51 142 0.018 0.037 0.038 53 179 0.023 0.032 0.018 54 111 0.016 0.045 0.02 56 115 0.017 0.041 0.032 57 196 0.022 0.043 0.024 58 102 0.059 0.036 59 97 0.016 0.041 0.022 61 73 0.016 0.058 0.031 62 67 0.023 0.024 0.018 63 91 0.022 0.055 0.035 64 91 0.027 0.032 0.011 65 126 </td <td>43</td> <td>104</td> <td>0.02</td> <td>0.046</td> <td>0.023</td>	43	104	0.02	0.046	0.023
45 173 0.02 0.043 0.023 46 104 0.017 0.029 0.03 47 133 0.019 0.041 0.014 48 174 0.019 0.043 0.032 49 109 0.015 0.042 0.022 50 83 0.015 0.038 0.024 51 142 0.018 0.037 0.038 52 124 0.018 0.037 0.038 53 179 0.023 0.032 0.014 56 115 0.017 0.041 0.032 57 196 0.022 0.043 0.024 58 115 0.018 0.059 0.036 59 97 0.016 0.044 0.032 60 101 0.023 0.024 0.018 63 91 0.022 0.055 0.033 64 91 0.027 0.032 0.018 65 126 0.015 0.037 0.031 <	44	121	0.02	0.061	0.027
46 104 0.017 0.029 0.03 47 133 0.019 0.041 0.014 48 174 0.019 0.043 0.032 49 109 0.015 0.042 0.022 50 83 0.015 0.038 0.021 51 142 0.018 0.037 0.038 53 179 0.022 0.015 0.022 55 85 0.02 0.025 0.024 56 115 0.017 0.041 0.032 57 196 0.022 0.043 0.024 58 115 0.017 0.041 0.025 60 101 0.023 0.048 0.032 61 73 0.016 0.041 0.025 60 101 0.023 0.024 0.018 65 126 0.015 0.037 0.031 66 151 0.016 0.037 0.031<	45	173	0.02	0.043	0.022
47 133 0.019 0.041 0.014 48 174 0.019 0.043 0.032 49 109 0.015 0.042 0.022 50 83 0.015 0.038 0.024 51 1.42 0.015 0.052 0.02 52 1.24 0.016 0.045 0.02 55 85 0.02 0.025 0.024 56 115 0.017 0.041 0.032 57 196 0.022 0.043 0.024 58 115 0.016 0.044 0.032 59 97 0.016 0.048 0.032 60 101 0.023 0.024 0.018 62 67 0.023 0.024 0.018 63 91 0.027 0.032 0.031 64 91 0.027 0.032 0.021 65 126 0.015 0.037 0.031 <td>46</td> <td>104</td> <td>0.017</td> <td>0.029</td> <td>0.03</td>	46	104	0.017	0.029	0.03
48 174 0.019 0.043 0.022 49 109 0.015 0.042 0.022 50 83 0.015 0.028 0.02 51 142 0.016 0.052 0.02 52 124 0.018 0.037 0.038 53 179 0.023 0.032 0.018 54 111 0.016 0.045 0.02 56 115 0.017 0.041 0.032 57 196 0.022 0.043 0.024 58 115 0.018 0.059 0.036 59 97 0.016 0.044 0.022 60 101 0.023 0.048 0.031 62 67 0.023 0.024 0.018 63 91 0.027 0.032 0.018 64 91 0.027 0.032 0.031 65 126 0.015 0.037 0.031 66 151 0.018 0.046 0.033 <td< td=""><td>47</td><td>133</td><td>0.019</td><td>0.041</td><td>0.014</td></td<>	47	133	0.019	0.041	0.014
49 109 0.015 0.042 0.022 50 83 0.015 0.038 0.024 51 142 0.015 0.032 0.038 52 124 0.018 0.037 0.038 53 179 0.023 0.015 0.02 55 85 0.02 0.025 0.024 56 115 0.017 0.041 0.032 57 196 0.022 0.043 0.024 58 115 0.018 0.059 0.036 59 97 0.016 0.048 0.032 60 101 0.023 0.024 0.018 62 67 0.023 0.024 0.018 63 91 0.022 0.055 0.035 64 91 0.027 0.032 0.018 65 126 0.015 0.037 0.031 66 151 0.018 0.044 0.039 <td>48</td> <td>174</td> <td>0.019</td> <td>0.043</td> <td>0.032</td>	48	174	0.019	0.043	0.032
50 83 0.015 0.038 0.024 51 142 0.015 0.032 0.038 52 124 0.018 0.037 0.038 53 179 0.023 0.032 0.018 54 111 0.016 0.045 0.02 55 85 0.02 0.025 0.024 56 115 0.017 0.041 0.032 57 196 0.022 0.043 0.024 58 115 0.018 0.059 0.036 59 97 0.016 0.041 0.025 60 101 0.023 0.048 0.032 61 73 0.016 0.044 0.031 62 67 0.023 0.024 0.018 63 91 0.027 0.032 0.018 65 126 0.015 0.037 0.031 66 151 0.018 0.044 0.039 <td>49</td> <td>109</td> <td>0.015</td> <td>0.042</td> <td>0.022</td>	49	109	0.015	0.042	0.022
51 142 0.015 0.052 0.02 52 124 0.018 0.037 0.038 53 179 0.023 0.012 55 85 0.02 0.025 0.024 56 115 0.017 0.041 0.032 57 196 0.022 0.043 0.024 58 115 0.018 0.059 0.036 59 97 0.016 0.0411 0.025 60 101 0.023 0.048 0.032 61 73 0.016 0.058 0.031 62 67 0.022 0.055 0.035 64 91 0.022 0.055 0.035 64 91 0.022 0.055 0.035 64 91 0.022 0.055 0.033 66 151 0.018 0.046 0.033 67 104 0.015 0.037 0.022 70 106 0.017 0.032 0.022 70 106 0.017 0.032 0.022 75 128 0.017 0.036 0.014 74 120 0.02 0.028 0.022 75 128 0.017 0.037 0.021 77 131 0.019 0.037 0.021 78 131 0.019 0.033 0.012 75 128 0.017 0.031 0.023 77 131 0.019 <td>50</td> <td>83</td> <td>0.015</td> <td>0.038</td> <td>0.024</td>	50	83	0.015	0.038	0.024
521240.0180.0370.038531790.0230.0320.018541110.0160.0450.0255850.020.0250.024561150.0170.0410.032571960.0220.0430.024581150.0180.0590.03659970.0160.0410.025601010.0230.0480.03261730.0160.0480.03263910.0220.0550.03564910.0270.0320.018651260.0150.0370.031661510.0180.0460.033671040.0150.0440.03968780.0180.0530.031691920.0160.0450.022701060.0170.0320.021711190.0190.0270.01572790.0180.0280.01273970.0180.0280.012751280.0170.0360.024761210.0190.0370.023771310.020.0240.015781310.0190.0330.016741200.020.0240.015781310.0190.0330.01684940.0230.021	51	142	0.015	0.052	0.02
53 179 0.023 0.032 0.018 54 111 0.016 0.045 0.02 55 85 0.02 0.025 0.024 56 115 0.017 0.041 0.032 57 196 0.022 0.043 0.024 58 115 0.016 0.041 0.025 60 101 0.023 0.048 0.032 61 73 0.016 0.058 0.031 62 67 0.023 0.024 0.018 63 91 0.027 0.032 0.018 64 91 0.027 0.033 0.031 66 151 0.018 0.046 0.033 67 104 0.015 0.04 0.039 68 78 0.018 0.053 0.031 69 192 0.016 0.045 0.022 70 106 0.017 0.032 0.021	52	124	0.018	0.037	0.038
54 111 0.016 0.045 0.02 55 85 0.02 0.025 0.024 56 115 0.017 0.041 0.032 57 196 0.022 0.043 0.024 58 115 0.018 0.059 0.036 59 97 0.016 0.048 0.032 60 101 0.023 0.048 0.031 62 67 0.023 0.024 0.018 63 91 0.022 0.055 0.035 64 91 0.027 0.032 0.018 65 126 0.015 0.037 0.031 66 151 0.018 0.046 0.039 68 78 0.018 0.053 0.031 69 192 0.016 0.047 0.032 0.021 70 106 0.017 0.032 0.021 73 72 79 0.022	53	179	0.023	0.032	0.018
55 85 0.02 0.025 0.024 56 115 0.017 0.041 0.032 57 196 0.022 0.043 0.024 58 115 0.018 0.059 0.036 59 97 0.016 0.048 0.032 60 101 0.023 0.048 0.032 61 73 0.016 0.058 0.031 62 67 0.022 0.055 0.035 64 91 0.027 0.032 0.018 65 126 0.015 0.037 0.031 66 151 0.018 0.044 0.033 67 104 0.015 0.04 0.039 68 78 0.018 0.045 0.022 70 106 0.017 0.032 0.021 71 119 0.019 0.027 0.015 72 79 0.022 0.028 0.012 73 97 0.018 0.024 0.021 75	54	111	0.016	0.045	0.02
56115 0.017 0.041 0.032 57 196 0.022 0.043 0.024 58 115 0.018 0.059 0.036 59 97 0.016 0.041 0.025 60 101 0.023 0.048 0.032 61 73 0.016 0.048 0.031 62 67 0.023 0.024 0.018 63 91 0.022 0.055 0.035 64 91 0.027 0.032 0.018 65 126 0.015 0.037 0.031 66 151 0.018 0.046 0.033 67 104 0.015 0.044 0.039 68 78 0.018 0.053 0.022 70 106 0.017 0.032 0.012 71 119 0.019 0.027 0.015 72 79 0.022 0.039 0.012 73 97 0.018 0.028 0.016 74 120 0.02 0.028 0.024 76 121 0.019 0.036 0.014 79 91 0.014 0.025 0.017 78 131 0.019 0.036 0.014 79 91 0.014 0.023 0.023 77 131 0.019 0.035 0.014 79 91 0.014 0.035 0.014 79 91 0.014 0.035 0.014 <	55	85	0.02	0.025	0.024
57 196 0.022 0.043 0.024 58 115 0.018 0.059 0.036 59 97 0.016 0.048 0.032 60 101 0.023 0.048 0.032 61 73 0.016 0.058 0.031 62 67 0.023 0.024 0.018 63 91 0.027 0.032 0.018 64 91 0.027 0.032 0.018 65 126 0.015 0.037 0.031 66 151 0.018 0.046 0.033 67 104 0.015 0.04 0.039 68 78 0.018 0.053 0.031 69 192 0.016 0.045 0.022 70 106 0.017 0.032 0.021 71 119 0.019 0.022 0.024 0.012 73 97 0.018 0.022 <td>56</td> <td>115</td> <td>0.017</td> <td>0.041</td> <td>0.032</td>	56	115	0.017	0.041	0.032
58 115 0.018 0.059 0.036 59 97 0.016 0.041 0.025 60 101 0.023 0.044 0.032 61 73 0.016 0.058 0.031 62 67 0.023 0.024 0.018 63 91 0.027 0.032 0.018 64 91 0.027 0.032 0.018 65 126 0.015 0.037 0.031 66 151 0.018 0.046 0.033 67 104 0.015 0.04 0.039 68 78 0.018 0.045 0.022 70 106 0.017 0.032 0.021 71 119 0.019 0.027 0.015 72 79 0.022 0.028 0.022 75 128 0.017 0.036 0.024 76 121 0.019 0.037 0.023 <td>57</td> <td>196</td> <td>0.022</td> <td>0.043</td> <td>0.024</td>	57	196	0.022	0.043	0.024
59 97 0.016 0.041 0.025 60 101 0.023 0.048 0.032 61 73 0.016 0.058 0.031 62 67 0.023 0.024 0.018 63 91 0.022 0.055 0.033 64 91 0.027 0.032 0.011 65 126 0.015 0.037 0.031 66 151 0.018 0.046 0.033 67 104 0.015 0.04 0.039 68 78 0.018 0.053 0.021 70 106 0.017 0.032 0.021 71 119 0.019 0.027 0.015 72 79 0.022 0.028 0.012 73 97 0.018 0.028 0.022 75 128 0.017 0.036 0.024 76 121 0.019 0.037 0.023	58	115	0.018	0.059	0.036
60 101 0.023 0.048 0.032 61 73 0.016 0.058 0.031 62 67 0.023 0.024 0.018 63 91 0.022 0.055 0.035 64 91 0.027 0.032 0.018 65 126 0.015 0.037 0.031 66 151 0.018 0.046 0.033 67 104 0.015 0.04 0.039 68 78 0.018 0.053 0.022 70 106 0.017 0.032 0.021 71 119 0.019 0.027 0.015 72 79 0.022 0.039 0.012 73 97 0.018 0.028 0.016 74 120 0.02 0.028 0.022 75 128 0.017 0.036 0.024 76 121 0.019 0.037 0.023 77 131 0.02 0.024 0.015 78 131 0.019 0.037 0.021 80 146 0.017 0.031 0.023 82 149 0.015 0.034 0.018 84 94 0.023 0.027 0.018 85 93 0.016 0.033 0.016 87 142 0.015 0.029 0.012 88 157 0.014 0.035 0.014 90 178 <t< td=""><td>59</td><td>97</td><td>0.016</td><td>0.041</td><td>0.025</td></t<>	59	97	0.016	0.041	0.025
61 73 0.016 0.058 0.031 62 67 0.023 0.024 0.018 63 91 0.022 0.055 0.035 64 91 0.027 0.032 0.018 65 126 0.015 0.037 0.031 66 151 0.018 0.046 0.033 67 104 0.015 0.04 0.039 68 78 0.018 0.053 0.031 69 192 0.016 0.045 0.022 70 106 0.017 0.032 0.021 71 119 0.019 0.027 0.015 72 79 0.022 0.039 0.012 73 97 0.018 0.028 0.022 75 128 0.017 0.036 0.024 76 121 0.019 0.037 0.023 77 131 0.02 0.024 0.015 78 131 0.017 0.036 0.014 79 91 0.014 0.025 0.017 80 146 0.017 0.031 0.023 82 149 0.019 0.035 0.012 81 136 0.014 0.035 0.012 88 157 0.014 0.035 0.012 88 157 0.014 0.035 0.012 88 157 0.014 0.035 0.012 89 117	60	101	0.023	0.048	0.032
62 67 0.023 0.024 0.018 63 91 0.022 0.055 0.035 64 91 0.027 0.032 0.018 65 126 0.015 0.037 0.031 66 151 0.018 0.046 0.033 67 104 0.015 0.04 0.039 68 78 0.018 0.045 0.022 70 106 0.017 0.032 0.021 71 119 0.019 0.027 0.015 72 79 0.022 0.039 0.012 73 97 0.018 0.028 0.022 75 128 0.017 0.036 0.024 76 121 0.019 0.037 0.023 77 131 0.02 0.024 0.015 78 131 0.019 0.036 0.014 79 91 0.014 0.025 0.017 80 146 0.017 0.031 0.023 82 149 0.019 0.033 0.016 84 94 0.023 0.027 0.018 85 93 0.016 0.031 0.024 86 110 0.019 0.033 0.016 87 142 0.015 0.029 0.012 88 157 0.014 0.035 0.015 89 117 0.018 0.042 0.047 90 178	61	73	0.016	0.058	0.031
6391 0.022 0.035 0.035 64 91 0.027 0.032 0.018 65 126 0.015 0.037 0.031 66 151 0.018 0.046 0.033 67 104 0.015 0.04 0.039 68 78 0.018 0.053 0.031 69 192 0.016 0.045 0.022 70 106 0.017 0.032 0.021 71 119 0.019 0.027 0.015 72 79 0.022 0.039 0.012 73 97 0.018 0.028 0.016 74 120 0.02 0.028 0.022 75 128 0.017 0.037 0.023 77 131 0.019 0.037 0.023 77 131 0.019 0.037 0.021 78 131 0.019 0.037 0.021 81 136 0.017 0.031 0.023 82 149 0.019 0.022 0.019 83 141 0.015 0.034 0.018 84 94 0.023 0.027 0.018 85 93 0.016 0.027 0.018 84 94 0.023 0.027 0.018 84 94 0.023 0.027 0.018 84 94 0.023 0.027 0.018 89 1.17	62	67	0.023	0.024	0.018
64 91 0.027 0.032 0.018 65 126 0.015 0.037 0.031 66 151 0.018 0.046 0.033 67 104 0.015 0.04 0.039 68 78 0.016 0.045 0.022 70 106 0.017 0.032 0.021 71 119 0.019 0.027 0.015 72 79 0.022 0.039 0.012 73 97 0.018 0.028 0.012 74 120 0.02 0.028 0.022 75 128 0.017 0.036 0.024 76 121 0.019 0.037 0.023 77 131 0.02 0.024 0.014 79 91 0.014 0.025 0.017 80 146 0.017 0.031 0.023 81 136 0.014 0.014 0.018 <td>63</td> <td>91</td> <td>0.022</td> <td>0.055</td> <td>0.035</td>	63	91	0.022	0.055	0.035
65 126 0.015 0.037 0.031 66 151 0.018 0.046 0.033 67 104 0.015 0.04 0.039 68 78 0.016 0.045 0.022 70 106 0.017 0.032 0.021 71 119 0.019 0.027 0.015 72 79 0.022 0.039 0.012 73 97 0.018 0.028 0.021 75 128 0.017 0.036 0.024 76 121 0.019 0.037 0.023 77 131 0.02 0.024 0.015 78 131 0.019 0.037 0.021 80 146 0.017 0.031 0.023 81 136 0.017 0.031 0.023 82 149 0.015 0.034 0.018 84 94 0.023 0.027 0.018 </td <td>64</td> <td>91</td> <td>0.027</td> <td>0.032</td> <td>0.018</td>	64	91	0.027	0.032	0.018
66 151 0.018 0.046 0.033 67 104 0.015 0.04 0.039 68 78 0.018 0.053 0.031 69 192 0.016 0.045 0.022 70 106 0.017 0.032 0.021 71 119 0.019 0.027 0.015 72 79 0.028 0.022 0.039 0.012 73 97 0.018 0.028 0.016 74 120 0.02 0.028 0.022 75 128 0.017 0.036 0.024 76 121 0.019 0.037 0.023 77 131 0.02 0.024 0.014 79 91 0.014 0.025 0.017 80 146 0.017 0.037 0.023 81 136 0.017 0.031 0.023 82 149 0.015 0.033 <td>65</td> <td>126</td> <td>0.015</td> <td>0.037</td> <td>0.031</td>	65	126	0.015	0.037	0.031
67 104 0.015 0.04 0.039 68 78 0.018 0.053 0.031 69 192 0.016 0.045 0.022 70 106 0.017 0.032 0.021 71 119 0.019 0.027 0.015 72 79 0.022 0.039 0.012 73 97 0.018 0.028 0.022 75 128 0.017 0.036 0.024 76 121 0.019 0.037 0.023 77 131 0.02 0.024 0.015 78 131 0.017 0.036 0.014 79 91 0.014 0.025 0.017 80 146 0.017 0.037 0.023 82 149 0.015 0.034 0.018 84 94 0.023 0.027 0.018 85 93 0.016 0.031 0.024 86 110 0.019 0.033 0.016 87 142 0.015 0.029 0.012 88 157 0.014 0.035 0.015 89 117 0.018 0.042 0.047 90 178 0.014 0.035 0.015 89 117 0.018 0.042 0.047 91 200 0.014 0.043 0.018 92 106 0.02 0.035 0.024 94 103 <td>66</td> <td>151</td> <td>0.018</td> <td>0.046</td> <td>0.033</td>	66	151	0.018	0.046	0.033
68 78 0.018 0.053 0.031 69 192 0.016 0.045 0.022 70 106 0.017 0.032 0.021 71 119 0.019 0.027 0.015 72 79 0.022 0.039 0.012 73 97 0.018 0.028 0.021 75 128 0.017 0.036 0.024 76 121 0.019 0.037 0.023 77 131 0.02 0.024 0.015 78 131 0.019 0.036 0.014 79 91 0.014 0.025 0.017 80 146 0.017 0.031 0.023 81 136 0.017 0.031 0.023 82 149 0.019 0.022 0.019 83 141 0.015 0.034 0.018 84 94 0.023 0.027 0.018 </td <td>67</td> <td>104</td> <td>0.015</td> <td>0.04</td> <td>0.039</td>	67	104	0.015	0.04	0.039
69 192 0.016 0.045 0.022 70 106 0.017 0.032 0.021 71 119 0.019 0.027 0.015 72 79 0.022 0.039 0.012 73 97 0.018 0.028 0.022 75 128 0.017 0.036 0.024 76 121 0.019 0.037 0.023 77 131 0.02 0.024 0.014 78 131 0.019 0.036 0.014 79 91 0.014 0.025 0.017 80 146 0.017 0.037 0.021 81 136 0.017 0.031 0.023 82 149 0.015 0.034 0.018 84 94 0.023 0.027 0.018 85 93 0.016 0.031 0.024 86 110 0.019 0.033 0.016 </td <td>68</td> <td>78</td> <td>0.018</td> <td>0.053</td> <td>0.031</td>	68	78	0.018	0.053	0.031
70 106 0.017 0.032 0.021 71 119 0.019 0.027 0.015 72 79 0.022 0.039 0.012 73 97 0.018 0.028 0.021 74 120 0.02 0.036 0.024 76 121 0.019 0.037 0.023 77 131 0.02 0.024 0.015 78 131 0.019 0.036 0.014 79 91 0.014 0.025 0.017 80 146 0.017 0.031 0.023 81 136 0.017 0.031 0.023 82 149 0.019 0.032 0.019 83 141 0.015 0.034 0.018 84 94 0.023 0.027 0.018 85 93 0.016 0.033 0.016 87 142 0.015 0.029 0.012 <td>69 -0</td> <td>192</td> <td>0.016</td> <td>0.045</td> <td>0.022</td>	69 - 0	192	0.016	0.045	0.022
71 119 0.019 0.027 0.015 72 79 0.022 0.039 0.012 73 97 0.018 0.028 0.021 74 120 0.02 0.028 0.022 75 128 0.017 0.036 0.024 76 121 0.019 0.037 0.023 77 131 0.02 0.024 0.017 78 131 0.017 0.036 0.014 79 91 0.014 0.025 0.017 80 146 0.017 0.031 0.023 81 136 0.017 0.031 0.023 82 149 0.019 0.022 0.019 83 141 0.015 0.034 0.018 84 94 0.023 0.027 0.018 85 93 0.016 0.031 0.024 86 110 0.019 0.035 0.012 88 157 0.014 0.035 0.015 <td< td=""><td>70</td><td>106</td><td>0.017</td><td>0.032</td><td>0.021</td></td<>	70	106	0.017	0.032	0.021
72 79 0.022 0.039 0.012 73 97 0.018 0.028 0.016 74 120 0.02 0.028 0.022 75 128 0.017 0.036 0.024 76 121 0.019 0.037 0.023 77 131 0.02 0.024 0.015 78 131 0.019 0.036 0.014 79 91 0.014 0.025 0.017 80 146 0.017 0.031 0.023 81 136 0.017 0.031 0.023 82 149 0.019 0.022 0.019 83 141 0.015 0.034 0.018 84 94 0.023 0.027 0.018 85 93 0.016 0.031 0.024 86 110 0.019 0.033 0.016 87 142 0.015 0.029 0.012 88 157 0.014 0.035 0.015 89 117 0.018 0.042 0.047 90 178 0.014 0.033 0.018 92 106 0.02 0.06 0.019 93 88 0.02 0.026 0.015 95 109 0.013 0.031 0.026 96 103 0.012 0.046 0.025	71	119	0.019	0.027	0.015
73 97 0.018 0.028 0.018 74 120 0.02 0.028 0.022 75 128 0.017 0.036 0.024 76 121 0.019 0.037 0.023 77 131 0.02 0.024 0.015 78 131 0.019 0.036 0.014 79 91 0.014 0.025 0.017 80 146 0.017 0.031 0.023 82 149 0.019 0.022 0.019 83 141 0.015 0.034 0.018 84 94 0.023 0.027 0.018 85 93 0.016 0.031 0.024 86 110 0.019 0.033 0.016 87 142 0.015 0.029 0.012 88 157 0.014 0.035 0.015 89 117 0.018 0.042 0.047 90 178 0.014 0.032 0.023 91 200 0.014 0.043 0.018 92 106 0.02 0.066 0.019 93 88 0.02 0.035 0.024 94 103 0.021 0.035 0.024 94 103 0.012 0.035 0.024 94 103 0.021 0.035 0.024 95 109 0.013 0.031 0.026 96 103 <td>72</td> <td>79</td> <td>0.022</td> <td>0.039</td> <td>0.012</td>	72	79	0.022	0.039	0.012
74 120 0.02 0.028 0.022 75 128 0.017 0.036 0.024 76 121 0.019 0.037 0.023 77 131 0.02 0.024 0.015 78 131 0.019 0.036 0.014 79 91 0.014 0.025 0.017 80 146 0.017 0.037 0.021 81 136 0.017 0.031 0.023 82 149 0.019 0.022 0.019 83 141 0.015 0.034 0.018 84 94 0.023 0.027 0.018 85 93 0.016 0.031 0.024 86 110 0.019 0.033 0.016 87 142 0.015 0.029 0.012 88 157 0.014 0.035 0.015 89 117 0.018 0.042 0.047 90 178 0.014 0.032 0.023 91 200 0.014 0.043 0.018 92 106 0.02 0.06 0.019 93 88 0.02 0.035 0.024 94 103 0.02 0.026 0.015 95 109 0.013 0.031 0.026 96 103 0.012 0.046 0.025	73	97	0.018	0.028	0.016
75 128 0.017 0.036 0.024 76 121 0.019 0.037 0.023 77 131 0.02 0.024 0.015 78 131 0.019 0.036 0.014 79 91 0.014 0.025 0.017 80 146 0.017 0.037 0.021 81 136 0.017 0.031 0.023 82 149 0.019 0.022 0.019 83 141 0.015 0.034 0.018 84 94 0.023 0.027 0.018 85 93 0.016 0.031 0.024 86 110 0.019 0.033 0.016 87 142 0.015 0.029 0.012 88 157 0.014 0.035 0.015 89 117 0.018 0.042 0.047 90 178 0.014 0.032 0.023 91 200 0.014 0.043 0.018 92 106 0.02 0.06 0.019 93 88 0.02 0.026 0.015 95 109 0.013 0.031 0.026 96 103 0.012 0.046 0.025	74	120	0.02	0.028	0.022
76 121 0.019 0.037 0.023 77 131 0.02 0.024 0.015 78 131 0.019 0.036 0.014 79 91 0.014 0.025 0.017 80 146 0.017 0.037 0.021 81 136 0.017 0.031 0.023 82 149 0.019 0.022 0.019 83 141 0.015 0.034 0.018 84 94 0.023 0.027 0.018 85 93 0.016 0.031 0.024 86 110 0.019 0.033 0.016 87 142 0.015 0.029 0.012 88 157 0.014 0.032 0.023 90 178 0.014 0.032 0.023 91 200 0.014 0.043 0.018 92 106 0.02 0.06 0.019 </td <td>75</td> <td>128</td> <td>0.017</td> <td>0.036</td> <td>0.024</td>	75	128	0.017	0.036	0.024
77 131 0.02 0.024 0.013 78 131 0.019 0.036 0.014 79 91 0.014 0.025 0.017 80 146 0.017 0.037 0.021 81 136 0.017 0.031 0.023 82 149 0.019 0.022 0.019 83 141 0.015 0.034 0.018 84 94 0.023 0.027 0.018 85 93 0.016 0.031 0.024 86 110 0.019 0.033 0.016 87 142 0.015 0.029 0.012 88 157 0.014 0.035 0.015 89 117 0.018 0.042 0.047 90 178 0.014 0.032 0.023 91 200 0.014 0.043 0.018 92 106 0.02 0.06 0.019 93 88 0.02 0.035 0.024 94 103 0.02 0.026 0.015 95 109 0.013 0.031 0.026 96 103 0.012 0.046 0.025	76	121	0.019	0.037	0.023
781310.0190.0360.01479910.0140.0250.017801460.0170.0370.021811360.0170.0310.023821490.0190.0220.019831410.0150.0340.01884940.0230.0270.01885930.0160.0310.024861100.0190.0330.016871420.0150.0290.012881570.0140.0350.015891170.0180.0420.047901780.0140.0320.023912000.0140.0430.018921060.020.060.01993880.020.0350.024941030.020.0260.015951090.0130.0310.026961030.0120.0350.016971010.0120.0460.025	77	131	0.02	0.024	0.013
79910.0140.0250.017801460.0170.0370.021811360.0170.0310.023821490.0190.0220.019831410.0150.0340.01884940.0230.0270.01885930.0160.0310.024861100.0190.0330.016871420.0150.0290.012881570.0140.0350.015891170.0180.0420.047901780.0140.0320.023912000.0140.0430.018921060.020.060.01993880.020.0350.024941030.020.0260.015951090.0130.0310.026961030.0120.0350.016971010.0120.0460.025	70	151	0.019	0.036	0.014
801400.0170.0370.021811360.0170.0310.023821490.0190.0220.019831410.0150.0340.01884940.0230.0270.01885930.0160.0310.024861100.0190.0330.016871420.0150.0290.012881570.0140.0350.015891170.0180.0420.047901780.0140.0320.023912000.0140.0430.018921060.020.0660.01993880.020.0350.024941030.020.0260.015951090.0130.0310.026961030.0120.0460.025	80	91 146	0.014	0.023	0.017
b1 150 0.017 0.031 0.025 82 149 0.019 0.022 0.019 83 141 0.015 0.034 0.018 84 94 0.023 0.027 0.018 85 93 0.016 0.031 0.024 86 110 0.019 0.033 0.016 87 142 0.015 0.029 0.012 88 157 0.014 0.035 0.015 89 117 0.018 0.042 0.047 90 178 0.014 0.032 0.023 91 200 0.014 0.043 0.018 92 106 0.02 0.06 0.019 93 88 0.02 0.035 0.024 94 103 0.02 0.026 0.015 95 109 0.013 0.031 0.026 96 103 0.012 0.035 0.016 <td>81</td> <td>140</td> <td>0.017</td> <td>0.037</td> <td>0.021</td>	81	140	0.017	0.037	0.021
62 149 0.019 0.022 0.019 83 141 0.015 0.034 0.018 84 94 0.023 0.027 0.018 85 93 0.016 0.031 0.024 86 110 0.019 0.033 0.016 87 142 0.015 0.029 0.012 88 157 0.014 0.035 0.015 89 117 0.018 0.042 0.047 90 178 0.014 0.032 0.023 91 200 0.014 0.043 0.018 92 106 0.02 0.06 0.019 93 88 0.02 0.035 0.024 94 103 0.02 0.026 0.015 95 109 0.013 0.031 0.026 96 103 0.012 0.035 0.016 97 101 0.012 0.046 0.025 <td>82</td> <td>1/9</td> <td>0.017</td> <td>0.031</td> <td>0.025</td>	82	1/9	0.017	0.031	0.025
35 141 0.015 0.034 0.018 84 94 0.023 0.027 0.018 85 93 0.016 0.031 0.024 86 110 0.019 0.033 0.016 87 142 0.015 0.029 0.012 88 157 0.014 0.035 0.015 89 117 0.018 0.042 0.047 90 178 0.014 0.032 0.023 91 200 0.014 0.043 0.018 92 106 0.02 0.06 0.019 93 88 0.02 0.035 0.024 94 103 0.02 0.026 0.015 95 109 0.013 0.031 0.026 96 103 0.012 0.035 0.016 97 101 0.012 0.046 0.025	83	147	0.015	0.022	0.019
04 0.025 0.027 0.016 85 93 0.016 0.031 0.024 86 110 0.019 0.033 0.016 87 142 0.015 0.029 0.012 88 157 0.014 0.035 0.047 90 178 0.014 0.032 0.023 91 200 0.014 0.043 0.018 92 106 0.02 0.06 0.019 93 88 0.02 0.026 0.015 94 103 0.02 0.026 0.015 95 109 0.013 0.031 0.026 96 103 0.012 0.035 0.016 97 101 0.012 0.046 0.025	84	94	0.013	0.027	0.018
365 355 356 356 357 <td>85</td> <td>93</td> <td>0.025</td> <td>0.027</td> <td>0.024</td>	85	93	0.025	0.027	0.024
87 142 0.015 0.029 0.012 88 157 0.014 0.035 0.015 89 117 0.018 0.042 0.047 90 178 0.014 0.032 0.023 91 200 0.014 0.043 0.018 92 106 0.02 0.06 0.019 93 88 0.02 0.035 0.024 94 103 0.02 0.026 0.015 95 109 0.013 0.031 0.026 96 103 0.012 0.035 0.016 97 101 0.012 0.046 0.025	86	110	0.010	0.033	0.016
88 157 0.014 0.025 0.012 88 157 0.014 0.035 0.015 89 117 0.018 0.042 0.047 90 178 0.014 0.032 0.023 91 200 0.014 0.043 0.018 92 106 0.02 0.06 0.019 93 88 0.02 0.035 0.024 94 103 0.02 0.026 0.015 95 109 0.013 0.031 0.026 96 103 0.012 0.035 0.016 97 101 0.012 0.046 0.025	87	142	0.015	0.029	0.012
89 117 0.018 0.042 0.047 90 178 0.014 0.032 0.023 91 200 0.014 0.043 0.018 92 106 0.02 0.06 0.019 93 88 0.02 0.026 0.015 95 109 0.013 0.031 0.026 96 103 0.012 0.035 0.016 97 101 0.012 0.046 0.025	88	157	0.014	0.035	0.015
90 178 0.014 0.032 0.023 91 200 0.014 0.043 0.018 92 106 0.02 0.06 0.019 93 88 0.02 0.035 0.024 94 103 0.02 0.035 0.026 95 109 0.013 0.031 0.026 96 103 0.012 0.035 0.016 97 101 0.012 0.046 0.025	89	117	0.018	0.042	0.047
91 200 0.014 0.043 0.018 92 106 0.02 0.06 0.019 93 88 0.02 0.035 0.024 94 103 0.02 0.026 0.015 95 109 0.013 0.031 0.026 96 103 0.012 0.035 0.016 97 101 0.012 0.046 0.025	90	178	0.014	0.032	0.023
92 106 0.02 0.06 0.019 93 88 0.02 0.035 0.024 94 103 0.02 0.026 0.015 95 109 0.013 0.031 0.026 96 103 0.012 0.035 0.016 97 101 0.012 0.046 0.025	91	200	0.014	0.043	0.018
93880.020.0350.024941030.020.0260.015951090.0130.0310.026961030.0120.0350.016971010.0120.0460.025	92	106	0.02	0.06	0.019
941030.020.0260.015951090.0130.0310.026961030.0120.0350.016971010.0120.0460.025	93	88	0.02	0.035	0.024
951090.0130.0310.026961030.0120.0350.016971010.0120.0460.025	94	103	0.02	0.026	0.015
961030.0120.0350.016971010.0120.0460.025	95	109	0.013	0.031	0.026
97 101 0.012 0.046 0.025	96	103	0.012	0.035	0.016
	97	101	0.012	0.046	0.025

