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Abstract: Sugarcane, a C4 plant, provides most of the world’s sugar, and a substantial amount of
renewable bioenergy, due to its unique sugar-accumulating and feedstock properties. Brazil, India,
China, and Thailand are the four largest sugarcane producers worldwide, and the crop has the
potential to be grown in arid and semi-arid regions if its stress tolerance can be improved. Modern
sugarcane cultivars which exhibit a greater extent of polyploidy and agronomically important traits,
such as high sugar concentration, biomass production, and stress tolerance, are regulated by complex
mechanisms. Molecular techniques have revolutionized our understanding of the interactions be-
tween genes, proteins, and metabolites, and have aided in the identification of the key regulators of
diverse traits. This review discusses various molecular techniques for dissecting the mechanisms
underlying the sugarcane response to biotic and abiotic stresses. The comprehensive characteriza-
tion of sugarcane’s response to various stresses will provide targets and resources for sugarcane
crop improvement.
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1. Introduction

In this dynamic era of climate change, growing crops under stressful environmental
conditions is inevitable for many farmers. However, it also contributes to substantial yield
reductions on a global scale [1–4]. Plants have acquired complex and coordinated signaling
and response mechanisms to survive exposure to both biotic and abiotic stressors. In
particular, cellular-level response mechanisms are crucial for maintaining plant growth,
yield, and development in unfavorable conditions [5,6]. In order to maintain regular
cellular and metabolic activities, significant changes in gene expression were observed in
highly tolerant plants [7]. In plants, biomass accumulation is positively correlated with the
differential diurnal biosynthesis of metabolites. Photosynthetic processes produce organic
substances used for growth, development, and metabolic activities [8,9].

Sugarcane (hybrids of Saccharum spp.), the source of approximately 80% of global
sugar production [10], exhibits marked diurnal variation in non-structural carbohydrate
production [9]. In addition, approximately 50% of the total sugarcane biomass is used
for the production of bioethanol [11–13]. Modern sugarcane cultivars are genomically
diverse, with a greater extent of polyploidy and aneuploidy, and combine the high sugar
accumulation of S. officinarum (approximately 20–70% of the genomic contribution) with
the ratooning and hardiness of S. spontaneum (approximately 10–20% of the genomic
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contribution) [14,15]. Unfortunately, traditional breeding methods for the improvement of
sugarcane stock are challenging due to genomic complexity and a narrow gene pool [16].

Recently, transcriptomic and proteomic techniques have been used to study the molec-
ular basis underlying sugar production and stress resistance in sugarcane. The application
of these techniques has revealed new information regarding the molecular mechanisms
and adaptations responsible for sugarcane sensitivity and tolerance, and has resulted in
productive gains [17,18]. Transcriptomics and proteomics are facilitated by the discovery
and characterization of the genes, proteins, and regulatory networks underlying desired
agronomic traits. Specifically, these approaches rely on sequencing, bioinformatics, and
computational analysis. Figure 1 shows a generalized workflow for sugarcane omics.
The precise quantification of transcripts and proteins is fundamental for differential abun-
dance analyses. Based upon these analyses, bioinformatics and multiomics approaches can
provide novel insights into complex phenomena.
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A multitude of stressful conditions are encountered by, and often hamper the growth
of, sugarcane (Figure 2) [19–22]. Extreme temperatures, drought, soil salinity, metal toxicity,
and nutrient deficiency are a few of the major abiotic stressors faced during the process of
sugarcane growth. The primary diseases affecting sugarcane growth and yield include, but
are not limited to, red stripe [23], pokkah boeng [24], leaf scald [25], and smut [26]. Explor-
ing how gene expression is reprogrammed in sugarcane will be crucial for understanding
how this important crop responds to stressful conditions and biotic challenges, and will
open new avenues for crop improvement.
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Figure 2. Abiotic and biotic stresses encountered by sugarcane.