NCP #	α , $^{\circ}$	D, µm	l1, μm,	l2, μm
98	118	0.009	0.066	0.026
99	106	0.011	0.033	0.019
100	116	0.013	0.026	0.015
101	158	0.014	0.038	0.035
102	146	0.016	0.046	0.022
103	91	0.015	0.035	0.036
104	97	0.019	0.044	0.021
105	164	0.014	0.029	0.024
106	139	0.017	0.038	0.021
107	197	0.015	0.04	0.024
108	117	0.013	0.037	0.024
109	120	0.018	0.033	0.021
110	75	0.015	0.032	0.02
111	105	0.016	0.04	0.014
112	101	0.015	0.039	0.027
113	178	0.018	0.031	0.019
114	61	0.018	0.034	0.025
115	138	0.013	0.036	0.025
116	91	0.015	0.032	0.022
117	157	0.013	0.027	0.022
118	63	0.015	0.032	0.021
119	144	0.013	0.032	0.012
120	165	0.015	0.051	0.019
121	151	0.018	0.051	0.021
122	86	0.016	0.042	0.014
123	122	0.016	0.039	0.018
124	185	0.016	0.033	0.024
125	110	0.013	0.04	0.012
126	156	0.013	0.038	0.019
127	176	0.017	0.03	0.019
128	103	0.016	0.02	0.019
129	74	0.015	0.024	0.019
130	219	0.019	0.047	0.013
131	97	0.017	0.037	0.015
132	154	0.016	0.042	0.024
133	48	0.015	0.037	0.02
134	114	0.018	0.047	0.024
133	03 111	0.015	0.041	0.029
130	111 96	0.010	0.030	0.024
137	00 115	0.016	0.052	0.027
130	113	0.017	0.032	0.02
140	94	0.017	0.038	0.015
140	61	0.017	0.035	0.019
141	156	0.017	0.051	0.032
142	71	0.010	0.031	0.03
144	90	0.021	0.04	0.00
145	47	0.018	0.025	0.022
146	84	0.023	0.032	0.017
147	114	0.014	0.032	0.028
148	146	0.016	0.033	0.027
149	78	0.02	0.03	0.021
150	86	0.012	0.043	0.029
151	88	0.016	0.042	0.026
152	99	0.023	0.037	0.02
153	106	0.02	0.031	0.022
154	149	0.02	0.041	0.013
155	110	0.013	0.039	0.027
156	158	0.014	0.038	0.028

Table A1. Cont.	
-----------------	--

NCP #	α, °	D, µm	l1, μm,	12, μm
157	94	0.016	0.035	0.02
158	80	0.018	0.033	0.022
159	81	0.017	0.042	0.027
160	85	0.011	0.038	0.017
161	58	0.02	0.026	0.018
162	82	0.02	0.034	0.022
163	84	0.017	0.033	0.022
164	158	0.019	0.035	0.023
165	117	0.017	0.028	0.027
166	57	0.015	0.033	0.02
167	111	0.02	0.04	0.025
168	122	0.02	0.039	0.016
169	179	0.019	0.034	0.023
170	221	0.021	0.023	0.02
171	81	0.018	0.031	0.018
172	53	0.017	0.039	0.021
173	94	0.015	0.04	0.025
174	215	0.017	0.038	0.017
175	118	0.018	0.037	0.022
176	176	0.017	0.061	0.017
177	122	0.017	0.028	0.019
178	84	0.02	0.033	0.022
179	155	0.018	0.034	0.026
180	176	0.022	0.053	0.026
181	126	0.02	0.025	0.02
182	89	0.017	0.028	0.021
183	133	0.02	0.041	0.02
184	152	0.016	0.033	0.022
185	122	0.016	0.032	0.023
186	148	0.017	0.039	0.025
187	119	0.014	0.029	0.014
188	82	0.017	0.031	0.014
189	142	0.018	0.032	0.022
190	114	0.017	0.031	0.011
191	170	0.02	0.027	0.026
192	137	0.013	0.04	0.02
193	71	0.018	0.036	0.02
194	103	0.012	0.037	0.023
195	121	0.017	0.024	0.018
196	137	0.015	0.026	0.026
197	125	0.015	0.033	0.019
198	162	0.015	0.028	0.025
199	168	0.016	0.042	0.021
200	120	0.012	0.039	0.019

Table A2.	NCP	parameters	in the	presence	of PARP1.

NCP #	lpha, °	D , μm	l1, μm,	12, μm
1	70	0.019	0.053	0.032
2	61	0.029	0	0.027
3	128	0.026	0	0.02
4	100	0.019	0	0.014
5	61	0.023	0.031	0.03
6	96	0.024	0.035	0.019
7	117	0.032	0	0.022
8	97	0.022	0	0.016
9	109	0.023	0	0.019

Tab	le A2	2. Cont.	
Tab	le A2	2. Cont.	