2. Sugarcane Transcriptomic Analysis

The transcriptome represents a collection of all the transcripts within a cell under
specific conditions. Transcriptomic sequencing can provide information on a wide variety
of RNA molecules (e.g., mRNA, tRNA, rRNA, and noncoding RNA) which are transcribed
by specific cells under specific conditions. Stress acts differentially on the key cells in the
meristem (stem cell, rapidly dividing cell) and on the cells with secondary metabolism.
So, the transcriptomic analysis is varied in the different cell types or stages, and a pre-
cise sampling strategy is the basis for solving biological problems. Transcriptomics can
reflect the changes in gene expression in different cell types. Transcriptomics is considered
an effective technique for studying differential gene expression, discovering new genes,
developing simple sequence repeats (SSR) markers, and for obtaining tissue- and species-
specific transcriptional information [27,28]. The plant stress response is multifaceted and
involves a complex interplay between signal transduction pathways, plant–pathogen dy-
namics, pre- and post-translational regulation, secondary metabolite biosynthesis, nitrogen
(N) metabolism, and the activity of transcription factors (TFs), kinases, and transporters
(Figure 3). In eukaryotes, post-transcriptional regulation is often carried out by microRNAs
(miRNAs), which are non-coding, single-stranded, small RNAs ranging between 19 and
25 nucleotides (nt) in length [29,30]. miRNA-Seq empowers studies of functional genomics
and transcriptional regulatory mechanisms. Recently, research has revealed that miRNAs
regulate the plant stress response by targeting the genes involved in signal transduction,
plant–pathogen interactions, and TFs, among other biological processes (Figure 3).
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2.1. Transcriptomics of Sugarcane Response to Biotic Stress
2.1.1. Sugarcane Diseases

Disentangling the molecular mechanism underlying sugarcane disease resistance
is of great significance for producing disease-resistant varieties using molecular breed-
ing techniques, and transcriptomic analyses can empower such efforts. For example,
2015 differentially expressed genes (DEGs) have been detected in smut-infected sugarcane,
a disease caused by the fungal pathogen Sporisorium scitamineum [31]. These DEGs encode
serine/threonine kinases, calcium-sensing proteins, mitogen-activated proteins (MAPs),
and nucleotide-binding site leucine-rich repeat proteins (NBS-LRRs). Smut infestation also
influences several phytohormone-responsive signal transduction pathways, including the
abscisic acid (ABA)-, salicylic acid (SA)-, ethylene (ET)-, and auxin (Aux)-responsive path-
ways. Sugarcane resistance to smut infection appears to be influenced by several biological
processes, including the immune response, protein metabolism, cell wall formation, and
polyamine synthesis [32–36]. Wu et al. [37,38] identified a dynamic gene co-expression
network and the candidate genes that were associated with sugarcane smut resistance by
using a weighted gene co-expression network analysis (WGCNA) coupled with a bulked
segregant RNA-seq (BSR-Seq). miRNA-seq analyses of smut-infected sugarcane have
revealed that an array of metabolism- and signaling-associated genes are differentially
regulated by miRNAs. Among them, the targets of miR5671, miR6478, miR5783, miR5054,
and miR5221 play an essential role in phytohormone signal transduction, plant–pathogen
interactions, and mitogen-activated protein kinase (MAPK) activity. Recently, 309 tar-
get genes were found to correspond to 337 degradation sites, 112 novel miRNAs, and
97 known miRNAs, implying that miRNAs directly cleave to multiple sites within the
target genes [39]. Further analyses have revealed that the targeted genes participated in
glycerol metabolism, energy production and transformation, post-translational modifica-
tion, translation, defense, inorganic ion transport and metabolism, and signal transduction.
In addition, many miRNA-mediated resistance-related target genes have been found to
be enriched in sugarcane, suggesting that miRNA-mediated genetic regulation may be an
important aspect of the sugarcane response to the challenge from S. scitamineum [40].

The globally distributed sugarcane red stripe disease is caused by the bacterial
pathogen Acidovorax avenae subsp. Avenae (Aaa). However, the molecular mechanism
underlying sugarcane resistance to this pathogen is poorly understood. Transcriptomic
analyses have identified 467 DEGs in drought-stressed and Aaa-infected sugarcane. A
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses
of these DEGs revealed that they were involved in amino acid metabolism, carbohydrate
metabolism, protein translation, transcription, secondary metabolite biosynthesis, and the
stress response. Aaa infection has been found to promote gene expression related to ET-
and jasmonic acid (JA)-responsive pattern recognition receptor (PRR)-biosynthesis, cell
wall fortification, NBS-LRRs, oxidative burst, and pathogenesis [41]. A recent transcrip-
tomic analysis was conducted on both Aaa-resistant (‘ROC22′) and -susceptible (‘MY11-610)
sugarcane varieties. Seventy-two hours post inoculation, 15,782 DEGs were detected in the
susceptible variety and 18,689 DEGs were detected in the resistant variety. These DEGs
were primarily related to plant–pathogen interactions, phenylpropionic acid biosynthesis,
carbon metabolism, phytohormone signal transduction, and photosynthesis [23].