10 112 0.027 0 0.026 11 120 0.027 0.016 0.033 12 107 0.023 0 0.032 13 179 0.023 0 0.032 14 89 0.026 0 0.018 15 58 0.026 0.03 0.021 16 176 0.024 0.008 0.019 17 112 0.024 0.008 0.019 18 112 0.019 0 0.017 20 99 0.021 0.039 0 21 98 0.022 0 0.02 22 85 0.031 0.012 0.019 23 107 0.02 0 0.024 24 107 0.022 0.033 0 25 66 0.023 0.023 0.022 26 76 0.023 0.023 0 31	NCP #	α_r °	D, µm	l1, μm,	l2, μm
11 120 0.072 0.016 0.033 13 179 0.023 0 0.032 14 89 0.026 0 0.018 15 58 0.026 0.033 0.021 16 176 0.024 0.019 0.017 17 112 0.019 0 0.019 20 99 0.021 0.037 0.011 20 99 0.021 0.039 0 21 98 0.022 0 0.024 23 107 0.022 0.033 0 24 107 0.022 0.033 0 25 68 0.024 0.021 0.018 26 56 0.023 0 0.022 28 97 0.026 0.008 0.032 29 131 0.023 0.04 0.023 30 85 0.02 0 0.023 31 135 0.027 <	10	112	0.027	0	0.026
12 107 0.033 0.023 0 0.032 14 89 0.026 0.03 0.011 15 58 0.026 0.03 0.021 16 1.76 0.024 0.019 0.017 17 112 0.024 0.008 0.019 18 112 0.021 0.037 0.011 20 99 0.021 0.039 0 21 98 0.022 0 0.024 23 107 0.022 0 0.024 24 107 0.022 0.033 0 25 68 0.023 0.023 0.018 26 56 0.023 0.024 0.022 28 97 0.026 0.008 0.032 29 131 0.023 0.44 0.02 30 85 0.02 0 0.023 31 135 0.024 0.003 0.023 33 162 0.024 0.003 0.022 34 <td>11</td> <td>120</td> <td>0.027</td> <td>0.016</td> <td>0.033</td>	11	120	0.027	0.016	0.033
13 179 0.023 0 0.032 14 89 0.026 0 0.018 15 38 0.026 0.03 0.021 16 176 0.024 0.008 0.019 17 112 0.019 0 0.019 18 112 0.019 0 0.021 20 99 0.021 0.037 0.011 20 99 0.022 0 0.022 21 98 0.022 0 0.024 24 107 0.022 0.033 0 25 68 0.024 0.021 0.018 26 56 0.023 0.023 0.02 28 97 0.026 0.008 0.032 30 85 0.02 0 0.023 31 135 0.024 0.052 0.005 32 118 0.019 0 0.028 33 162 0.024 0.002 0 0.021 34 107<	12	107	0.033	0.023	0.035
14 89 0.026 0 0.011 15 58 0.026 0.019 0.017 17 112 0.024 0.008 0.019 18 112 0.018 0.037 0.011 20 99 0.021 0.039 0 21 98 0.022 0 0.024 23 107 0.022 0 0.024 24 107 0.022 0.033 0 25 68 0.023 0.023 0.018 26 56 0.023 0.023 0.018 27 129 0.023 0.04 0.022 28 97 0.026 0.008 0.032 29 131 0.023 0.04 0.023 30 85 0.027 0 0.021 33 162 0.024 0.003 0.022 34 107 0.027 0 0.021 35 173 0.036	13	179	0.023	0	0.032
15 58 0.026 0.03 0.021 16 176 0.024 0.008 0.017 17 112 0.019 0 0.019 18 112 0.019 0 0.019 20 99 0.021 0.037 0.011 20 99 0.022 0 0.022 21 98 0.022 0 0.024 22 85 0.031 0.012 0.024 24 107 0.022 0.033 0 25 68 0.023 0.023 0.018 26 56 0.023 0.023 0.012 28 97 0.026 0.008 0.032 29 131 0.023 0.04 0.023 30 85 0.02 0 0.023 31 135 0.021 0.033 0.0223 33 162 <td>14</td> <td>89</td> <td>0.026</td> <td>0</td> <td>0.018</td>	14	89	0.026	0	0.018
16 17 112 0.024 0.019 0.017 17 112 0.024 0.008 0.019 18 112 0.019 0 0.019 19 152 0.018 0.037 0.011 20 99 0.021 0.039 0 21 98 0.022 0 0.024 23 107 0.02 0 0.024 24 107 0.022 0.033 0 25 68 0.024 0.021 0.018 26 56 0.023 0.023 0.021 28 97 0.026 0.008 0.032 29 131 0.023 0.04 0.02 30 85 0.02 0 0.023 31 135 0.024 0.003 0.023 33 162 0.024 0.003 0.022 36 122 0.024 0.044 0 <td>15</td> <td>58</td> <td>0.026</td> <td>0.03</td> <td>0.021</td>	15	58	0.026	0.03	0.021
17 112 0.024 0.008 0.019 18 112 0.019 0 0.019 20 99 0.021 0.039 0 21 98 0.022 0 0.02 22 85 0.031 0.012 0.019 23 107 0.02 0 0.024 24 107 0.022 0.033 0 25 68 0.023 0.023 0.018 26 56 0.023 0.04 0.02 28 97 0.026 0.008 0.032 30 85 0.02 0 0.023 31 135 0.024 0.0352 0.0051 32 118 0.019 0 0.022 33 162 0.024 0.036 0.023 34 107 0.021 0 0.021 35 173 0.031 0 0.022 36 122 0.024	16	176	0.024	0.019	0.017
18 112 0.019 0 0.019 19 152 0.018 0.037 0.011 20 99 0.021 0.039 0 21 98 0.022 0 0.02 22 85 0.031 0.012 0.019 23 107 0.02 0 0.024 24 107 0.022 0.033 0 25 68 0.024 0.021 0.018 26 56 0.023 0.023 0.002 28 97 0.026 0.008 0.023 30 85 0.02 0 0.023 31 135 0.024 0.052 0.005 32 118 0.019 0 0.022 33 162 0.024 0.036 0.022 34 107 0.027 0 0.021 35 173 0.03 0 0.024 34 <td>17</td> <td>112</td> <td>0.024</td> <td>0.008</td> <td>0.019</td>	17	112	0.024	0.008	0.019
191520.0180.0370.01120990.0210.039021980.02200.0222850.0310.0120.019231070.0200.024241070.0220.033025680.0230.0230.01826560.0230.0230.0228970.0260.0080.032291310.0230.040.0230850.0200.028331620.0240.0520.005321180.01900.028331620.0240.0030.022361220.0240.040371030.0240.040381180.0300.024401050.02600.024411610.02300.024421210.02300.024441090.02200.02345850.03200.023461050.0350.0060.02347930.02700.02148960.02300.02347930.02700.02348960.02300.023491520.0280.0150.023501210.02100.0	18	112	0.019	0	0.019
2099 0.021 0.039 0 21 98 0.022 0 0.02 22 85 0.031 0.012 0.024 24 107 0.022 0.033 0 25 68 0.024 0.021 0.018 26 56 0.023 0.023 0.002 28 97 0.026 0.008 0.032 29 131 0.023 0.044 0.023 30 85 0.02 0 0.023 31 135 0.024 0.052 0.008 32 118 0.019 0 0.022 34 107 0.027 0 0.021 35 173 0.031 0 0.022 36 122 0.024 0.036 0.022 36 122 0.024 0.044 0 37 103 0.024 0.036 0.025 38 118 0.03 0 0.024 40 105 0.026 0 0.024 41 161 0.023 0 0.024 44 109 0.022 0 0.023 45 85 0.032 0 0.023 45 85 0.032 0 0.023 45 85 0.032 0 0.023 46 105 0.035 0.006 0.023 47 93 0.027 0 0.023 45 85 <td>19</td> <td>152</td> <td>0.018</td> <td>0.037</td> <td>0.011</td>	19	152	0.018	0.037	0.011
2198 0.022 0 0.02 22 85 0.031 0.012 0.019 23 107 0.022 0.033 0 25 68 0.024 0.021 0.018 26 56 0.023 0.023 0.018 26 56 0.023 0.023 0.022 28 97 0.026 0.008 0.032 29 131 0.023 0.04 0.02 30 85 0.02 0 0.023 31 135 0.024 0.003 0.023 32 118 0.019 0 0.028 33 162 0.024 0.003 0.023 34 107 0.027 0 0.021 35 173 0.031 0 0.024 39 98 0.025 0 0.024 40 105 0.026 0 0.024 41 161 0.023 0.044 0 42 121 0.023 0 0.024 44 109 0.022 0 0.023 45 85 0.032 0 0.023 45 85 0.032 0 0.023 47 93 0.027 0 0.023 46 105 0.023 0 0.023 47 93 0.027 0 0.023 46 105 0.023 0.031 0.0048 55 <	20	99	0.021	0.039	0
2285 0.031 0.012 0.012 23 107 0.02 0 0.024 24 107 0.022 0.033 0 25 68 0.023 0.023 0.018 26 56 0.023 0.023 0.012 28 97 0.026 0.008 0.032 29 131 0.023 0.04 0.02 30 85 0.02 0 0.023 31 135 0.024 0.003 0.023 34 107 0.027 0 0.021 35 173 0.031 0 0.022 36 122 0.024 0.003 0.022 36 122 0.024 0.044 0 37 103 0.024 0.036 0.025 38 118 0.03 0 0.024 40 105 0.026 0 0.024 40 105 0.026 0 0.024 41 161 0.023 0 0.021 44 109 0.022 0 0.023 45 85 0.032 0 0.023 45 85 0.032 0 0.023 46 105 0.033 0.023 47 93 0.027 0 0.023 46 105 0.033 0.0015 0.023 47 93 0.027 0 0.023 45 85 <td>21</td> <td>98</td> <td>0.022</td> <td>0</td> <td>0.02</td>	21	98	0.022	0	0.02
23107 0.02 0.033 0 24107 0.022 0.033 0 0.018 2568 0.023 0.023 0.018 2656 0.023 0.023 0 0.02 2897 0.026 0.008 0.032 29131 0.023 0.44 0.023 3085 0.02 0 0.023 31135 0.024 0.003 0.023 33162 0.024 0.003 0.023 34107 0.027 0 0.021 35173 0.031 0 0.024 36122 0.024 0.036 0.024 3998 0.025 0 0.024 40105 0.026 0 0.024 41161 0.023 0 0.024 42121 0.023 0 0.024 44109 0.022 0 0.025 4585 0.032 0 0.023 46105 0.035 0.0066 0.023 4793 0.027 0 0.021 4896 0.023 0 0.023 446105 0.035 0.0015 50121 0.021 0 0.023 5474 0.03 0 0.023 5567 0.037 0.011 0.019 5567 0.023 0.0031 0.002 59 <t< td=""><td>22</td><td>85</td><td>0.031</td><td>0.012</td><td>0.019</td></t<>	22	85	0.031	0.012	0.019
241070.0220.0330 25 680.0240.0210.018 26 560.0230.0020.018 27 1290.02300 28 970.0260.0080.032 29 1310.0230.040.02 30 850.0200 31 1350.0240.0520.005 32 1180.01900.028 33 1620.0240.0030.021 35 1730.03100.022 36 1220.0240.0440 37 1030.02500.024 38 1180.0300.024 40 1050.02600.024 40 1050.02600.024 41 1610.02300.024 41 1610.02300.024 44 1090.02200.025 45 850.03200.023 46 1050.0350.0060.023 47 930.02700.021 48 960.02300.023 46 1050.03200.023 47 930.02700.021 48 960.02300.023 49 1520.0280.0150.023 53 870.0230.0310.004 <td< td=""><td>23</td><td>107</td><td>0.02</td><td>0</td><td>0.024</td></td<>	23	107	0.02	0	0.024
25 68 0.024 0.021 0.018 26 56 0.023 0 0.02 28 97 0.026 0.008 0.032 29 131 0.023 0.04 0.02 30 85 0.02 0 0.023 31 135 0.024 0.052 0.005 32 118 0.019 0 0.023 33 162 0.024 0.003 0.023 34 107 0.027 0 0.021 35 173 0.031 0 0.022 36 122 0.024 0.036 0.025 38 118 0.03 0 0.024 39 98 0.025 0 0.024 40 105 0.026 0 0.024 41 161 0.023 0 0.024 44 109 0.022 0 0.024 44 109 0.022 0 0.024 45 85 0.032 0 0.021 45 85 0.032 0 0.023 46 105 0.035 0.006 0.023 47 93 0.027 0 0.021 48 96 0.023 0 0.023 46 105 0.035 0.006 0.023 47 93 0.027 0 0.021 48 96 0.023 0 0.023 50	24	107	0.022	0.033	0
26 56 0.023 0.023 0 0.02 28 97 0.026 0.008 0.032 29 131 0.023 0.04 0.02 30 85 0.02 0 0.023 31 135 0.024 0.052 0.005 32 118 0.019 0 0.028 33 162 0.024 0.003 0.023 34 107 0.027 0 0.021 35 173 0.031 0 0.022 36 122 0.024 0.04 0 37 103 0.024 0.036 0.024 39 98 0.025 0 0.024 40 105 0.026 0 0.024 41 161 0.023 0 0.024 41 161 0.023 0 0.024 44 109 0.022 0 0.023 45 85 0.032 0 0.023 47 93 0.027 0 0.021 48 96 0.023 0 0.023 47 93 0.027 0 0.023 47 93 0.027 0 0.023 47 93 0.027 0 0.023 45 87 0.033 0.015 0.023 50 121 0.021 0 0.023 51 116 0.037 0.0111 0.019	25	68	0.024	0.021	0.018
27 129 0.023 0 0.02 28 97 0.026 0.008 0.032 29 131 0.023 0.04 0.02 30 85 0.02 0 0.023 31 135 0.024 0.0552 0.005 32 118 0.019 0 0.028 33 162 0.024 0.003 0.023 34 107 0.027 0 0.021 35 173 0.031 0 0.022 36 122 0.024 0.04 0 37 103 0.024 0.036 0.024 39 98 0.025 0 0.024 40 105 0.266 0 0.024 41 161 0.023 0 0.024 44 109 0.022 0 0.025 45 85 0.032 0 0.023 46 105 0.035 0.006 0.023 47 93 0.027 0 0.021 48 96 0.023 0 0.023 49 152 0.028 0.015 0.021 48 96 0.023 0 0.023 49 152 0.028 0.015 0.021 53 87 0.023 0 0.022 53 87 0.023 0 0.025 56 67 0.037 0.0111 0.015 51 </td <td>26</td> <td>56</td> <td>0.023</td> <td>0.023</td> <td>0.018</td>	26	56	0.023	0.023	0.018
2897 0.026 0.008 0.032 29 131 0.023 0.04 0.02 30 85 0.02 0 0.023 31 135 0.024 0.052 0.005 32 118 0.019 0 0.023 33 162 0.024 0.003 0.023 34 107 0.027 0 0.021 35 173 0.031 0 0.022 36 122 0.024 0.04 0 37 103 0.025 0 0.024 40 105 0.026 0 0.024 40 105 0.026 0 0.024 40 105 0.026 0 0.024 41 161 0.023 0 0.024 41 161 0.023 0 0.024 44 109 0.022 0 0.023 45 85 0.032 0 0.023 46 105 0.035 0.006 0.023 47 93 0.027 0 0.023 49 152 0.028 0.015 0.023 46 105 0.023 0.031 0.008 51 116 0.032 0.031 0.002 53 87 0.023 0.031 0.002 54 74 0.03 0 0.015 55 67 0.025 0 0.022 59	27	129	0.023	0	0.02
29131 0.023 0.04 0.02 3085 0.02 0 0.023 31135 0.024 0.052 0.005 32118 0.019 0 0.028 33162 0.024 0.003 0.023 34107 0.027 0 0.021 35173 0.031 0 0.022 36122 0.024 0.04 037103 0.024 0.036 0.024 3998 0.025 0 0.024 40105 0.026 0 0.024 41161 0.023 0.044 042121 0.023 0 0.025 43114 0.023 0 0.025 44109 0.022 0 0.023 46105 0.035 0.006 0.023 4793 0.027 0 0.021 4896 0.023 0 0.023 49152 0.028 0.015 0.023 50121 0.021 0 0.015 51116 0.032 0.031 0.004 52153 0.024 0.015 0.022 5387 0.023 0.031 0.004 5474 0.03 0 0.021 5567 0.021 0 0.022 5876 0.021 0 0.022 590 0.025 0 0.025	28	97	0.026	0.008	0.032
30 85 0.02 0 0.023 31 135 0.024 0.052 0.005 32 118 0.019 0 0.023 33 162 0.024 0.003 0.023 34 107 0.027 0 0.021 35 173 0.031 0 0.022 36 122 0.024 0.04 0 37 103 0.024 0.036 0.024 39 98 0.025 0 0.024 40 105 0.026 0 0.024 41 161 0.023 0.044 0 42 121 0.023 0 0.024 44 109 0.023 0 0.024 44 109 0.023 0 0.024 44 109 0.023 0 0.024 44 109 0.023 0 0.023 46 105 0.035 0.006 0.023 47 93 0.027 0 0.023 46 105 0.035 0.006 0.023 49 152 0.028 0.015 0.023 50 121 0.021 0 0.021 53 87 0.023 0.031 0.004 52 153 0.024 0.015 0.02 53 87 0.023 0.031 0.002 54 74 0.033 0 0.021 5	29	131	0.023	0.04	0.02
31135 0.024 0.052 0.005 32118 0.019 0 0.028 33162 0.024 0.003 0.023 34107 0.027 0 0.021 35173 0.031 0 0.022 36122 0.024 0.04 037103 0.024 0.036 0.024 3998 0.025 0 0.024 40105 0.026 0 0.024 41161 0.023 0.044 042121 0.023 0 0.024 43114 0.023 0 0.024 44109 0.022 0 0.025 4585 0.032 0 0.023 46105 0.035 0.006 0.023 4793 0.027 0 0.023 4896 0.023 0 0.023 49152 0.028 0.015 0.023 50121 0.021 0 0.021 5387 0.023 0.031 0.008 5474 0.037 0.011 0.019 5567 0.037 0.011 0.019 5677 0.022 0 0.022 5876 0.025 0 0.022 590 0.025 0 0.022 590 0.025 0 0.019 61101 0.033 0.035 0<	30	85	0.02	0	0.023
321180.01900.028 33 1620.0240.0030.023 34 1070.02700.021 35 1730.03100.022 36 1220.0240.040 37 1030.0240.0360.025 38 1180.0300.024 40 1050.02600.024 40 1050.02600.024 41 1610.02300.024 41 1610.02300.024 42 1210.02300.024 44 1090.02200.025 45 85 0.03200.023 46 1050.0350.0060.023 47 930.02700.021 48 960.02300.023 49 1520.0280.0150.023 50 1210.02100.015 51 1160.0320.0310.004 52 1530.0240.0150.02 53 87 0.0230.0310.002 54 740.0300.018 55 670.0370.0110.019 56 770.02200 58 760.02500.022 59 00.02500.025 60 1160.0330.0350 <tr< td=""><td>31</td><td>135</td><td>0.024</td><td>0.052</td><td>0.005</td></tr<>	31	135	0.024	0.052	0.005
33162 0.024 0.003 0.023 34107 0.027 0 0.021 35173 0.031 0 0.022 36122 0.024 0.044 037103 0.024 0.036 0.025 38118 0.03 0 0.024 40105 0.026 0 0.024 41161 0.023 0.044 042121 0.023 0 0.024 43114 0.023 0 0.024 44109 0.022 0 0.023 4585 0.032 0 0.023 46105 0.035 0.006 0.023 4793 0.027 0 0.021 4896 0.023 0 0.023 49152 0.028 0.015 0.023 50121 0.021 0 0.015 51116 0.032 0.031 0.004 52153 0.024 0.015 0.022 5387 0.023 0.031 0.002 5474 0.037 0.011 0.019 5567 0.037 0.011 0.019 5677 0.022 0 0.022 59 0 0.025 0 0.025 60116 0.033 0.035 0 6296 0.027 0 0.018 64138 0.027 0	32	118	0.019	0	0.028
34 107 0.027 0 0.021 35 173 0.031 0 0.022 36 122 0.024 0.04 0 37 103 0.024 0.036 0.025 38 118 0.03 0 0.024 39 98 0.025 0 0.024 40 105 0.026 0 0.024 41 161 0.023 0.044 0 42 121 0.023 0 0.02 43 114 0.023 0 0.024 44 109 0.022 0 0.023 45 85 0.032 0 0.023 46 105 0.035 0.006 0.023 47 93 0.027 0 0.023 49 152 0.023 0 0.023 49 152 0.023 0 0.023 50 121 0.021 0 0.015 51 116 0.032 0.031 0.008 54 74 0.03 0 0.018 55 67 0.021 0 0.02 58 76 0.026 0 0.02 59 0 0.025 0 0.025 60 116 0.033 0.0315 0 61 101 0.028 0 0.019 61 101 0.024 0.022 0.019 66 108 <td< td=""><td>33</td><td>162</td><td>0.024</td><td>0.003</td><td>0.023</td></td<>	33	162	0.024	0.003	0.023
35 173 0.031 0 0.022 36 122 0.024 0.04 0 37 103 0.024 0.036 0.025 38 118 0.03 0 0.024 39 98 0.025 0 0.024 40 105 0.026 0 0.024 41 161 0.023 0.044 0 42 121 0.023 0 0.02 43 114 0.023 0 0.024 44 109 0.022 0 0.023 45 85 0.032 0 0.023 46 105 0.035 0.006 0.023 47 93 0.027 0 0.021 48 96 0.023 0 0.023 49 152 0.028 0.015 0.023 50 121 0.021 0 0.015 51 116 0.032 0.031 0.004 52 153 0.024 0.015 0.02 53 87 0.023 0.031 0.008 54 74 0.03 0 0.02 57 76 0.021 0 0.02 59 0 0.025 0 0.02 59 0 0.025 0 0.02 60 116 0.033 0.035 0 61 101 0.024 0.022 0.018 64 138 <td>34</td> <td>107</td> <td>0.027</td> <td>0</td> <td>0.021</td>	34	107	0.027	0	0.021
36 122 0.024 0.04 0 37 103 0.024 0.036 0.025 38 118 0.03 0 0.024 39 98 0.025 0 0.024 40 105 0.026 0 0.024 41 161 0.023 0.044 0 42 121 0.023 0 0.02 43 114 0.023 0 0.024 44 109 0.022 0 0.025 45 85 0.032 0 0.023 46 105 0.035 0.006 0.023 47 93 0.027 0 0.021 48 96 0.023 0 0.023 49 152 0.028 0.015 0.023 50 121 0.021 0 0.021 51 116 0.032 0.031 0.004 52 153 0.024 0.015 0.02 53 87 0.023 0.031 0.008 54 74 0.03 0 0.02 57 76 0.021 0 0.02 59 0 0.025 0 0.025 60 116 0.033 0.035 0 61 101 0.028 0 0.019 61 101 0.024 0.022 0.019 66 108 0.023 0.016 0.016 68	35	173	0.031	0 0	0.022
37 103 0.024 0.036 0.025 38 118 0.03 0 0.024 39 98 0.025 0 0.024 40 105 0.026 0 0.024 41 161 0.023 0.044 0 42 121 0.023 0 0.02 43 114 0.023 0 0.024 44 109 0.022 0 0.023 45 85 0.032 0 0.023 46 105 0.035 0.006 0.023 46 105 0.023 0 0.023 47 93 0.027 0 0.021 48 96 0.023 0 0.023 49 152 0.028 0.015 0.023 50 121 0.021 0 0.015 51 116 0.032 0.031 0.004 52 153 0.024 0.015 0.02 53 87 0.023 0.031 0.008 54 74 0.037 0.0111 0.019 56 77 0.022 0 0.022 59 0 0.025 0 0.025 60 116 0.033 0 0.019 61 101 0.023 0.035 0 62 96 0.029 0 0.019 63 145 0.023 0.016 0.017 64	36	122	0.024	0.04	0
38 118 0.03 0.00 0.024 39 98 0.025 0 0.024 40 105 0.026 0 0.024 41 161 0.023 0.044 0 42 121 0.023 0 0.02 43 114 0.023 0 0.024 44 109 0.022 0 0.024 44 109 0.022 0 0.023 45 85 0.032 0 0.023 46 105 0.035 0.006 0.023 47 93 0.027 0 0.021 48 96 0.023 0 0.023 49 152 0.028 0.015 0.023 50 121 0.021 0 0.015 51 116 0.032 0.031 0.008 54 74 0.03 0 0.018 55 67 0.037 0.011 0.019 56 77 0.022 0 0.02 57 76 0.021 0 0.02 59 0 0.025 0 0.025 60 116 0.03 0 0.019 61 101 0.033 0.035 0 62 96 0.029 0 0.019 63 145 0.028 0 0.018 64 138 0.027 0 0.027 65 101	37	103	0.024	0.036	0.025
39 98 0.025 0 0.024 40 105 0.026 0 0.024 41 161 0.023 0.044 0 42 121 0.023 0 0.02 43 114 0.023 0 0.024 44 109 0.022 0 0.025 45 85 0.032 0 0.023 46 105 0.035 0.006 0.023 47 93 0.027 0 0.021 48 96 0.023 0 0.023 49 152 0.028 0.015 0.023 50 121 0.021 0 0.015 51 116 0.032 0.031 0.004 52 153 0.024 0.015 0.022 53 87 0.023 0.031 0.008 54 74 0.03 0 0.018 55 67 0.037 0.011 0.019 56 77 0.022 0 0.02 57 76 0.021 0 0.02 59 0 0.025 0 0.025 60 116 0.03 0 0.019 61 101 0.028 0 0.019 64 138 0.027 0 0.027 65 101 0.024 0.022 0.019 66 103 0.023 0.016 0.015 67	38	118	0.03	0	0.024
40 105 0.026 0 0.024 41 161 0.023 0.044 0 42 121 0.023 0 0.02 43 114 0.023 0 0.024 44 109 0.022 0 0.025 45 85 0.032 0 0.023 46 105 0.035 0.006 0.023 47 93 0.027 0 0.021 48 96 0.023 0 0.023 49 152 0.028 0.015 0.023 50 121 0.021 0 0.015 51 116 0.032 0.031 0.004 52 153 0.024 0.015 0.02 53 87 0.023 0.031 0.008 54 74 0.03 0 0.018 55 67 0.037 0.011 0.019 56 77 0.022 0 0.02 58 76 0.025 0 0.025 60 116 0.03 0 0.019 61 101 0.033 0.035 0 62 96 0.029 0 0.019 63 145 0.028 0 0.018 64 138 0.027 0 0.027 65 101 0.024 0.022 0.019 66 1033 0.026 0 0.027	39	98	0.025	0	0.024
411610.0230.0440421210.02300.02431140.02300.024441090.02200.02545850.03200.023461050.0350.0060.02347930.02700.02148960.02300.023491520.0280.0150.023501210.02100.015511160.0320.0310.004521530.0240.0150.0253870.0230.0310.00854740.0300.01855670.02100.0258760.02100.025900.02500.025601160.0330.0350611010.0330.035062960.02900.019631450.02800.019641380.02700.027651010.0240.0220.019661080.0230.0160.015672200.020.0440681030.02600.02	40	105	0.026	0	0.024
42 121 0.023 0.02 0.02 43 114 0.023 0 0.024 44 109 0.022 0 0.025 45 85 0.032 0 0.023 46 105 0.035 0.006 0.023 47 93 0.027 0 0.021 48 96 0.023 0 0.023 49 152 0.028 0.015 0.023 50 121 0.021 0 0.015 51 116 0.032 0.031 0.004 52 153 0.024 0.015 0.02 53 87 0.023 0.031 0.008 54 74 0.03 0 0.018 55 67 0.037 0.011 0.019 56 77 0.022 0 0.02 57 76 0.021 0 0.02 58 76 0.025 0 0.02 59 0 0.025 0 0.025 60 116 0.033 0.0355 0 61 101 0.033 0.0355 0 62 96 0.029 0 0.019 63 145 0.028 0 0.018 64 138 0.027 0 0.027 65 101 0.024 0.022 0.019 66 108 0.023 0.016 0.015 66 <	41	161	0.023	0.044	0
43114 0.023 0 0.024 44109 0.022 0 0.025 4585 0.032 0 0.023 46105 0.035 0.006 0.023 4793 0.027 0 0.021 4896 0.023 0 0.023 49152 0.028 0.015 0.023 50121 0.021 0 0.015 51116 0.032 0.031 0.004 52153 0.024 0.015 0.02 5387 0.023 0.031 0.008 5474 0.03 0 0.018 5567 0.037 0.011 0.019 5677 0.022 0 0.02 5776 0.025 0 0.025 59 0 0.025 0 0.025 60116 0.03 0 0.019 61101 0.033 0.035 0 6296 0.029 0 0.019 63145 0.028 0 0.018 64138 0.027 0 0.027 65101 0.024 0.022 0.019 66108 0.023 0.016 0.015 67220 0.02 0.044 0 68103 0.026 0 0.02	42	121	0.023	0	0.02
44 109 0.022 0 0.025 45 85 0.032 0 0.023 46 105 0.035 0.006 0.023 47 93 0.027 0 0.021 48 96 0.023 0 0.023 49 152 0.028 0.015 0.023 50 121 0.021 0 0.015 51 116 0.032 0.031 0.004 52 153 0.024 0.015 0.02 53 87 0.023 0.031 0.008 54 74 0.03 0 0.018 55 67 0.037 0.011 0.019 56 77 0.022 0 0.02 57 76 0.021 0 0.02 59 0 0.025 0 0.025 59 0 0.025 0 0.025 59 0 0.025 0 0.025 60 116 0.03 0 0.019 61 101 0.033 0.035 0 62 96 0.029 0 0.018 64 138 0.027 0 0.027 65 101 0.024 0.022 0.019 66 108 0.023 0.016 0.015 67 220 0.02 0.044 0 68 103 0.026 0 0.02	43	114	0.023	0	0.024
45 85 0.032 0 0.023 46 105 0.035 0.006 0.023 47 93 0.027 0 0.021 48 96 0.023 0 0.023 49 152 0.028 0.015 0.023 50 121 0.021 0 0.015 51 116 0.032 0.031 0.004 52 153 0.024 0.015 0.02 53 87 0.023 0.031 0.008 54 74 0.03 0 0.018 55 67 0.037 0.011 0.019 56 77 0.022 0 0.02 57 76 0.021 0 0.02 58 76 0.026 0 0.02 59 0 0.025 0 0.025 60 116 0.03 0 0.019 61 101 0.033 0.035 0 62 96 0.029 0 0.019 63 145 0.028 0 0.019 64 138 0.027 0 0.027 65 101 0.023 0.016 0.015 67 220 0.02 0.044 0 68 103 0.026 0 0.02	44	109	0.022	0	0.025
46 105 0.035 0.006 0.023 47 93 0.027 0 0.021 48 96 0.023 0 0.023 49 152 0.028 0.015 0.023 50 121 0.021 0 0.015 51 116 0.032 0.031 0.004 52 153 0.024 0.015 0.02 53 87 0.023 0.031 0.008 54 74 0.03 0 0.018 55 67 0.037 0.011 0.019 56 77 0.022 0 0.02 57 76 0.021 0 0.02 58 76 0.026 0 0.02 59 0 0.025 0 0.025 60 116 0.03 0 0.019 61 101 0.033 0.035 0 62 96 0.029 0 0.019 64 138 0.027 0 0.027 65 101 0.024 0.022 0.019 66 108 0.023 0.016 0.015 67 220 0.02 0.044 0 68 103 0.026 0 0.02	45	85	0.032	0	0.023
4793 0.027 0 0.021 48 96 0.023 0 0.023 49 152 0.028 0.015 0.023 50 121 0.021 0 0.015 51 116 0.032 0.031 0.004 52 153 0.024 0.015 0.02 53 87 0.023 0.031 0.008 54 74 0.03 0 0.018 55 67 0.037 0.011 0.019 56 77 0.022 0 0.02 57 76 0.021 0 0.02 58 76 0.026 0 0.02 59 0 0.025 0 0.025 60 116 0.03 0 0.019 61 101 0.033 0.035 0 62 96 0.029 0 0.018 64 138 0.027 0 0.027 65 101 0.024 0.022 0.019 66 108 0.023 0.016 0.015 67 220 0.02 0.044 0 68 103 0.026 0 0.02	46	105	0.035	0.006	0.023
48 96 0.023 0 0.023 49 152 0.028 0.015 0.023 50 121 0.021 0 0.015 51 116 0.032 0.031 0.004 52 153 0.024 0.015 0.02 53 87 0.023 0.031 0.008 54 74 0.03 0 0.018 55 67 0.037 0.011 0.019 56 77 0.022 0 0.02 57 76 0.021 0 0.02 58 76 0.026 0 0.02 59 0 0.025 0 0.025 60 116 0.03 0 0.019 61 101 0.033 0.035 0 62 96 0.029 0 0.018 64 138 0.027 0 0.027 65 101 0.024 0.022 0.019 66 108 0.023 0.016 0.015 67 220 0.02 0.044 0 68 103 0.026 0 0.02	47	93	0.027	0	0.021
49 152 0.028 0.015 0.023 50 121 0.021 0 0.015 51 116 0.032 0.031 0.004 52 153 0.024 0.015 0.02 53 87 0.023 0.031 0.008 54 74 0.03 0 0.018 55 67 0.037 0.011 0.019 56 77 0.022 0 0.02 57 76 0.021 0 0.02 58 76 0.026 0 0.02 59 0 0.025 0 0.025 60 116 0.03 0 0.019 61 101 0.033 0.035 0 62 96 0.029 0 0.018 64 138 0.027 0 0.027 65 101 0.024 0.022 0.019 66 108 0.023 0.016 0.015 67 220 0.02 0.044 0 68 103 0.026 0 0.02	48	96	0.023	0	0.023
50 121 0.021 0 0.015 51 116 0.032 0.031 0.004 52 153 0.024 0.015 0.02 53 87 0.023 0.031 0.008 54 74 0.03 0 0.018 55 67 0.037 0.011 0.019 56 77 0.022 0 0.02 57 76 0.021 0 0.02 58 76 0.026 0 0.02 59 0 0.025 0 0.025 60 116 0.03 0 0.019 61 101 0.033 0.035 0 62 96 0.029 0 0.018 64 138 0.027 0 0.027 65 101 0.024 0.022 0.019 66 108 0.023 0.016 0.015 67 220 0.02 0.044 0 68 103 0.026 0 0.02	49	152	0.028	0.015	0.023
51 116 0.032 0.031 0.004 52 153 0.024 0.015 0.02 53 87 0.023 0.031 0.008 54 74 0.03 0 0.018 55 67 0.037 0.011 0.019 56 77 0.022 0 0.02 57 76 0.021 0 0.02 58 76 0.026 0 0.025 59 0 0.025 0 0.025 60 116 0.033 0.0355 0 62 96 0.029 0 0.019 61 101 0.028 0 0.018 64 138 0.027 0 0.027 65 101 0.024 0.022 0.019 66 108 0.023 0.016 0.015 67 220 0.02 0.044 0 68 103 0.026 0 0.02	50	121	0.021	0	0.015
52 153 0.024 0.015 0.02 53 87 0.023 0.031 0.008 54 74 0.03 0 0.018 55 67 0.037 0.011 0.019 56 77 0.022 0 0.02 57 76 0.021 0 0.02 58 76 0.026 0 0.02 59 0 0.025 0 0.025 60 116 0.03 0 0.019 61 101 0.033 0.035 0 62 96 0.029 0 0.019 63 145 0.028 0 0.018 64 138 0.027 0 0.027 65 101 0.024 0.022 0.019 66 108 0.023 0.016 0.015 67 220 0.02 0.044 0 68 103 0.026 0 0.022	51	116	0.032	0.031	0.004
53 87 0.023 0.031 0.008 54 74 0.03 0 0.018 55 67 0.037 0.011 0.019 56 77 0.022 0 0.02 57 76 0.021 0 0.02 58 76 0.026 0 0.02 59 0 0.025 0 0.025 60 116 0.03 0 0.019 61 101 0.033 0.035 0 62 96 0.029 0 0.019 63 145 0.028 0 0.018 64 138 0.027 0 0.027 65 101 0.024 0.022 0.019 66 108 0.023 0.016 0.015 67 220 0.02 0.044 0 68 103 0.026 0 0.022	52	153	0.024	0.015	0.02
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	53	87	0.023	0.031	0.008
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	54	74	0.03	0	0.018
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	55	67	0.037	0.011	0.019
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	56	77	0.022	0	0.02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	57	76	0.021	0	0.02
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	58	76	0.026	0	0.02
	59	0	0.025	0	0.025
	60	116	0.03	0	0.019
	61	101	0.033	0.035	0
	62	96	0.029	0	0.019
641380.02700.027651010.0240.0220.019661080.0230.0160.015672200.020.0440681030.02600.02	63	145	0.028	0	0.018
651010.0240.0220.019661080.0230.0160.015672200.020.0440681030.02600.02	64	138	0.027	0	0.027
661080.0230.0160.015672200.020.0440681030.02600.02	65	101	0.024	0.022	0.019
67 220 0.02 0.044 0 68 103 0.026 0 0.02	66	108	0.023	0.016	0.015
68 103 0.026 0 0.02	67	220	0.02	0.044	0
	68	103	0.026	0	0.02

Table A2. Cont	
----------------	--

NCP #	α , °	D, µm	l1, μm,	12, μm
69	102	0.024	0	0.018
70	129	0.023	0	0.021
71	84	0.018	0	0.021
72	92	0.018	0	0.016
73	98	0.022	0.016	0.023
74	147	0.017	0	0
75	82	0.028	0	0.017
76	130	0.02	0	0.016
77	179	0.029	0.043	0
78	110	0.027	0.043	0
79	130	0.026	0.042	0
80	96	0.019	0.008	0.01
81	83	0.027	0.013	0.024
82	55	0.026	0.038	0
83	144	0.021	0.041	0
84	173	0.026	0	0.018
85	149	0.02	0	0.023
86	164	0.024	0	0.028
87	69	0.026	0	0.022
88	104	0.027	0.013	0.024
89	174	0.02	0	0.023
90	171	0.024	0	0.026
91	106	0.025	0	0.011
92	83	0.021	0	0.018
93	103	0.025	0	0.016
94	120	0.024	0.022	0.021
95	200	0.023	0.033	0.024
96	140	0.023	0	0.022
97	112	0.024	0	0.019
98	168	0.021	0.016	0.02
99	132	0.019	0	0.02
100	112	0.028	0	0.016
101	128	0.024	0.037	0
102	81	0.022	0	0.018
103	63	0.025	0	0.02
104	102	0.026	0	0
105	108	0.021	0.038	0
106	91	0.021	0.039	0
107	84	0.023	0	0
108	93	0.018	0	0.014
109	141	0.021	0	0.013
110	112	0.018	0	0.025
111	75	0.02	0.019	0.019
112	91	0.018	0	0.018
113	66	0.021	0	0.022
114	93	0.026	0	0.018
115	120	0.017	0	0
116	119	0.017	0	0.029
117	142	0.022	0	0.018
118	64	0.021	0	0.026
119	78	0.018	U 0.011	0.027
120	82	0.017	0.011	0.028
121	119	0.017	0	0.033
122	85 112	0.018	U	0.026
123	113	0.02	U	0.025
124	130	0.022	U 0.010	0.033
120	140 117	0.022	0.019	0.02
120	11/	0.017	0.012	0.02

Tab	le	A2.	Cont.	
Tab	le	A2.	Cont.	

NCP #	α_r °	D, µm	l1, μm,	12, μm
127	97	0.02	0.017	0.025
128	87	0.016	0	0.03
129	157	0.029	0.025	0.025
130	104	0.018	0	0.023
131	63	0.025	0	0.027
132	115	0.023	0.038	0.027
133	133	0.024	0	0.026
134	98	0.029	0	0.023
135	154	0.02	0.009	0.021
136	126	0.022	0.043	0
137	59	0.018	0.037	0.008
138	133	0.018	0	0.019
139	110	0.02	0	0.02
140	132	0.016	0	0.02
141	116	0.02	0.037	0.015
142	124	0.025	0.034	0
143	98	0.014	0.043	0
144	124	0.021	0	0.023
145	111	0.022	0	0.023
146	82	0.022	0.023	0.014
147	173	0.024	0	0
148	141	0.023	0.012	0.026
149	102	0.019	0	0.026
150	115	0.021	0.044	0.009
151	122	0.021	0.007	0
152	85	0.019	0	0.025
153	97	0.021	0	0.027
154	110	0.024	0	0.022
155	137	0.022	0	0.028
156	151	0.021	0.04	0
157	92	0.026	0.04	0
158	112	0.022	0	0.023
159	54	0.014	0.035	0
160	180	0.021	0.014	0.028
161	117	0.021	0	0.018
162	77	0.022	0	0.023
163	116	0.012	0.035	0.007
164	142	0.011	0.03	0.019
165	128	0.015	0.04	0
166	75	0.012	0	0.021
167	178	0.013	0.009	0.005
168	144	0.014	0.035	0
169	155	0.015	0	0.026
170	130	0.014	0.018	0.023
171	120	0.015	0.008	0.024
172	116	0.015	0.014	0.022
173	96	0.014	0.005	0.03
174	151	0.014	0.008	0.033
175	147	0.013	0.043	0
176	69	0.019	0	0.028
177	122	0.021	0.041	0
178	122	0.019	0.036	0
179	151	0.016	0.012	0.019
180	136	0.014	0	0.023
181	148	0.016	0.037	0
182	89	0.014	0.035	0
183	173	0.014	0.009	0
184	162	0.019	0	0.025

NCP #	lpha, °	D, µm	l1, μm,	12, μm
185	120	0.021	0	0.019
186	119	0.019	0.039	0
187	85	0.024	0	0.025
188	124	0.017	0.041	0
189	118	0.017	0	0.026
190	150	0.018	0.013	0.024
191	115	0.017	0.037	0
192	90	0.017	0.033	0
193	166	0.017	0	0.028
194	108	0.02	0.035	0
195	161	0.019	0	0.028
196	171	0.016	0	0.025
197	114	0.02	0	0.017
198	87	0.019	0.037	0
199	145	0.016	0	0.027
200	125	0.02	0.011	0.028
201	110	0.021	0	0.028
202	108	0.022	0	0.018
203	74	0.014	0	0.024
204	66	0.018	0.014	0.01
205	92	0.024	0.027	0.025

Table A2. Cont.

Table A3. NCP parameters in the presence of PARP2.

NCP #	α , °	D, µm	l1, μm,	12, μm
1	61	0.033	0	0.018
2	144	0.029	0.029	0
3	159	0.028	0.032	0.03
4	60	0.023	0.024	0.016
5	99	0.02	0	0.022
6	105	0.02	0	0.018
7	140	0.024	0	0.02
8	78	0.019	0.042	0.009
9	109	0.021	0	0
10	113	0.018	0	0.023
11	88	0.026	0.023	0.019
12	82	0.019	0	0.022
13	97	0.02	0	0.022
14	185	0.02	0	0.014
15	167	0.019	0	0.021
16	104	0.021	0	0.019
17	77	0.019	0	0.024
18	63	0.022	0	0.022
19	147	0.02	0	0.021
20	108	0.02	0.015	0
21	281	0.018	0	0.029
22	60	0.032	0	0
23	118	0.02	0	0.023
24	140	0.022	0.034	0
25	86	0.019	0	0.024
26	139	0.016	0	0.02
27	88	0.017	0	0.02
28	72	0.019	0.042	0
29	172	0.017	0	0.025
30	160	0.023	0	0.001
31	130	0.024	0.047	0.019
32	94	0.027	0	0.023

Table A3. Cont	
----------------	--

NCP #	$lpha$, $^{\circ}$	D, µm	l1, μm,	l2, μm
33	147	0.027	0.015	0.022
34	174	0.021	0.041	0
35	148	0.025	0	0
36	92	0.02	0.038	0.01
37	146	0.018	0.01	0.029
38	85	0.018	0	0.024
39	98	0.022	0	0.019
40	81	0.017	0.036	0
41	160	0.02	0.04	0.021
42	142	0.021	0	0.024
43	129	0.025	0.007	0.022
44	105	0.022	0.016	0.019
45	134	0.02	0	0.023
46	121	0.023	0.037	0
47	113	0.015	0	0.025
48	170	0.02	0.032	0
49	159	0.025	0.047	0
50	74	0.022	0	0.026
51	132	0.028	0	0.019
52	112	0.015	0	0.023
53	87	0.019	0	0.023
54	124	0.022	0	0.018
55	99	0.022	0	0.021
56	92	0.02	0	0.028
57	93	0.019	0	0.023
58	83	0.016	0	0
59	99	0.022	0	0.023
60	125	0.019	0.011	0.017
61 62	114	0.016	0.011	0.018
63	137	0.015	0 009	0.02
64	120	0.016	0.009	0.025
65	104	0.010	0.057	0 017
66	104	0.012	0	0.017
67	168	0.018	0	0.022
68	102	0.018	0	0.025
69	177	0.027	0.035	0.022
70	105	0.021	0	0.024
71	109	0.023	0	0.023
72	95	0.021	0.034	0.023
73	135	0.018	0.04	0
74	86	0.018	0	0.025
75	95	0.016	0	0.022
76	192	0.016	0	0.023
77	159	0.02	0	0.024
78	116	0.018	0	0.024
79	113	0.019	0.037	0
80	149	0.022	0.023	0.025
81	159	0.021	0	0.022
82	67	0.022	0	0.014
83	130	0.019	0	0.024
84	145	0.02	0.018	0.03
85	95	0.021	0	0.021
86	142	0.018	0.043	0
87	129	0.019	0	0.023
88	216	0.022	0	0.019
89	135	0.02	0	0.033
90	112	0.028	0.04	0.017

Table	A3.	Cont.
-------	-----	-------

NCP #	lpha, °	D, µm	l1, μm,	12, μm
91	128	0.019	0.039	0.017
92	117	0.021	0.012	0.024
93	114	0.018	0.044	0
94	115	0.018	0	0.027
95	109	0.022	0.02	0.022
96	112	0.017	0	0.023
97	88	0.02	0.039	0
98	117	0.02	0.015	0.024
99	139	0.018	0	0.024
100	125	0.028	0	0.019
101	95	0.023	0.036	0
102	166	0.031	0.033	0.031
103	94	0.025	0.035	0.004
104	96	0.017	0.014	0.025
105	107	0.023	0	0.021
106	138	0.02	0.015	0.021
107	88	0.016	0	0.008
108	124	0.02	0.035	0
109	90	0.016	0	0.027
110	55	0.014	0.039	0.008
110	134	0.011	0.004	0.019
112	88	0.019	0	0.027
113	77	0.014	0	0.021
110	104	0.019	0.038	0
115	101	0.02	0.033	0 024
116	171	0.02	0.000	0.024
110	171	0.017	0 024	0.024
118	174	0.011	0.021	0.031
110	174	0.017	0.052	0.028
120	95	0.017	0.008	0.020
120	174	0.017	0.000	0.011
121	83	0.010	0.030	0.021
122	127	0.019	0.022	0.021
123	127	0.01	0.012	0.022
124	1/6	0.02	0	0.028
125	72	0.02	0 030	0.020
120	112	0.016	0.039	0.015
127	115	0.010	0 042	0.015
120	111	0.022	0.042	0.010
129	133	0.014	0 042	0.020
130	120	0.010	0.042	0.012
131	90 156	0.017	0.009	0.012
132	150	0.010	0	0.03
133	137	0.019	0 000	0.029
134	214	0.021	0.009	0.027
155	100	0.019	0.04	0.020
130	99	0.017	0	0.029
137	03 102	0.02	0 02(0.024
100	123	0.017	0.036	0 022
139	11 4 101	0.01/	U	0.032
140 171	171	0.021	0	0.028
141	144	0.018	0.04	0.025
142	9/	0.018	0.04	0
143	143	0.018	0.036	U 0.010
	104	0.02	0.038	0.019
145	99	0.018	U	0.027
146	85	0.019	U	0.02
147	103	0.017	U	0.027

Table	A3.	Cont.
-------	-----	-------

NCP #	α , °	D, µm	l1, μm,	12, μm
148	143	0.017	0.045	0
149	133	0.016	0	0.032
150	111	0.016	0.006	0.029
151	153	0.019	0.013	0.03
152	109	0.019	0.008	0.028
153	128	0.014	0	0.032
154	93	0.021	0.007	0.029
155	99	0.02	0.04	0.01
156	120	0.017	0.035	0.007
157	96	0.017	0.038	0.002
158	111	0.014	0.038	0
159	122	0.017	0.011	0.028
160	133	0.014	0.008	0.028
161	113	0.021	0	0.028
162	73	0.015	0.004	0.03
163	113	0.018	0.01	0.032
164	97	0.019	0.04	0
165	86	0.017	0.038	0
166	142	0.017	0.007	0.029
167	77	0.019	0.007	0.028
168	78	0.018	0.007	0.019
169	154	0.015	0	0.027
170	128	0.02	0	0.031
171	125	0.02	0.042	0
172	101	0.018	0.01	0.023
173	109	0.017	0.037	0
174	86	0.017	0	0.026
175	103	0.015	0	0.031
176	142	0.02	0.01	0
177	102	0.02	0	0.029
178	152	0.018	0	0.027
179	172	0.016	0	0.025
180	118	0.019	0	0.028
181	148	0.019	0	0.03
182	102	0.016	0	0.026
183	84	0.021	0.037	0.013
184	145	0.015	0	0.031
185	95	0.014	0	0.024
186	144	0.015	0.033	0
187	102	0.02	0.007	0.018
188	217	0.016	0.048	0
189	172	0.015	0	0
190	145	0.018	0.04	0
191	162	0.018	0.006	0
192	107	0.022	0.005	0.025
193	123	0.014	0.041	0
194	84	0.018	0.037	0.020
195	267	0.019	0.049	0.029
196	114	0.017	0.039	U 0.024
197	96	0.016	U	0.024
198 100	91 140	0.019	U	0.023
199 200	140	0.01/	0.022	0.008
200	130	0.019	0.033	0.005
201	85	0.019	0.039	U