Sugarcane pokkah boeng disease is caused by the fungus Fusarium verticillioides and,
like red stripe disease, the molecular mechanism underlying sugarcane resistance to this
pathogen is not well understood. Transcriptomic analyses of the resistant sugarcane va-
riety ‘YT94/128′ and the susceptible variety ‘GT37′ before and after inoculation with
F. verticillioides revealed 9092 DEGs in the ‘YT 94/128′ and 9829 DEGs in the ‘GT37′.
These DEGs were primarily related to the extracellular environment, phenylpropionic acid
metabolism, and catalytic enzyme activity, including phosphotransferase, endopeptidase,
protein kinase, aldehyde dehydrogenase, oxidoreductase, cellular protease, hydrolase,
and peptidase. Further KEGG analysis revealed that these DEGs were related to phenyl-
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propionic acid biosynthesis and metabolism, wax biosynthesis, N metabolism, secondary
metabolite biosynthesis, and plant–pathogen interaction [24].

Sugarcane leaf scald disease is caused by the bacterium Xanthomonas albineans. Tran-
scriptomic analyses of the resistant sugarcane variety ‘LCP85-384′ and the susceptible
variety ‘ROC20′ detected 105,783 X. albineans-responsive DEGs primarily involved in
endoplasmic reticulum protein processing, spliceosome, glutathione metabolism, phyto-
hormone signal transduction, and plant–pathogen interaction. Furthermore, both the Aux
and ET signal transduction pathways were found to be central to the sugarcane response to
X. albineans infection [25]. Sorghum mosaic virus infection also imposes yield reductions
on sugarcane by regulating the expression of some key genes [42,43].

2.1.2. Plant Growth-Promoting Rhizobacteria

The plant growth-promoting rhizobacteria (PGPR) Burkholderia anthina ‘MYSP113′ is
a sugarcane root-associated diazotroph. Transcriptomic analyses of MYSP113-inoculated
sugarcane roots have identified several DEGs related to nitrogen metabolism and phyto-
hormone signal transduction, among other biological processes [44].

2.2. Transcriptomics of Sugarcane Response to Abiotic Stress
2.2.1. Nutrient Deficiency

Due to its extensive biomass production, sugarcane has a high requirement for potas-
sium (K). In China, low soil K has resulted in decreased sugarcane yields. Because of this,
the leading goal of southern Chinese breeders is to improve the tolerance of sugarcane to
low soil K. However, the molecular mechanism underlying sugarcane tolerance to low soil
K is not well studied. Transcriptomic analyses of K-deficient sugarcane have identified
4153 genes, with the number of K-deficient responsive genes at 72 h nearly double the
number at 8 h and 24 h after a low-K treatment. The primary genes were transcription
factors, transporters, kinases, oxidative stress-related genes, and genes in Ca+ and ethy-
lene signaling pathways [45], suggesting that they may play important roles in sugarcane
responses to K deficiency.

2.2.2. Aluminum Toxicity

High concentrations of aluminum (Al3+) ions can be quite toxic to sugarcane, par-
ticularly in acidic soil environments. A transcriptomic analysis of the Al-treated roots
of Al-sensitive (‘RB855453’) and Al-tolerant (‘CTC-2’) cultivars detected 1307 DEGs in
‘RB855453’ and 4858 DEGs in ‘CTC-2’, relative to the control plants. These DEGs were
grouped into 34 categories of functions, and most were downregulated in ‘RB855453’ and
upregulated in ‘CTC-2’. A functional analysis indicated that resistance to Al toxicity in
sugarcane may be due to the presence of efficient detoxification mechanisms, the activation
of redox enzymes, and lateral root formation [46]. In another study, both Al-tolerant and
Al-sensitive sugarcane varieties were screened for miRNAs after an Al treatment. A total
of 394 differentially expressed miRNAs (DEMiRs) were detected across both genotypes,
among which 87 were common to both genotypes, 116 were specific to the sensitive geno-
type, and 104 were specific to the tolerant genotype. The identified DEMiRs were found to
participate in root development, lateral root formation, and signaling [47].

2.2.3. Drought Stress

Water scarcity is one of the most severe limitations for sugarcane production glob-
ally. Recently, transcriptomic analyses were carried out on ‘GT21′ sugarcane subjected to
mild, moderate, and severe drought at the elongation stage. In all, 1501 DEGs were iden-
tified across all the treatments. Of these, 901 DEGs were classified into 36 GO categories and
325 DEGs were classified into 101 pathway categories, including ribosomes, carbon
metabolism, and secondary metabolite biosynthesis [48].