NCP #	lpha, °	D , μm	l1, μm,	12, μm
1	106	0.025	0.005	0.025
2	156	0.024	0	0.024
3	87	0.02	0	0.02
4	77	0.024	0	0.025
5	98	0.025	0	0.022
6	77	0.015	0	0.027
7	81	0.017	0	0.024
8	138	0.02	0.041	0.01
9	83	0.018	0	0.016
10	102	0.021	0.035	0.009
11	93	0.016	0	0.027
12	95	0.013	0.035	0
13	119	0.019	0	0.021
14	174	0.021	0	0.021
15	122	0.017	0	0.023
16	97	0.013	0.04	0
17	84	0.018	0.037	0
18	75	0.02	0.043	0
19	84	0.024	0	0.024
20	96	0.018	0	0.028
21	145	0.015	0	0.023
22	69	0.02	0	0.024
23	81	0.018	0	0.028
24	103	0.018	0	0.021
25	79	0.018	0.041	0
26	154	0.019	0	0.032
27	99	0.018	0	0.023
28	106	0.015	0	0.024
29	116	0.018	0	0.023
30	87	0.021	0	0
31	98	0.018	0.041	0
32	134	0.019	0	0.021
33	111	0.02	0.038	0
34	104	0.018	0	0.026
35	101	0.016	0	0.023
30 27	109	0.017	0	0.027
37	114	0.015	0	0.028
30	110	0.010	0	0.027
39 40	101	0.019	0 020	0.021
40	75	0.014	0.039	0 023
41	135	0.012	0 034	0.025
42	83	0.017	0.054	0 023
44	94	0.017	0	0.020
45	87	0.011	0	0.023
46	157	0.019	0.042	0.015
47	81	0.019	0	0.03
48	62	0.02	0	0.032
49	95	0.02	0	0.022
50	132	0.018	0.038	0
51	108	0.017	0.038	0
52	71	0.015	0	0.024
53	140	0.017	0	0.021
54	99	0.019	0	0.014
55	45	0.017	0	0.024
56	94	0.019	0	0.024
57	119	0.014	0	0.023
58	116	0.018	0	0.021

Table A4. NCP parameters in the presence of PARP3.

Table A	4. Cont.
---------	-----------------

NCP #	α_r °	D, µm	l1, μm,	12, μm
59	38	0.019	0	0.018
60	74	0.016	0	0.023
61	53	0.015	0.037	0
62	95	0.018	0	0.02
63	166	0.014	0.015	0.021
64	61	0.015	0	0.019
65	122	0.018	0	0.024
66	209	0.016	0	0.023
67	119	0.015	0	0.023
68	78	0.014	0	0.023
69	121	0.012	0.037	0
70	118	0.017	0	0
71	101	0.017	0.04	0.01
72	105	0.018	0.027	0.022
73	87	0.016	0.009	0.024
74	66	0.016	0	0.018
75	178	0.017	0.038	0.014
76	161	0.026	0.016	0.023
77	97	0.016	0.018	0.024
78	82	0.018	0	0.024
79	142	0.016	0.035	0
80	123	0.016	0	0.026
81	82	0.015	0	0.023
82	133	0.013	0	0.022
83	71	0.017	0	0.024
84	93	0.019	0.008	0.022
85	105	0.021	0	0.024
86	98	0.016	0	0.028
87	144	0.014	0	0.028
88	113	0.02	0.007	0.021
89	124	0.015	0	0.027
90	107	0.016	0	0.022
91	85	0.016	0	0.026
92	154	0.018	0.011	0.028
93	119	0.015	0	0.019
94	90	0.019	0	0.021
95	106	0.018	0	0.024
96	87	0.017	0.04	0
97	60	0.017	0.038	0.011
98	83	0.014	0.038	0
99	119	0.017	0	0.022
100	118	0.014	0	0.023
101	89	0.014	0	0.025
102	99	0.016	0.004	0.025
103	131	0.017	0	0.02
104	118	0.015	0	0.021
105	102	0.015	0	0
106	68	0.015	0.009	0.025
107	86	0.013	0	0.026
108	82	0.016	0.017	0.022
109	104	0.016	0	0.022
110	119	0.015	0.039	0.004
111	74	0.013	0.01	0.026
112	100	0.017	0.008	0.003
113	96	0.017	0	0.02
114	89	0.012	0.038	0
115	117	0.015	0.038	0

 Table A4. Cont.