A recent RNA-Seq analysis found that drought-sensitive sugarcane varieties (‘RB855453’)
respond differently to a water deficit than drought-tolerant varieties (‘SP81-3250’). Specif-
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ically, the drought-sensitive genotype exhibited the highest differential gene expression
sooner (30 days) than the drought-tolerant genotype (90 days) after drought treatment.
These results imply that susceptible genotypes require more rapid response mechanisms
to effectively react to water deficit conditions [49]. In another experiment, the drought-
sensitive variety ‘Co 8021’ and the drought-tolerant variety ‘Co 06022’ were subjected
to mild, moderate, and severe drought and re-watering, and the leaves were subjected
to RNA-Seq. In the drought-tolerant variety, 2970 unigenes were identified after 2 days
of drought stress, 2109 unigenes identified after 6 days of drought stress, 2307 unigenes
were identified after 10 days of drought stress, and 1334 unigenes were identified 10 days
after re-watering. Fewer unigenes were identified in the drought-susceptible variety, with
2025 unigenes identified after 2 days of drought stress and 1552 unigenes identified after
6 days of drought stress. However, upon re-watering, more unigenes were identified in
the drought-susceptible variety, implying that drought-sensitive sugarcane may need to
upregulate a greater number of genes and processes in order to recover from drought stress.
The drought-tolerant variety was found to contain nearly twice as many DEGs between
the different stages as compared to the drought-susceptible variety. Across both varieties,
several genes which underlie important metabolic functions were found to be responsive
to a water deficit, as were many novel genes with unknown functions [50].

A similar experiment was performed using the drought-tolerant variety ‘KPS01-12’
and the drought-sensitive variety ‘UT12’, which were subjected to mild and moderate
drought stress. Compared to the drought-sensitive variety, more genes related to antioxi-
dant secondary metabolite biosynthesis, oxidative and osmotic stress response, and water
retention were upregulated in the drought-tolerant variety. In addition, more genes re-
lated to the Calvin cycle, carbon fixation, and photosynthesis were downregulated in the
drought-sensitive variety compared to the drought-tolerant variety. Taken together, these
results suggest that the drought-tolerant sugarcane varieties have a more effective drought
response mechanism than the drought-sensitive varieties [51].

Wild species and the relatives of sugarcane are important sources of biotic and abi-
otic stress resistance genes. Despite this, the genes associated with drought tolerance
are poorly understood in wild sugarcane species. To address this knowledge gap, a re-
cent study subjected Saccharum narenga to 22 days of drought stress in order to study the
drought-associated transcriptomic changes. A total of 3389 DEGs were detected in the
S. narenga leaves, many of which were involved in the response to blue light, metabolism,
and phytohormone signal transduction. Interestingly, the different subfamilies of ribo-
somal proteins and aquaporins exhibited differential regulation, with DIVARICATA and
heat stress-associated TFs being the first responders. In addition, several miRNAs were
predicted to be involved in the sugarcane response to a water deficit [52].

The polyploid S. spontaneum is the ancestor of modern sugarcane. A recent study
subjected S. spontaneum ‘GXS87-16’ to mild, moderate, and severe drought, and re-watering
at the elongation stage. RNA-Seq identified a total of 1569 DEGs, with the majority being
induced by the water deficit. GO and KEGG analyses assigned these DEGs to 47 GO
categories and 93 metabolic pathways associated with phytohormone signal transduction,
plant–pathogen interaction, RNA transport, and mRNA surveillance [53]. In another
study, three-month-old drought-tolerant (‘RB867515’) and drought-sensitive (‘RB855536’)
sugarcane plants were subjected to 2, 4, 6, or 8 days of drought stress in order to identify
the miRNAs involved in regulating the drought stress response. In total, 18 miRNA
families were identified, seven of which were differentially expressed during a drought. Six
miRNAs were found to be differentially expressed after 2 days of drought stress and five
were differentially expressed after 4 days of drought stress. Six precursors, as well as the
targets, of the DEMiRs were predicted [54]. Another miRNA analysis was also conducted
on the drought-resistant variety ‘ROC22’ treated with PEG to simulate a drought. A total
of 57 miRNA families were identified, among which 34 were unknown and 23 were known.
In addition, 438 target genes were predicted to be the targets of 44 miRNA families. Eleven
miRNA families were differentially expressed in response to PEG treatment, with many of
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the predicted targets associated with the plant stress response, including MYB, BCP, CPI,
NCBP, SPBP, LSG, and AGO1-like [55].

2.2.4. Extreme Temperatures

Because sugarcane is produced in tropical and sub-tropical climates, this crop is
considered particularly vulnerable to the increasing temperatures associated with climate
change. To identify the heat-responsive genes, a transcriptomic analysis was performed
on the sugarcane variety ‘Co 99004’, subjected to high temperatures (47 ◦C), resulting in
the detection of 1137 genes which were upregulated. Specifically, phytepsin, stress protein
DDR-48, and ferredoxin-dependent glutamate synthase exhibited a three-fold higher expression
in the heat-stressed plants, relative to the control plants [56].

2.3. Transcriptomics of Sugarcane Response to Exogenous Phytohormone Application

A high sucrose content is the primary goal of sugarcane breeding. Unfortunately,
recent decades have seen little success in improving the sucrose content of sugarcane
through conventional breeding techniques. By mining the key genes regulating sucrose
accumulation, molecular breeding techniques are poised to break through the limitations
of conventional breeding.

Ethylene treatment is a proven way to increase sucrose in sugarcane. Transcriptomic
analyses of low-, medium-, and high-sugar varieties of sugarcane identified approximately
25,000 ethylene-responsive DEGs. However, the genotype exhibited a more significant
effect on the number of differential expressed genes than ethylene exposure. Notably, the
genes involved in sucrose and starch metabolism were more sensitive to ethylene exposure
in the low-sugar varieties. The phytohormone ET induces alterations in gene expression
patterns related to epigenetic modification, phytohormone metabolism, stress-related TFs,
and carbohydrate metabolism. Furthermore, ET induces the expression of genes related to
ATPase, cell wall-binding invertase, cytoplasmic acid, and ET-responsive TFs more strongly
in the low-sugar varieties than in the high-sugar varieties. These results suggest that
ethylene treatment enhances the sink strength of the low-sugar varieties of sugarcane, thus
enhancing sucrose accumulation [57].

The phytohormone gibberellic acid (GA3) has been shown to increase sucrose accu-
mulation, sink strength, and internode length in sugarcane. A transcriptomic analysis
of the internodes of the high-sugar variety ‘CoLk94184’ treated with exogenous GA3
identified a total of 201,184 transcripts. Specifically, 1516 differentially expressed tran-
scripts (DETs) were identified in the bottom internodes and 1589 DETs were identified in
the top internodes. These DETs were grouped into 153 functional categories based on a
KEGG analysis. Of these, the DETs involved in starch and sucrose metabolism exhibited a
5.0 fold change (FC) in the top internodes and a 3.0 FC in the bottom internodes [58]. The
transcripts identified in this study could be used to provide insights into the factors/genes
affecting sucrose accumulation in sugarcane.

The formation of adventitious roots (ARs) on sugarcane microshoots is enhanced
by treatment with the Aux-type phytohormones 1-naphthalene acetic acid (NAA) and
indole-3-butyric acid (IBA). In a recent study, basal microshoot tissues (5 mm) were sub-
jected to NAA and IBA treatment, with water as the control. Transcriptomic analyses
identified 1737 and 1268 DEGs between the experimental and control tissues on the 3rd and
7th day of treatment, respectively. GO and KEGG analyses indicated that these DEGs were
related to cell wall modification, flavonoid and phenylpropanoid biosynthesis, cell cycle,
and phytohormone signaling. Furthermore, several TFs appear to be regulated by Aux-
mediated AR formation [59]. It appears that the phytohormones played a key role in the
transition of the shoot cells to root meristem and then to AR through cell wall modification
and synthesis, cell proliferation, root meristem identity preservation, and cell growth.



Int. J. Mol. Sci. 2023, 24, 8913 8 of 17

3. Role of Transcriptomics in Studies of Environmentally Stressed Sugarcane

Molecular analyses have identified a variety of genes (mainly involved in the biosyn-
thesis of secondary metabolites, ribosomes, and carbon metabolism) in sugarcane which
are responsive to stressful environmental conditions [48,60]. These studies utilized in
silico techniques, such as expressed sequenced tags (ESTs) and probe hybridization arrays,
to study the genes in sugarcane and allied crops. For example, the extensive Brazilian
sugarcane EST database contains approximately 238,000 ESTs from 26 cDNA libraries
covering a diverse array of tissues and plant varieties [61]. However, our current lack
of a comprehensive sugarcane genome continues to hinder transcriptomic studies of this
important crop [62]. Because of this, the Sorghum bicolor reference genome is often substi-
tuted in transcriptomic studies of sugarcane, due to the high genetic similarity between the
two crops [63,64].