1161050.01400.024117590.01600.0281181510.0130.0050.028120430.01700.0061211690.0140.0190.0311221300.020.0430.0041231350.0150.03401241100.0120.0080.0171251220.01600.0261261050.0190.0130127960.0140.0120.026128930.01800.0261291320.01800.026130850.01800.026131850.01500.03132930.0160.0080.026133990.0200.021136850.01300.022137970.0150.03901381190.0140.0380139930.01600.024140930.01700.023143980.01700.0231441130.0220.0260.0271441130.0220.0260.0271441130.0220.0260.0271441130.0220.0260.027145790.01800.02415599 <th>NCP #</th> <th>lpha, °</th> <th>D, µm</th> <th>l1, μm,</th> <th>12, μm</th>	NCP #	lpha, °	D, µm	l1, μm,	12, μm
117 59 0.016 0 0.028 118 151 0.013 0.005 0.028 120 83 0.017 0 0.006 121 1.69 0.014 0.019 0.031 122 130 0.02 0.043 0.004 123 135 0.015 0.034 0 124 110 0.012 0.008 0.017 125 122 0.016 0 0.026 126 105 0.014 0.012 0.026 128 93 0.018 0 0.027 130 85 0.018 0 0.026 131 85 0.015 0 0.03 132 93 0.016 0.008 0.026 133 99 0.02 0 0.028 134 97 0.015 0.039 0 135 123 0.02 0 0.022	116	105	0.014	0	0.024
118 151 0.013 0 0.03 119 115 0.013 0.005 0.028 120 83 0.017 0 0.006 121 169 0.014 0.019 0.031 122 130 0.02 0.043 0.004 123 135 0.015 0.034 0 124 110 0.012 0.008 0.017 125 122 0.016 0 0.026 126 105 0.019 0.013 0 127 96 0.018 0 0.026 130 85 0.018 0 0.027 130 85 0.018 0 0.026 131 85 0.015 0.033 0 132 93 0.015 0.039 0 133 99 0.02 0 0.021 134 97 0.013 0.017 0 0.023	117	59	0.016	0	0.028
119 115 0013 0.005 0.028 120 83 0.017 0 0.006 121 169 0.014 0.019 0.031 122 130 0.02 0.043 0.004 123 135 0.015 0.034 0 124 110 0.012 0.008 0.017 125 122 0.016 0 0.026 126 105 0.019 0.013 0 127 96 0.014 0.012 0.026 129 132 0.018 0 0.026 130 85 0.015 0 0.033 131 85 0.015 0 0.033 132 93 0.016 0.008 0.026 133 99 0.02 0 0.021 135 123 0.02 0 0.021 136 95 0.013 0 0.022 136 95 0.013 0 0.022 137 97	118	151	0.013	0	0.03
120 83 0.017 0 0.006 121 169 0.014 0.019 0.031 122 130 0.02 0.043 0.041 123 135 0.015 0.034 0 124 110 0.012 0.008 0.017 125 122 0.016 0 0.026 126 105 0.019 0.013 0 127 96 0.014 0.012 0.02 128 93 0.018 0 0.024 130 85 0.015 0 0.03 132 93 0.016 0.008 0.026 133 99 0.02 0 0.021 136 95 0.013 0 0.029 137 97 0.016 0 0.021 136 95 0.013 0 0.023 139 93 0.016 0 0.021 1	119	115	0.013	0.005	0.028
121 169 0.014 0.019 0.031 122 130 0.02 0.043 0.004 123 135 0.015 0.034 0 124 110 0.012 0.008 0.017 125 122 0.016 0 0.026 126 105 0.019 0.013 0 127 96 0.014 0.012 0.02 128 93 0.018 0 0.026 129 132 0.018 0 0.024 131 85 0.015 0 0.03 132 93 0.016 0.008 0.026 133 99 0.02 0 0.021 136 95 0.013 0 0.021 136 95 0.013 0 0.024 138 119 0.017 0.033 0.017 140 93 0.017 0.033 0.006 143 98 0.016 0 0.021 144 113	120	83	0.017	0	0.006
122 130 0.02 0.043 0.004 123 135 0.015 0.034 0 124 110 0.012 0.008 0.017 125 122 0.016 0 0.0226 126 105 0.019 0.013 0 127 96 0.014 0.012 0.02 129 132 0.018 0 0.024 131 85 0.015 0 0.03 132 93 0.016 0.008 0.026 133 99 0.02 0 0.021 134 97 0.015 0.039 0 135 123 0.02 0 0.021 136 95 0.013 0 0.021 137 97 0.018 0.04 0.006 138 119 0.017 0.033 0.006 140 93 0.017 0.033 0.006 144 113 0.02	121	169	0.014	0.019	0.031
123 135 0.015 0.034 0 124 110 0.012 0.008 0.017 125 122 0.016 0 0.026 126 105 0.019 0.013 0 127 96 0.014 0.012 0.02 128 93 0.018 0 0.024 130 85 0.015 0 0.03 132 93 0.016 0.008 0.026 133 99 0.02 0 0.028 134 97 0.015 0.399 0 135 123 0.02 0 0.021 136 95 0.013 0 0.022 137 97 0.018 0.04 0.006 138 119 0.017 0.013 0.017 140 93 0.017 0.013 0.017 144 113 0.022 0.026 0.0221	122	130	0.02	0.043	0.004
124 110 0.012 0.008 0.017 125 122 0.016 0 0.026 126 105 0.019 0.013 0 127 96 0.014 0.012 0.026 128 93 0.018 0 0.027 130 85 0.015 0 0.03 131 85 0.015 0 0.03 132 93 0.016 0.008 0.026 133 99 0.02 0 0.021 136 95 0.013 0 0.029 137 97 0.014 0.038 0 138 119 0.014 0.038 0 139 93 0.017 0.013 0.017 140 93 0.017 0.013 0.017 141 97 0.017 0 0.023 143 98 0.016 0 0.021 1	123	135	0.015	0.034	0
125 122 0.016 0 0.026 126 105 0.019 0.013 0 127 96 0.014 0.012 0.02 128 93 0.018 0 0.026 129 132 0.018 0 0.024 131 85 0.015 0 0.03 132 93 0.016 0.008 0.026 133 99 0.02 0 0.028 134 97 0.015 0.039 0 135 123 0.02 0 0.029 137 97 0.018 0.04 0.006 138 119 0.017 0.033 0.017 140 93 0.017 0.033 0.006 142 109 0.017 0.033 0.006 144 113 0.022 0.026 0.027 144 134 0.026 0.024 0	124	110	0.012	0.008	0.017
126 105 0.019 0.013 0 127 96 0.014 0.012 0.02 128 93 0.018 0 0.027 130 85 0.018 0 0.021 131 85 0.015 0 0.03 132 93 0.016 0.008 0.026 133 99 0.02 0 0.028 134 97 0.015 0.039 0 135 123 0.02 0 0.029 137 97 0.018 0.044 0.006 138 119 0.014 0.033 0 139 93 0.016 0 0.024 140 93 0.017 0.013 0.017 141 97 0.017 0.033 0.006 142 109 0.017 0 0.023 144 113 0.022 0.026 0.027 145 79 0.018 0 0.026 144 114 0.023 0 0 145 79 0.018 0 0.024 150 1111 0.019 0.034 0 145 93 0.017 0 0.024 150 1111 0.018 0 0.024 150 1111 0.018 0.015 0.028 154 93 0.017 0.038 0 155 99 0.021 0.042 0.015 <	125	122	0.016	0	0.026
125 36 0.014 0.012 0.02 128 93 0.018 0 0.026 129 132 0.018 0 0.027 130 85 0.018 0 0.024 131 85 0.015 0 0.03 132 93 0.016 0.008 0.026 133 99 0.02 0 0.028 134 97 0.015 0.039 0 135 123 0.02 0 0.029 137 97 0.018 0.04 0.006 138 119 0.014 0.038 0 139 93 0.017 0.013 0.017 141 97 0.017 0.033 0.006 142 109 0.017 0.033 0.006 144 113 0.022 0.026 0.027 144 113 0.022 0.026 0.027 144 113 0.022 0.026 0.027 144 113 0.022 0.026 0.027 144 114 0.016 0.035 0 149 86 0.02 0.009 0.024 150 111 0.017 0 0.031 151 148 0018 0 0.024 152 45 0.017 0 0.034 154 93 0.017 0 0.024 155 99 0.021 0.042 0	126	105	0.019	0.013	0
12.13.13.13.13.13.1291320.01800.024130850.01800.03131850.01500.03132930.0160.0080.026133990.0200.028134970.0150.03901351230.0200.029136950.01300.029137970.0180.040.0061381190.0140.0330.017140930.0170.0130.017141970.01700.022143980.01600.0211441130.0220.0260.027145790.01800.0261441140.02100.026145790.0160.03501461340.023001471170.02100.0241501110.0190.03401511480.0150.0240155990.0210.0420.015156930.022001571140.0180.0190.027159890.0180.00201601400.02100.028158990.0230.0190.025164860.022	120	96	0.014	0.012	0.02
1201320.01800.027130850.01800.024131850.01500.03132930.0160.0080.026133990.0200.021134970.0150.03901351230.0200.021136950.01300.029137970.0180.040.0061381190.0140.0380139930.01600.021140930.0170.0130.017141970.0170.0330.0061421090.01700.023143980.01600.0211441130.02300145790.01800.0261461340.023001471170.02100.0241501110.0190.03401511480.01800.024152450.01700.024155990.0210.0420.015156930.02200.0311571440.0180.0190.037158990.02200.024159890.0180.0080.0221601400.021001631080.0220 <t< td=""><td>128</td><td>93</td><td>0.011</td><td>0</td><td>0.026</td></t<>	128	93	0.011	0	0.026
120120130850.01800.024131850.01500.03132930.0160.0080.026133990.0200.028134970.0150.03901351230.0200.021136950.01300.029137970.0180.040.0061381190.0140.0380139930.01600.024140930.0170.0130.017141970.0170.0330.0061421090.01700.023143980.01600.0211441130.0220.0260.027145790.01800.0261461340.023001471170.02100.026148600.0160.0350149860.020.0090.0241501110.0190.03401511480.01700.021153920.01700.024155990.0210.0420.0311571140.0180.0190.0221601400.02100.024155990.0230.0190.025166930.022000.031 <t< td=""><td>120</td><td>132</td><td>0.018</td><td>0</td><td>0.020</td></t<>	120	132	0.018	0	0.020
1300.00.01500.03131850.01500.028132930.0150.0390133970.0150.03901351230.0200.021136950.01300.029137970.0180.040.0061381190.0140.0380139930.01600.021140930.0170.0130.017141970.01700.023143980.01600.0211441130.0220.0260.027145790.01800.0261461340.023001471170.02100.026148600.0160.0350149860.020.0090.0241501110.0190.03401511480.01700.031153920.0170.0380154930.01700.024155990.0210.0420.015156930.02200.0311571140.0180.0150.025164890.020.0320165860.02200.025162940.0190.03701631080.0220<	120	85	0.018	0	0.024
1310.00.000.026133990.0200.028134970.0150.03901351230.0200.021136950.01300.029137970.0180.040.0061381190.0140.0380139930.0170.0130.017141970.0170.0330.0061421090.01700.023143980.01600.0211441130.0220.0260.027145790.01800.0261461340.023001471170.02100.026148600.0160.03501501110.0190.03401511480.01700.024155990.0210.0420.015154930.01700.024155990.0210.0420.015156930.02200.0311571140.0180.0190.0251601400.02100.024155990.0210.0420156930.02200.0311571140.0180.00201661000.02100.025162940.0190.037 <td>130</td> <td>85</td> <td>0.015</td> <td>0</td> <td>0.024</td>	130	85	0.015	0	0.024
132 39 0.02 0.000 0.028 134 97 0.015 0.039 0 135 123 0.02 0 0.021 136 95 0.013 0 0.029 137 97 0.018 0.04 0.006 138 119 0.014 0.038 0 139 93 0.017 0.013 0.017 140 93 0.017 0.033 0.006 142 109 0.017 0 0.023 143 98 0.016 0 0.021 144 113 0.022 0.026 0.026 146 134 0.023 0 0 147 117 0.021 0 0.026 148 60 0.016 0.035 0 149 86 0.02 0.009 0.024 150 111 0.017 0 0.031 151 148 0.017 0 0.031 153 92 0.017 0.038 0 154 93 0.017 0 0.024 155 99 0.021 0.042 0.015 156 93 0.022 0 0.031 157 114 0.017 0.038 0.022 156 93 0.022 0 0.031 157 114 0.018 0.008 0.022 158 99 0.023 0.019 0.025	131	93	0.016	0.008	0.026
133 $j2$ 0.02 0 0.021 135123 0.02 0 0.021 136 95 0.013 0 0.029 137 97 0.018 0.04 0.006 138 119 0.014 0.038 0 139 93 0.016 0 0.024 140 93 0.017 0.013 0.017 141 97 0.017 0.033 0.006 142 109 0.017 0 0.023 143 98 0.016 0 0.021 144 113 0.022 0.026 0.027 145 79 0.018 0 0.026 146 134 0.023 0 0 147 117 0.021 0 0.024 150 111 0.016 0.035 0 149 86 0.02 0.009 0.024 151 148 0.017 0 0.031 153 92 0.017 0.038 0 154 93 0.017 0 0.031 155 99 0.021 0.042 0.015 156 93 0.022 0 0.031 157 114 0.018 0.015 0.028 158 99 0.021 0.042 0.015 164 89 0.02 0.037 0 163 108 0.022 0.066 0.028 166 100 0.021 0	132	99	0.010	0.000	0.020
134 97 0.013 0.009 0.021 136 95 0.013 0 0.029 137 97 0.018 0.04 0.006 138 119 0.014 0.038 0 139 93 0.016 0 0.024 140 93 0.017 0.013 0.017 141 97 0.017 0.033 0.006 142 109 0.017 0 0.023 143 98 0.016 0 0.021 144 113 0.022 0.026 0.027 145 79 0.018 0 0.026 146 134 0.023 0 0 147 117 0.021 0 0.026 148 60 0.016 0.035 0 149 86 0.02 0.009 0.024 150 111 0.017 0 0.021 151 148 0.017 0 0.021 153 92 0.017 0.038 0 154 93 0.017 0 0.024 155 99 0.021 0.042 0.015 156 93 0.022 0 0.031 157 114 0.018 0.019 0.025 164 89 0.02 0.033 0 163 108 0.022 0.066 0.028 166 100 0.021 0.006 0.025 <td>134</td> <td>97</td> <td>0.02</td> <td>0 039</td> <td>0.020</td>	134	97	0.02	0 039	0.020
135 125 0.02 0 0.021 137 97 0.018 0.04 0.006 138 119 0.014 0.038 0 139 93 0.016 0 0.024 140 93 0.017 0.013 0.017 141 97 0.017 0.033 0.006 142 109 0.017 0 0.023 143 98 0.016 0 0.021 144 113 0.022 0.026 0.027 145 79 0.018 0 0.026 146 134 0.023 0 0 147 117 0.021 0 0.026 148 60 0.016 0.035 0 149 86 0.02 0.009 0.024 150 111 0.019 0.034 0 151 148 0.017 0 0.031 153 92 0.017 0 0.021 154 93 0.017 0 0.024 155 99 0.021 0.042 158 99 0.023 0.019 0.022 160 140 0.021 0 0.0331 157 114 0.017 0.016 0.025 166 1000 0.021 0 0.025 166 1000 0.021 0 0.025 164 89 0.022 0 0.025 164	135	103	0.015	0.039	0 021
137 97 0.018 0.04 0.006 138 119 0.014 0.038 0 139 93 0.017 0.013 0.017 140 93 0.017 0.013 0.017 141 97 0.017 0.033 0.006 142 109 0.017 0 0.023 143 98 0.016 0 0.021 144 113 0.022 0.026 0.027 145 79 0.018 0 0.026 146 134 0.023 0 0 147 117 0.021 0 0.026 148 60 0.016 0.035 0 149 86 0.02 0.009 0.024 150 111 0.019 0.034 0 151 148 0.017 0 0.031 152 45 0.017 0.038 0 154 93 0.017 0 0.024 155 99 0.021 0.042 0.015 156 93 0.022 0 0.031 157 114 0.018 0.015 0.028 158 99 0.021 0.042 0 159 89 0.018 0.008 0.022 160 140 0.021 0 0.034 161 87 0.017 0.016 0.025 164 89 0.02 0.037 0	136	95	0.02	0	0.021
138119 0.014 0.038 0 13993 0.016 0 0.024 14093 0.017 0.013 0.017 14197 0.017 0.033 0.006 142109 0.017 0 0.023 14398 0.016 0 0.021 144113 0.022 0.026 0.027 14579 0.018 0 0.026 146134 0.023 00147117 0.021 0 0.026 14860 0.016 0.035 014986 0.02 0.009 0.024 150111 0.019 0.034 0151148 0.017 0 0.024 15245 0.017 0.038 015392 0.017 0.038 015493 0.017 0.022 0.031 15599 0.021 0.042 0.027 15693 0.022 0 0.031 157114 0.018 0.015 0.028 15899 0.023 0.019 0.027 15989 0.018 0.008 0.022 160140 0.021 0 0.034 16187 0.017 0.016 0.025 16489 0.02 0.032 0 16586 0.022 0.037 0 166100 0.021 <	137	97	0.013	0.04	0.025
130132 0.014 0.005 0 13993 0.017 0.013 0.017 14093 0.017 0.033 0.006 142109 0.017 0 0.023 14398 0.016 0 0.021 144113 0.022 0.026 0.027 14579 0.018 0 0.026 146134 0.023 0 0 147117 0.021 0 0.026 148 60 0.016 0.035 0 14986 0.02 0.009 0.024 150111 0.019 0.034 0 151148 0.017 0 0.024 15245 0.017 0 0.024 15599 0.021 0.042 0.015 15693 0.022 0 0.031 157114 0.018 0.015 0.028 15899 0.023 0.019 0.027 15989 0.017 0 0.031 157114 0.018 0.008 0.022 160140 0.021 0 0.025 16489 0.02 0.032 0 16586 0.022 0.006 0.025 16489 0.02 0.037 0 16586 0.022 0.006 0.029 166100 0.021 0.009 0.029 165	138	119	0.010	0.04	0.000
130 33 0.017 0.013 0.017 141 97 0.017 0.033 0.006 142 109 0.017 0 0.023 143 98 0.016 0 0.021 144 113 0.022 0.026 0.027 145 79 0.018 0 0.026 146 134 0.023 0 0 147 117 0.021 0 0.026 148 60 0.016 0.035 0 149 86 0.02 0.009 0.024 150 111 0.019 0.034 0 151 148 0.018 0 0.024 152 45 0.017 0 0.031 153 92 0.017 0 0.024 155 99 0.021 0.442 0.015 156 93 0.022 0 0.031 157 114 0.018 0.015 0.028 158 99 0.021 0.042 0.031 161 87 0.017 0.036 0.22 166 100 0.021 0 0.025 164 89 0.02 0.032 0 165 86 0.022 0.006 0.028 166 100 0.021 0.009 0.029 167 75 0.019 0.037 0 168 52 0.02 0.037 0 <	130	93	0.014	0.050	0 024
140 3.5 0.017 0.033 0.006 141 97 0.017 0 0.023 143 98 0.016 0 0.021 144 113 0.022 0.026 0.027 145 79 0.018 0 0.026 146 134 0.023 0 0 147 117 0.021 0 0.026 148 60 0.016 0.035 0 149 86 0.02 0.009 0.024 150 111 0.019 0.034 0 151 148 0.017 0 0.031 153 92 0.017 0.038 0 154 93 0.017 0 0.031 155 99 0.022 0 0.031 156 93 0.022 0 0.031 157 114 0.018 0.015 0.028 158 99 0.021 0.042 0.015 160 140 0.021 0 0.033 161 87 0.017 0.038 0 163 108 0.02 0.032 0 164 89 0.02 0.032 0 165 86 0.022 0.006 0.028 166 100 0.021 0.009 0.029 167 75 0.019 0.038 0 168 52 0.02 0.037 0 164 89 0.02 0.037 </td <td>140</td> <td>93</td> <td>0.017</td> <td>0 013</td> <td>0.024</td>	140	93	0.017	0 013	0.024
141 J' 0.017 0.003 0.003 142109 0.017 0 0.023 14398 0.016 0 0.021 144113 0.022 0.026 0.027 14579 0.018 0 0.026 146134 0.023 00147117 0.021 0 0.026 14860 0.016 0.035 014986 0.02 0.009 0.024 150111 0.019 0.034 0151148 0.017 0 0.031 15245 0.017 0 0.031 15392 0.017 0.038 015493 0.017 0 0.024 15599 0.021 0.042 0.015 15693 0.022 0 0.031 157114 0.018 0.015 0.028 15899 0.023 0.019 0.027 15989 0.018 0.008 0.022 160140 0.021 0 0.034 16187 0.017 0.016 0.025 16294 0.019 0.037 0 163108 0.02 0.036 0.025 16489 0.02 0.038 0 16586 0.022 0.006 0.028 166100 0.021 0.009 0.027 169114 0.018	140	97	0.017	0.013	0.017
142 105 0.017 0 0.021 143 98 0.016 0 0.021 144 113 0.022 0.026 0.027 145 79 0.018 0 0.026 146 134 0.023 0 0 147 117 0.021 0 0.026 148 60 0.016 0.035 0 149 86 0.02 0.009 0.024 150 111 0.019 0.034 0 151 148 0.018 0 0.024 152 45 0.017 0 0.031 153 92 0.017 0.038 0 154 93 0.017 0 0.024 155 99 0.021 0.042 0.015 156 93 0.022 0 0.031 157 114 0.018 0.015 0.028 158 99 0.023 0.019 0.027 159 89 0.018 0.008 0.022 160 140 0.021 0 0.034 161 87 0.017 0.016 0.025 164 89 0.02 0.032 0 165 86 0.022 0.006 0.028 166 100 0.021 0.009 0.029 167 75 0.019 0.038 0 168 52 0.02 0.037 0 <td>142</td> <td>109</td> <td>0.017</td> <td>0.000</td> <td>0.023</td>	142	109	0.017	0.000	0.023
110 30 0.016 0.026 0.027 144113 0.022 0.026 0.026 145 79 0.018 0 0.026 146134 0.023 0 0 147117 0.021 0 0.026 148 60 0.016 0.035 0 149 86 0.02 0.009 0.024 150111 0.019 0.034 0 151148 0.018 0 0.024 15245 0.017 0 0.031 15392 0.017 0.038 0 15493 0.017 0 0.024 15599 0.021 0.042 0.015 15693 0.022 0 0.031 157114 0.018 0.015 0.028 15899 0.023 0.019 0.027 15989 0.018 0.008 0.022 160140 0.021 0 0.034 161 87 0.017 0.016 0.025 16294 0.019 0.037 0 163108 0.02 0.032 0 164 89 0.02 0.032 0 165 86 0.022 0.066 0.028 166100 0.021 0.009 0.029 167 75 0.019 0.037 0 168 52 0.02 0.037 0 <t< td=""><td>143</td><td>98</td><td>0.016</td><td>0</td><td>0.021</td></t<>	143	98	0.016	0	0.021
111 110 0.022 0.026 145 79 0.018 0 0.026 146 134 0.023 0 0 147 117 0.021 0 0.026 148 60 0.016 0.035 0 149 86 0.02 0.009 0.024 150 111 0.019 0.034 0 151 148 0.018 0 0.024 152 45 0.017 0 0.031 153 92 0.017 0.038 0 154 93 0.017 0 0.024 155 99 0.021 0.042 0.015 156 93 0.022 0 0.031 157 114 0.018 0.015 0.028 158 99 0.023 0.019 0.027 159 89 0.018 0.008 0.022 160 140 0.021 0 0.034 161 87 0.017 0.016 0.025 164 89 0.02 0.032 0 165 86 0.022 0.006 0.028 166 100 0.021 0.009 0.029 167 75 0.019 0.038 0 168 52 0.02 0.037 0 169 114 0.018 0 0.027 170 97 0.018 0.045 0 <td>144</td> <td>113</td> <td>0.022</td> <td>0.026</td> <td>0.021</td>	144	113	0.022	0.026	0.021
116 134 0.023 0 0 147 117 0.021 0 0.026 148 60 0.016 0.035 0 149 86 0.02 0.009 0.024 150 111 0.019 0.034 0 151 148 0.017 0 0.031 152 45 0.017 0 0.031 153 92 0.017 0.038 0 154 93 0.017 0 0.024 155 99 0.021 0.042 0.015 156 93 0.022 0 0.031 157 114 0.018 0.015 0.028 158 99 0.023 0.019 0.027 159 89 0.017 0.016 0.025 160 140 0.021 0 0.034 161 87 0.017 0.016 0.025 164 89 0.02 0.032 0 165 86 0.022 0.006 0.028 166 100 0.021 0.006 0.028 166 100 0.021 0.009 0.029 167 75 0.019 0.038 0 168 52 0.02 0.037 0 169 114 0.018 0.04 0 171 91 0.017 0.013 0.024 172 81 0.021 0.045 0 <	145	79	0.018	0	0.026
147 117 0.021 0 0.026 148 60 0.016 0.035 0 149 86 0.02 0.009 0.024 150 111 0.019 0.034 0 151 148 0.017 0 0.021 152 45 0.017 0 0.031 153 92 0.017 0.038 0 154 93 0.017 0 0.024 155 99 0.021 0.042 0.015 156 93 0.022 0 0.031 157 114 0.018 0.015 0.028 158 99 0.023 0.019 0.027 159 89 0.018 0.008 0.022 160 140 0.021 0 0.034 161 87 0.017 0.016 0.025 162 94 0.019 0.037 0 163 108 0.02 0.032 0 164 89 0.02 0.037 0 165 86 0.022 0.006 0.028 166 100 0.021 0.009 0.029 167 75 0.019 0.038 0 168 52 0.02 0.037 0 169 114 0.018 0 0.027 170 97 0.018 0.04 0 171 91 0.017 0.013 0.024 <td>146</td> <td>134</td> <td>0.023</td> <td>0</td> <td>0</td>	146	134	0.023	0	0
148600.0160.0350149860.020.0090.0241501110.0190.03401511480.01800.024152450.01700.031153920.0170.0380154930.01700.024155990.0210.0420.015156930.02200.0311571140.0180.0150.028158990.0230.0190.027159890.0180.0080.0221601400.02100.034161870.0170.0160.025162940.0190.03701631080.0200.025164890.020.0320165860.0220.0060.0281661000.0210.0090.029167750.0190.0370168520.020.03701691140.01800.027170970.0180.040171910.0170.0130.024172810.0210.0450	147	117	0.021	0	0.026
149 86 0.02 0.009 0.024 150 111 0.019 0.034 0 151 148 0.018 0 0.024 152 45 0.017 0 0.031 153 92 0.017 0.038 0 154 93 0.017 0 0.024 155 99 0.021 0.042 0.015 156 93 0.022 0 0.031 157 114 0.018 0.015 0.028 158 99 0.023 0.019 0.027 159 89 0.018 0.008 0.022 160 140 0.021 0 0.034 161 87 0.017 0.016 0.025 162 94 0.019 0.037 0 163 108 0.02 0 0.025 164 89 0.02 0.032 0 165 86 0.022 0.006 0.028 166 100 0.021 0.009 0.029 167 75 0.019 0.038 0 168 52 0.02 0.037 0 169 114 0.018 0 0.027 170 97 0.018 0.04 0 171 91 0.017 0.013 0.024 172 81 0.021 0.045 0	148	60	0.016	0.035	0
150111 0.019 0.034 0 151148 0.018 0 0.024 15245 0.017 0 0.031 15392 0.017 0.038 0 15493 0.017 0 0.024 15599 0.021 0.042 0.015 15693 0.022 0 0.031 157114 0.018 0.015 0.028 15899 0.023 0.019 0.027 15989 0.018 0.008 0.022 160140 0.021 0 0.034 16187 0.017 0.016 0.025 16294 0.019 0.037 0 163108 0.02 0.032 0 16489 0.02 0.032 0 16586 0.022 0.006 0.028 166100 0.021 0.009 0.029 16775 0.019 0.038 0 16852 0.02 0.037 0 169114 0.018 0 0.027 17097 0.018 0.04 0 17191 0.017 0.013 0.024 17281 0.021 0.045 0	149	86	0.02	0.009	0.024
151 148 0.018 0.0 0.024 152 45 0.017 0 0.031 153 92 0.017 0.038 0 154 93 0.017 0 0.024 155 99 0.021 0.042 0.015 156 93 0.022 0 0.031 157 114 0.018 0.015 0.028 158 99 0.023 0.019 0.027 159 89 0.018 0.008 0.022 160 140 0.021 0 0.034 161 87 0.017 0.016 0.025 162 94 0.019 0.037 0 163 108 0.02 0 0.025 164 89 0.02 0.038 0 165 86 0.022 0.006 0.028 166 100 0.021 0.009 0.029 167 75 0.019 0.038 0 168 52 0.02 0.037 0 169 114 0.018 0 0.027 170 97 0.018 0.04 0 171 91 0.017 0.013 0.024 172 81 0.021 0.045 0	150	111	0.019	0.034	0
152 155 0.017 0 0.021 153 92 0.017 0.038 0 154 93 0.017 0 0.024 155 99 0.021 0.042 0.015 156 93 0.022 0 0.031 157 114 0.018 0.015 0.028 158 99 0.023 0.019 0.027 159 89 0.018 0.008 0.022 160 140 0.021 0 0.034 161 87 0.017 0.016 0.025 162 94 0.019 0.037 0 163 108 0.02 0 0.025 164 89 0.02 0.032 0 165 86 0.022 0.006 0.028 166 100 0.021 0.009 0.029 167 75 0.019 0.038 0 168 52 0.02 0.037 0 169 114 0.018 0 0.027 170 97 0.018 0.04 0 171 91 0.017 0.013 0.024 172 81 0.021 0.045 0	151	148	0.018	0	0.024
153 92 0.017 0.038 0 154 93 0.017 0 0.024 155 99 0.021 0.042 0.015 156 93 0.022 0 0.031 157 114 0.018 0.015 0.028 158 99 0.023 0.019 0.027 159 89 0.018 0.008 0.022 160 140 0.021 0 0.034 161 87 0.017 0.016 0.025 162 94 0.019 0.037 0 163 108 0.02 0 0.025 164 89 0.02 0.032 0 165 86 0.022 0.006 0.028 166 100 0.021 0.009 0.029 167 75 0.019 0.038 0 168 52 0.02 0.037 0 169 114 0.018 0 0.027 170 97 0.018 0.04 0 171 91 0.017 0.013 0.024 172 81 0.021 0.045 0	152	45	0.017	0	0.031
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	153	92	0.017	0.038	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	154	93	0.017	0	0.024
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	155	99	0.021	0.042	0.015
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	156	93	0.022	0	0.031
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	157	114	0.018	0.015	0.028
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	158	99	0.023	0.019	0.027
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	159	89	0.018	0.008	0.022
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	160	140	0.021	0	0.034
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	161	87	0.017	0.016	0.025
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	162	94	0.019	0.037	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	163	108	0.02	0	0.025
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	164	89	0.02	0.032	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	165	86	0.022	0.006	0.028
167750.0190.0380168520.020.03701691140.01800.027170970.0180.040171910.0170.0130.024172810.0210.0450	166	100	0.021	0.009	0.029
168520.020.03701691140.01800.027170970.0180.040171910.0170.0130.024172810.0210.0450	167	75	0.019	0.038	0
1691140.01800.027170970.0180.040171910.0170.0130.024172810.0210.0450	168	52	0.02	0.037	0
170970.0180.040171910.0170.0130.024172810.0210.0450	169	114	0.018	0	0.027
171910.0170.0130.024172810.0210.0450	170	97	0.018	0.04	0
172 81 0.021 0.045 0	171	91	0.017	0.013	0.024
	172	81	0.021	0.045	0

NCP #	α_{r}°	D, µm	l1, μm,	12, μm
173	152	0.027	0.031	0
174	91	0.018	0	0.028
175	170	0.019	0.017	0.033
176	55	0.02	0.006	0.024
177	88	0.017	0	0.026
178	81	0.023	0	0.029
179	59	0.018	0	0
180	138	0.017	0.037	0
181	74	0.017	0	0.023
182	75	0.019	0.036	0
183	82	0.02	0	0.024
184	102	0.023	0.016	0.004
185	170	0.02	0.044	0
186	113	0.017	0	0.023
187	71	0.021	0.039	0
188	157	0.019	0	0.027
189	156	0.018	0.038	0
190	170	0.018	0	0.006
191	85	0.022	0.042	0.006
192	104	0.015	0	0.021
193	175	0.021	0.04	0.009
194	117	0.019	0.038	0.014
195	56	0.018	0.042	0
196	126	0.015	0	0.027
197	99	0.019	0	0.032
198	96	0.015	0	0.022
199	98	0.018	0.009	0.023
200	65	0.021	0.042	0
201	70	0.026	0	0.029

Table A4. Cont.