Transcriptomic studies of stressed sugarcane plants can reveal the molecular mecha-
nisms underlying stress resistance and provide resources for genetic improvement. Such
studies have shown that a variety of TFs in plants, including zinc-finger, AP2/DREBP, bZIP,
MYB, and WRKY, are responsive to environmental stress [65]. Worldwide, a variety of
environmental stressors are responsible for decreased sugarcane production [4]. Transcrip-
tomic studies of stress-tolerant and -susceptible sugarcane varieties often make use of the
Illumina HiSeq 2500 and HiScanSQ systems [49]. The use of these, and other, systems has
revealed that several genes, including those encoding aquaporins, co-enzyme A ligases, E3
SUMO-Protein ligase SIZ2, MYB TFs, and ascorbate peroxidase 3 (APX3), are upregulated in
the stress-tolerant varieties [49,66,67].

The expression of ABA-sensitive genes is upregulated under drought and high tem-
peratures. da Silva et al. [47] reported similar observations in an HT-SuperSAGE study
of drought-tolerant and -sensitive sugarcane varieties. They identified 9.831 unitag genes
with differential regulation in both drought-sensitive and -tolerant varieties. Many of these
genes were related to the pentose phosphate pathway, carbohydrate metabolism, amino
acid transport, fatty acid biosynthesis, oxidative detoxification, protein degradation, root
growth, and ET stress [68]. In another experiment, wild type (WT) S. narenga was subjected
to drought stress. The authors identified 3389 upregulated and downregulated DEGs,
many of which were related to phytohormone signal transduction, blue light response, and
metabolism [52].

Several genes have been linked to stress alleviation in sugarcane, including thioredoxin-,
S-adenosylmethionine (SAM) decarboxylase-, cytochrome c oxidase-, and polyamine oxidase-
encoding genes [48,60]. Genes encoding delta-12 oleate desaturase, S-adenosylmethionine
decarboxylase, and protein phosphatases (PP2C) have been shown to be upregulated by both
drought stress and ABA. Furthermore, the ET-responsive factor SodERF3 has been found to
be upregulated by drought and ABA in sugarcane. Differential gene expression patterns
are indicators of complex defense mechanisms which aid in defending cells from drought-
induced damage [48,69]. High-throughput microarrays are well suited for DEG analyses,
as they allow several genes to be evaluated simultaneously. One recent study identified
15,593 expressed genes in sugarcane, with 1501 of these exhibiting differential expression
under stressful conditions [51]. Such results are often subjected to functional annotation to
determine the biological processes and pathways associated with DEGs [45].

A DEG survey was recently conducted in cold-stressed S. spontaneum, resulting in
the identification of 5840 cold-responsive genes, including 3302 downregulated genes and
2538 upregulated genes [70]. Other studies have sought to evaluate transcriptomic changes
in sugarcane exposed to low-K and low-N conditions [45,71] and to cold stress [72]. Studies
have additionally sought to identify the proteins associated with cold tolerance by studying
the expression of cold-responsive genes. For example, one EST encoding a putative xanthine
dehydrogenase (XDH) [73] was found to be upregulated in sugarcane exposed to freezing
temperatures [74,75]. In another study, 165 DEGs were associated with 3575 ESTs in stress-
tolerant sugarcane plants [76]. The ESTs were clustered according to the species from



Int. J. Mol. Sci. 2023, 24, 8913 9 of 17

which they were derived: two small groups representing Saccharum arundinaceum and
S. officinarum, and one large group representing Saccharum spp. hybrids.

Transcriptomic studies of sugarcane have utilized advanced molecular techniques,
such as microscopy, qPCR, RNA-Seq, Solexa, Illumina, Roche, and 454 sequencing, and
cDNA microarrays [19,77]. Analyses of the agronomically relevant structural and functional
changes associated with gene expression are crucial for crop improvement. Transcriptomics
can be used to corroborate and explain gene expression patterns [78]. Normal sugarcane
growth and development requires dynamic expression changes in the genes related to gas
exchange, leaf maturation, leaf abscission, and cellulose and lignin biosynthesis [6,79–81].
To aid sugarcane crop improvement, current and future transcriptomic studies should focus
on environmental stress avoidance and sucrose accumulation.

4. Sugarcane Proteomic Analysis

The proteome includes all the proteins expressed in a particular cell or tissue. Pro-
teomics is a feature of post-genomic science [82] and proteomic techniques can explain how
genes are regulated, identify key factors or life processes, and quantify protein expression.
In sugarcane, proteomics can aid in identifying and characterizing the proteins associated
with the stress response. Such studies have identified several biological processes associ-
ated with the stress response in sugarcane, including TFs, chromatin remodeling, RNA
processing, cell wall metabolism, photosynthesis, and ion transport (Figure 4).
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4.1. Proteomic Analyses of Sugarcane Subjected to Biotic and Abiotic Stressors
4.1.1. Sugarcane Diseases

One recent proteomic study of the meristematic tissue from a smut-susceptible sugar-
cane variety infected with S. scitamineum at the whip emergence stage identified
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53 differentially expressed proteins (DEPs). These DEPs were related to cell division,
protein folding, stress, metabolism, and defense. In addition, the putative effector cho-
rismate mutase was identified in S. scitamineum. Interestingly, both the expression and
activity of phenylalanine ammonia-lyase were increased in the smut-infected meristematic
tissue [18]. In another proteomic analysis of S. scitamineum-infected sugarcane, 341 DEPs
were identified in the smut-susceptible variety ‘ROC22’ and 273 DEPs were identified in
the smut-resistant variety ‘Yacheng05-179’. However, the proteomic results were poorly
correlated with the transcriptomic results (0.2466 and 0.1502, respectively), suggesting
that post-translational events may be important mediators of the relationship between
sugarcane and S. scitamineum. Many of the DEPS were linked with smut resistance, in-
cluding heat shock proteins, lectins, pathogenic associated protein 1 (PR1), peroxidase,
β-1,3-glucanase, and endo-1,4-β-xylanase. In addition, the ET and GA3 pathways, phenyl-
propionic acid metabolism, and several pathogen-related proteins (PR5, PR2, PR1, and
PR14) were upregulated in the smut-resistant variety ‘Yacheng05-179′. Interestingly, the
ABA, reactive oxygen species, nitric oxide, and calcium signaling pathways were down-
regulated by a S. scitamineum infection in ‘Yacheng05-179’, suggesting that these pathways
may be less important for defense [83].

In a more recent study, 2D-PAGE was used to survey DEPs in smut-susceptible
(‘NCo310’) and smut-resistant (‘F134’) sugarcane varieties before and after S. scitamineum
inoculation. A total of 30 DEPs were detected, including 16 from ‘F134’ and 14 from
‘NCo310’. Four DEPs were upregulated and nine downregulated in ‘F134’, while nine DEPs
were upregulated and three downregulated in ‘NCo310′. These DEPs were associated
with the plasma membrane, nucleus, chloroplast, protein renaturation, stress response,
photorespiration, metabolism, defense, and DNA binding [84], which was similar to the
other proteomic report by Que et al. [85].

The proteomes of the red stripe-resistant variety ‘LCP85-384’ and -susceptible variety
‘ROC20’ were evaluated before and after X. albineans inoculation. In total, 4295 DEPs related
to 1099 GO classifications were detected. Among these, 285 DEPs were detected in both
‘LCP85-384’ and ‘ROC20’, 172 DEPs were detected in the resistant variety ‘LCP 85-384’, and
192 DEPs were detected in the susceptible variety ‘ROC20’. Many of the DEPs significantly
upregulated in ‘LCP85-384’ were found to be related to phenylpropionic acid biosynthesis,
secondary metabolite biosynthesis, and other metabolic pathways [86].

4.1.2. Drought and Salt Stress

A recent proteomic analysis of sugarcane stems subjected to drought stress identified
5381 protein groups and 1204 drought-responsive DEPs. Among these, 586 DEPs were
upregulated and 618 were downregulated. In addition, 115 specific proteins were identified,
including 41 from the experimental plants and 74 from the control plants, the majority of
which were associated with cell wall metabolism. Thirty-seven drought-responsive TFs
were also detected, including Aux-responsive, heat shock, C3H, Myb-related, C2H2, LIM,
NAC, and bZIP. These results suggest that an imbalance between protein degradation and
protein synthesis was induced by the water deficit [87].

Sugarcane is particularly vulnerable to salt stress and, at present, no sugarcane variety
exhibits high salt tolerance. One study surveyed the proteomes of micropropagated shoots
of salt-stressed ‘CB38-22’ and ‘RB855536’ sugarcane. Overall, ‘CB38-22’ was found to be
less salt tolerant than ‘RB855536’. Compared to ‘CB38-22’, the proteins related to photosyn-
thesis, non-enzymatic antioxidants, and ion transport were upregulated in ‘RB855536’. In
addition, several proteins were more abundant in the salt-stressed ‘RB855536’, including
phospholipase D, glyceraldehyde-3-phosphate dehydrogenase, calcium-dependent protein
kinase, and photosystem I [88].

Another proteomics analysis was carried out on two genotypes with contrasting tol-
erance to saline soil. Compared to the sensitive genotype, the tolerant genotype showed
a 3-fold increase in GDSL-motif lipases and lipid metabolizing enzymes related to the
abiotic stress defense. In addition, the abundance of lipoxygenase and Type III chlorophyll
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a/b-binding proteins were increased 2-fold in the tolerant genotype relative to the suscep-
tible genotype. Furthermore, the key C4-photosynthesis enzyme phosphoenolpyruvate
carboxylase, and other chloroplast enzymes, was downregulated in the sensitive genotype.
Interestingly, neither variety experienced sodium (Na) toxicity under high salt conditions,
suggesting that these proteins may improve osmotic adjustment mechanisms [89].