References

- Rao, S.S.; Huntley, M.H.; Durand, N.C.; Stamenova, E.K.; Bochkov, I.D.; Robinson, J.T.; Sanborn, A.L.; Machol, I.; Omer, A.D.; Lander, E.S.; et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. *Cell* 2014, 159, 1665–1680. [CrossRef] [PubMed]
- 2. Kouzarides, T. Chromatin modifications and their function. Cell 2007, 128, 693–705. [CrossRef] [PubMed]
- 3. McGinty, R.K.; Tan, S. Nucleosome structure and function. Chem. Rev. 2015, 115, 2255–2273. [CrossRef]
- 4. Öztürk, M.A.; De, M.; Cojocaru, V.; Wade, R.C. Chromatosome Structure and Dynamics from Molecular Simulations. *Annu. Rev. Phys. Chem.* **2020**, *71*, 101–119. [CrossRef] [PubMed]
- 5. Lyubchenko, Y.L. Centromere chromatin: A loose grip on the nucleosome? Nat. Struct. Mol. Biol. 2014, 21, 8. [CrossRef] [PubMed]
- 6. Stormberg, T.; Lyubchenko, Y.L. The Sequence Dependent Nanoscale Structure of CENP-A Nucleosomes. *Int. J. Mol. Sci.* 2022, 23, 11385. [CrossRef]
- Wacker, D.A.; Ruhl, D.D.; Balagamwala, E.H.; Hope, K.M.; Zhang, T.; Kraus, W.L. The DNA binding and catalytic domains of poly(ADP-ribose) polymerase 1 cooperate in the regulation of chromatin structure and transcription. *Mol. Cell. Biol.* 2007, 27, 7475–7485. [CrossRef] [PubMed]
- Lüscher, B.; Ahel, I.; Altmeyer, M.; Ashworth, A.; Bai, P.; Chang, P.; Cohen, M.; Corda, D.; Dantzer, F.; Daugherty, M.D.; et al. ADP-ribosyltransferases, an update on function and nomenclature. *FEBS J.* 2022, 289, 7399–7410. [CrossRef]
- Talhaoui, I.; Lebedeva, N.A.; Zarkovic, G.; Saint-Pierre, C.; Kutuzov, M.M.; Sukhanova, M.V.; Matkarimov, B.T.; Gasparutto, D.; Saparbaev, M.K.; Lavrik, O.I.; et al. Poly(ADP-ribose) polymerases covalently modify strand break termini in DNA fragments in vitro. *Nucleic Acids Res.* 2016, 44, 9279–9295. [CrossRef]
- Zarkovic, G.; Belousova, E.A.; Talhaoui, I.; Saint-Pierre, C.; Kutuzov, M.M.; Matkarimov, B.T.; Biard, D.; Gasparutto, D.; Lavrik, O.I.; Ishchenko, A.A. Characterization of DNA ADP-ribosyltransferase activities of PARP2 and PARP3: New insights into DNA ADP-ribosylation. *Nucleic Acids Res.* 2018, 46, 2417–2431. [CrossRef]
- 11. Belousova, E.A.; Ishchenko, A.A.; Lavrik, O.I. Dna is a New Target of Parp3. Sci. Rep. 2018, 8, 4176. [CrossRef] [PubMed]
- 12. Vyas, S.; Matic, I.; Uchima, L.; Rood, J.; Zaja, R.; Hay, R.T.; Ahel, I.; Chang, P. Family-wide analysis of poly(ADP-ribose) polymerase activity. *Nat. Commun.* **2014**, *5*, 4426. [CrossRef] [PubMed]
- 13. Kutuzov, M.M.; Belousova, E.A.; Ilina, E.S.; Lavrik, O.I. Impact of PARP1, PARP2 & PARP3 on the Base Excision Repair of Nucleosomal DNA. *Adv. Exp. Med. Biol.* 2020, 1241, 47–57. [CrossRef] [PubMed]

- 14. Ray Chaudhuri, A.; Nussenzweig, A. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. *Nat. Rev. Mol. Cell. Biol.* 2017, *18*, 610–621. [CrossRef]
- Alemasova, E.E.; Lavrik, O.I. Poly(ADP-ribosyl)ation by PARP1: Reaction mechanism and regulatory proteins. *Nucleic Acids Res.* 2019, 47, 3811–3827. [CrossRef]
- Van Beek, L.; McClay, É.; Patel, S.; Schimpl, M.; Spagnolo, L.; Maia de Oliveira, T. PARP Power: A Structural Perspective on PARP1, PARP2, and PARP3 in DNA Damage Repair and Nucleosome Remodelling. *Int. J. Mol. Sci.* 2021, 22, 5112. [CrossRef]
- 17. Beck, C.; Robert, I.; Reina-San-Martin, B.; Schreiber, V.; Dantzer, F. Poly(ADP-ribose) polymerases in double-strand break repair: Focus on PARP1, PARP2 and PARP3. *Exp. Cell. Res.* **2014**, *329*, 18–25. [CrossRef]
- Virág, L.; Robaszkiewicz, A.; Rodriguez-Vargas, J.M.; Oliver, F.J. Poly(ADP-ribose) signaling in cell death. *Mol. Aspects Med.* 2013, 34, 1153–1167. [CrossRef]
- Belousova, E.A.; Lavrik, O.I. The Role of PARP1 and PAR in ATP-Independent Nucleosome Reorganisation during the DNA Damage Response. *Genes* 2022, 14, 112. [CrossRef]
- 20. Poirier, G.G.; de Murcia, G.; Jongstra-Bilen, J.; Niedergang, C.; Mandel, P. Poly(ADP-ribosyl)ation of polynucleosomes causes relaxation of chromatin structure. *Proc. Natl. Acad. Sci. USA* **1982**, *79*, 3423–3427. [CrossRef]
- 21. Gibbs-Seymour, I.; Fontana, P.; Rack, J.G.M.; Ahel, I. HPF1/C4orf27 Is a PARP-1-Interacting Protein that Regulates PARP-1 ADP-Ribosylation Activity. *Mol. Cell.* **2016**, *62*, 432–442. [CrossRef]
- 22. Suskiewicz, M.J.; Zobel, F.; Ogden, T.E.H.; Fontana, P.; Ariza, A.; Yang, J.C.; Zhu, K.; Bracken, L.; Hawthorne, W.J.; Ahel, D.; et al. HPF1 completes the PARP active site for DNA damage-induced ADP-ribosylation. *Nature* 2020, *579*, 598–602. [CrossRef] [PubMed]
- 23. Longarini, E.J.; Matic, I. The fast-growing business of Serine ADP-ribosylation. *DNA Repair* 2022, 118, 103382. [CrossRef] [PubMed]
- Sultanov, D.C.; Gerasimova, N.S.; Kudryashova, K.S.; Maluchenko, N.V.; Kotova, E.Y.; Langelier, M.F.; Pascal, J.M.; Kirpichnikov, M.P.; Feofanov, A.V.; Studitsky, V.M. Unfolding of core nucleosomes by PARP-1 revealed by spFRET microscopy. *AIMS Genet*. 2017, 4, 21–31. [CrossRef] [PubMed]
- Gaullier, G.; Roberts, G.; Muthurajan, U.M.; Bowerman, S.; Rudolph, J.; Mahadevan, J.; Jha, A.; Rae, P.S.; Luger, K. Bridging of nucleosome-proximal DNA double-strand breaks by PARP2 enhances its interaction with HPF1. *PLoS ONE* 2020, 15, e0240932. [CrossRef]
- 26. Loseva, O.; Jemth, A.S.; Bryant, H.E.; Schüler, H.; Lehtiö, L.; Karlberg, T.; Helleday, T. PARP-3 is a mono-ADP-ribosylase that activates PARP-1 in the absence of DNA. *J. Biol. Chem.* 2010, 285, 8054–8060. [CrossRef]
- Rouleau, M.; McDonald, D.; Gagné, P.; Ouellet, M.E.; Droit, A.; Hunter, J.M.; Dutertre, S.; Prigent, C.; Hendzel, M.J.; Poirier, G.G. PARP-3 associates with polycomb group bodies and with components of the DNA damage repair machinery. *J. Cell Biochem.* 2007, 100, 385–401. [CrossRef]
- 28. Rulten, S.L.; Fisher, A.E.; Robert, I.; Zuma, M.C.; Rouleau, M.; Ju, L.; Poirier, G.; Reina-San-Martin, B.; Caldecott, K.W. PARP-3 and APLF function together to accelerate nonhomologous end-joining. *Mol. Cell.* **2011**, *41*, 33–45. [CrossRef]
- Augustin, A.; Spenlehauer, C.; Dumond, H.; Ménissier-De Murcia, J.; Piel, M.; Schmit, A.C.; Apiou, F.; Vonesch, J.L.; Kock, M.; Bornens, M.; et al. PARP-3 localizes preferentially to the daughter centriole and interferes with the G1/S cell cycle progression. J. Cell Sci. 2003, 116, 1551–1562. [CrossRef]
- Sun, Z.; Stormberg, T.; Filliaux, S.; Lyubchenko, Y.L. Three-Way DNA Junction as an End Label for DNA in Atomic Force Microscopy Studies. *Int. J. Mol. Sci.* 2022, 23, 11404. [CrossRef]
- Konrad, S.F.; Vanderlinden, W.; Lipfert, J. Quantifying epigenetic modulation of nucleosome breathing by high-throughput AFM imaging. *Biophys. J.* 2022, 121, 841–851. [CrossRef] [PubMed]
- 32. Würtz, M.; Aumiller, D.; Gundelwein, L.; Jung, P.; Schütz, C.; Lehmann, K.; Tóth, K.; Rohr, K. DNA accessibility of chromatosomes quantified by automated image analysis of AFM data. *Sci. Rep.* **2019**, *9*, 12788. [CrossRef] [PubMed]
- Lyubchenko, Y.L.; Shlyakhtenko, L.S. AFM for analysis of structure and dynamics of DNA and protein-DNA complexes. *Methods* 2009, 47, 206–213. [CrossRef]
- Shlyakhtenko, L.S.; Lushnikov, A.Y.; Lyubchenko, Y.L. Dynamics of nucleosomes revealed by time-lapse atomic force microscopy. Biochemistry 2009, 48, 7842–7848. [CrossRef]
- Sukhanova, M.V.; Abrakhi, S.; Joshi, V.; Pastre, D.; Kutuzov, M.M.; Anarbaev, R.O.; Curmi, P.A.; Hamon, L.; Lavrik, O.I. Single molecule detection of PARP1 and PARP2 interaction with DNA strand breaks and their poly(ADP-ribosyl)ation using high-resolution AFM imaging. *Nucleic Acids Res.* 2016, 44, e60. [CrossRef] [PubMed]
- Sukhanova, M.V.; Hamon, L.; Kutuzov, M.M.; Joshi, V.; Abrakhi, S.; Dobra, I.; Curmi, P.A.; Pastre, D.; Lavrik, O.I. A Single-Molecule Atomic Force Microscopy Study of PARP1 and PARP2 Recognition of Base Excision Repair DNA Intermediates. *J. Mol. Biol.* 2019, 431, 2655–2673. [CrossRef]
- 37. Filenko, N.A.; Kolar, C.; West, J.T.; Smith, S.A.; Hassan, Y.I.; Borgstahl, G.E.; Zempleni, J.; Lyubchenko, Y.L. The role of histone H4 biotinylation in the structure of nucleosomes. *PLoS ONE* **2011**, *6*, e16299. [CrossRef]
- Kutuzov, M.M.; Khodyreva, S.N.; Amé, J.C.; Ilina, E.S.; Sukhanova, M.V.; Schreiber, V.; Lavrik, O.I. Interaction of PARP-2 with DNA structures mimicking DNA repair intermediates and consequences on activity of base excision repair proteins. *Biochimie* 2013, 95, 1208–1215. [CrossRef]
- Kutuzov, M.M.; Belousova, E.A.; Kurgina, T.A.; Ukraintsev, A.A.; Vasil'eva, I.A.; Khodyreva, S.N.; Lavrik, O.I. The contribution of PARP1, PARP2 and poly(ADP-ribosyl)ation to base excision repair in the nucleosomal context. *Sci. Rep.* 2021, *11*, 4849. [CrossRef]

- 40. Kim, M.Y.; Mauro, S.; Gévry, N.; Lis, J.T.; Kraus, W.L. NAD+-dependent modulation of chromatin structure and transcription by nucleosome binding properties of PARP-1. *Cell* **2004**, *119*, 803–814. [CrossRef]
- 41. Rudolph, J.; Muthurajan, U.M.; Palacio, M.; Mahadevan, J.; Roberts, G.; Erbse, A.H.; Dyer, P.N.; Luger, K. The BRCT domain of PARP1 binds intact DNA and mediates intrastrand transfer. *Mol. Cell.* **2021**, *81*, 4994–5006. [CrossRef]
- Grundy, G.J.; Polo, L.M.; Zeng, Z.; Rulten, S.L.; Hoch, N.C.; Paomephan, P.; Xu, Y.; Sweet, S.M.; Thorne, A.W.; Oliver, A.W.; et al. PARP3 is a sensor of nicked nucleosomes and monoribosylates histone H2B(Glu2). *Nat. Commun.* 2016, 7, 12404. [CrossRef] [PubMed]
- Obaji, E.; Maksimainen, M.M.; Galera-Prat, A.; Lehtiö, L. Activation of PARP2/ARTD2 by DNA damage induces conformational changes relieving enzyme autoinhibition. *Nat. Commun.* 2021, 12, 3479. [CrossRef] [PubMed]
- 44. Stumme-Diers, M.P.; Banerjee, S.; Hashemi, M.; Sun, Z.; Lyubchenko, Y.L. Nanoscale dynamics of centromere nucleosomes and the critical roles of CENP-A. *Nucleic Acids Res.* **2018**, *46*, 94–103. [CrossRef]
- 45. Francis, N.J.; Kingston, R.E.; Woodcock, C.L. Chromatin compaction by a polycomb group protein complex. *Science* 2004, 306, 1574–1577. [CrossRef] [PubMed]
- 46. Bell, N.A.W.; Haynes, P.J.; Brunner, K.; de Oliveira, T.M.; Flocco, M.M.; Hoogenboom, B.W.; Molloy, J.E. Single-molecule measurements reveal that PARP1 condenses DNA by loop stabilization. *Sci. Adv.* **2021**, 7, eabf3641. [CrossRef]
- Amé, J.C.; Kalisch, T.; Dantzer, F.; Schreiber, V. Purification of recombinant poly(ADP-ribose) polymerases. *Methods Mol. Biol.* 2011, 780, 135–152. [CrossRef]
- 48. Peterson, C.L.; Hansen, J.C. Chicken erythrocyte histone octamer preparation. *Cold Spring Harb. Protoc.* **2008**, 2008, prot5112. [CrossRef]
- 49. Shlyakhtenko, L.S.; Gall, A.A.; Lyubchenko, Y.L. Mica functionalization for imaging of DNA and protein-DNA complexes with atomic force microscopy. *Methods Mol. Biol.* 2013, 931, 295–312. [CrossRef]
- 50. Green, M.R.; Sambrook, J. Isolation of DNA Fragments from Polyacrylamide Gels by the Crush and Soak Method. *Cold Spring Harb. Protoc.* **2019**, 2019, prot100479. [CrossRef]
- 51. Kutuzov, M.M.; Kurgina, T.A.; Belousova, E.A.; Khodyreva, S.N.; Lavrik, O.I. Optimization of nucleosome assembling from histones and model DNAs and estimation of the reconstitution efficiency. *Biopolym. Cells* **2019**, *35*, 91–98. [CrossRef]
- Stormberg, T.; Stumme-Diers, M.; Lyubchenko, Y.L. Sequence-dependent nucleosome nanoscale structure characterized by atomic force microscopy. FASEB J. 2019, 33, 10916–10923. [CrossRef] [PubMed]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.