4.1.3. Ethylene Treatment

Recent decades have seen little improvement in sucrose accumulation in sugarcane,
and ethylene treatment can regulate sucrose metabolism in sugarcane. A recent proteomic
study identified 2983 proteins in low- and high-sugar sugarcane varieties treated with ethy-
lene, including 139 DEPs, many of which were associated with carbohydrate metabolism.
Among these, 25 DEPs were found to regulate sucrose accumulation, including the proteins
involved in carbon fixation; fructokinase, α-glucan phosphorylase, and β-D-glucosidase,
related to starch and sucrose metabolism; and UDP-glucose 6-dehydrogenase, related to
amino sugar and nucleotide sugar metabolism [90].

4.1.4. Putrescine Treatment

A proteomic analysis of putrescine-treated and untreated sugarcane identified several
somatic embryogenesis-related DEPs which are related to stress resistance, including
14-3-3 proteins, late embryogenesis abundant proteins, glutathione S-transferases, heat
shock proteins, peroxidases, and arabinogalactan proteins [91].

5. Role of Proteomics in Studies of Environmentally Stressed Sugarcane

Both proteomic and transcriptomic studies help to illuminate complicated biological
mechanisms [92,93]. While the genome is “static”, the proteome responds dynamically to
changing internal and external conditions through post-translational modifications, such
as acetylation, methylation, phosphorylation, and glycosylation, as well as other mecha-
nisms [93]. Thus, to comprehensively characterize biological phenomena, protein expres-
sion must be quantified, proteins must be functionally evaluated, and post-translational
derivates must be identified. Several protein quantification and isolation techniques,
such as matrix-assisted laser desorption/ionization-time of flight-mass spectrometry–two-
dimensional electrophoresis, have been used to study differential protein expression in
sugarcane [93]. iTRAQ is also a powerful quantitative proteomic technique [94]. In addition,
many sugarcane studies have used both gel-free and gel-based methods.

Environmental stress directly and indirectly alters the metabolic, morphological, and
physiological state of sugarcane [93]. Abiotic stress is considered multidimensional in that
it interacts with multiple cellular and metabolic processes, resulting in a loss of produc-
tivity [95]. The balance between protein synthesis and degradation has a significant effect
on stress resilience, as shown in several proteomics studies of stress-tolerant sugarcane
varieties. Liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-IT-
MS/MS/MS) coupled with 2-DE was utilized to detect proteins related to photosynthesis
and antioxidation [96]. In another study utilizing liquid chromatography-mass spectrome-
try (LC-MS/MS) coupled with 2-DE, several drought-responsive proteins were identified in
both the tolerant and sensitive sugarcane varieties [95]. In another study utilizing MS/2-DE
methods, several proteins were found to be differentially expressed in salt-stressed sugar-
cane, such as heat shock proteins, glyceraldehyde 3-phosphate dehydrogenase, germin-like
protein, and fructose 1,6-bisphosphate aldolase [97]. Heat shock proteins (HSPs) are well
known to mitigate environmental stress in plants [98].

While proteomic techniques have been used to study the tissue- and growth stage-
specific protein profiles of sugarcane, a more comprehensive evaluation of the sugarcane
proteome over the entire developmental process is needed. In comparison to mature tissue,
young sugarcane leaves and stems have been found to exhibit high rates of lipid metabolism
and to be enriched in 277 cell wall proteins (CWPs). A more comprehensive proteomic
evaluation of sugarcane across all the developmental stages will aid in the development
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of genetically modified sugarcane varieties through the use of gene transformation and
molecular breeding techniques [99,100].

6. Conclusions and Perspectives

Sugarcane productivity is both indirectly and directly affected by climatic conditions.
It is therefore a central goal of both agro-scientists and policymakers to alleviate the harm-
ful effects of stressful environmental conditions on sugarcane and to improve sugarcane
productivity. Such an undertaking will require a multidisciplinary approach to consistently
develop new sugarcane varieties through traditional and molecular breeding techniques
(Figure 5). Advanced transcriptomic and proteomic techniques will be necessary to under-
stand how various stresses affect sugarcane’s molecular mechanism and production and to
fill in the existing research gaps. For breeders, uncovering the physiological mechanism
and trying to link the molecular mechanism with the physiological one is essential for
crop improvement.
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