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Abstract: Luteolin (3′,4′,5,7-tetrahydroxyflavone), a member of the flavonoid family derived from
plants and fruits, shows a wide range of biomedical applications. In fact, due to its anti-inflammatory,
antioxidant and immunomodulatory activities, Asian medicine has been using luteolin for centuries
to treat several human diseases, including arthritis, rheumatism, hypertension, neurodegenerative
disorders and various infections. Of note, luteolin displays many anti-cancer/anti-metastatic prop-
erties. Thus, the purpose of this review consists in highlighting the relevant mechanisms by which
luteolin inhibits tumor progression in metastasis, i.e., affecting epithelial-mesenchymal transition
(EMT), repressing angiogenesis and lysis of extracellular matrix (ECM), as well as inducing apoptosis.

Keywords: phytochemicals; flavonoids; metastasis prevention; signaling pathways

1. Introduction

Cancer is a complex disease, representing the second leading cause of death in the
world [1]. In fact, despite the advances in diagnostic and therapeutic protocols—which
include surgery, radiotherapy and chemotherapy, as well as target and gene therapy—the
survival rate for patients suffering of cancer remains very poor [2–6]. Probably, the real
problem of high cancer mortality is its relapse after months to years, through the occurrence
of metastases, an event that consists in the spread of cancer cells from a primary lesion
to distant sites [7–9]. Currently available cancer/metastatic treatments often induce high
toxicity and are associated with several types of adverse events, which are frequently
unpredictable and unexplained [10–15]. Thus, finding novel and more efficacious strategies
to treat cancer and prevent metastasis is strongly encouraged [8,16–19]. Because of their
low toxicity, and due to their ability to target multiple cell signalings, current therapeutic
compounds for cancer include phytochemicals [20,21].

Luteolin is one of the most widespread food-derived flavonoids showing preventive
and therapeutic effects against several cancer types [22–24]. The main purpose of this review
is to summarize the most relevant knowledge about the antimetastatic properties of luteolin,
emphasizing its interference with key events underlying tumor progression and expansion,
namely (i) epithelial-to-mesenchymal transition (EMT), (ii) angiogenesis, (iii) degradation
of the extracellular matrix (ECM) and iv) induction of apoptosis (Figure 1). In detail, we
report and discuss the most relevant findings from in vitro and in vivo studies (including
animal models) that describe the effects of luteolin at both the cellular and molecular level,
focusing on major signaling pathways involved in tumor metastasis (Table 1).
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Figure 1. Schematic diagram showing the main molecular targets of luteolin during the initial steps 
of the metastatic cascade. The flavone interferes with the epithelial-mesenchymal transition (EMT) 
by inhibiting the expression of N-cadherin, vimentin and several molecular regulators of mesenchy-
mal cell phenotype (e.g., miRNs, HIF-1/VEGF axis, etc.), whereas it enhances the epithelial features. 
Luteolin exerts anti-angiogenic effects, mainly by blocking the VEGF/VEGFRs signaling pathway 
and by inhibiting MMPs. Moreover, this compound hampers cell invasiveness by slowing down the 
extracellular matrix (ECM) degradation through the blockade of MMPs activation and a set of re-
lated intracellular pathways. Luteolin induces apoptosis (both the intrinsic and extrinsic routes) by 
acting on the expression and activities of correlated effectors. 
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esis of specific miRs, inhi-
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tion and VEGF/Notch sig-

naling pathway [30]. 
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pression and activation of 

AKT/mTOR signaling 
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Reduction of telomerase 
expression by targeting 
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of cMet/Akt/ERK signal-
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PI3K/MAPK signaling 
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Figure 1. Schematic diagram showing the main molecular targets of luteolin during the initial steps
of the metastatic cascade. The flavone interferes with the epithelial-mesenchymal transition (EMT) by
inhibiting the expression of N-cadherin, vimentin and several molecular regulators of mesenchymal
cell phenotype (e.g., miRNs, HIF-1/VEGF axis, etc.), whereas it enhances the epithelial features.
Luteolin exerts anti-angiogenic effects, mainly by blocking the VEGF/VEGFRs signaling pathway
and by inhibiting MMPs. Moreover, this compound hampers cell invasiveness by slowing down the
extracellular matrix (ECM) degradation through the blockade of MMPs activation and a set of related
intracellular pathways. Luteolin induces apoptosis (both the intrinsic and extrinsic routes) by acting
on the expression and activities of correlated effectors.

Table 1. Molecular effects of luteolin in different cancer types.

Tumor Entity EMT Angiogenesis ECM Degradation Apoptosis

Breast Cancer

Reversal of EMT by
suppressing β-catenin
signaling; inhibition of

cancer cell invasion
and metastatic
potential [25].

Inhibition of the
pro-invasive

Ras/Raf/MEK/ERK
signaling; increase of

miR-203
expression [26].

Increase of E-cadherin
expression and

reduction of protein
levels of fibronectin,

N-cadherin and
vimentin; decrease of

transcriptional activity
of YAP/TAZ [27].

Blockade of VEGF
secretion within breast
cancer cells responsive
to natural and synthetic

progestins, both
in vitro and in a

xenograft model [28].
Repression of VEGF

secretion by TNBC cells
and suppression of

their metastatic
potential in vitro and

in vivo [29].
Repression of Notch

signaling and its
downstream targets

Notch-1, Hes-1, VEGF
and gelatinases by

regulating the level of
oncogenic miRs [30].

Modulation of the
biogenesis of specific

miRs, inhibition of
gelatinases secretion

and VEGF/Notch
signaling pathway [30].

Epigenetically
downregulation of

gelatinases expression
and activation of

AKT/mTOR signaling
pathway [31].

Reduction of
telomerase expression

by targeting
NF-κB/c-Myc; increase
of Bax/Bcl-2 ratio and

caspase-3 [32].
By modulating miR-21

and miR-16,
upregulation of
Bax/Bcl-2 ratio;

triggering of both the
intrinsic and the

extrinsic pathways of
apoptosis [33].
Repression of

PI3K/Akt pathway;
induction of FOXO3a

expression and increase
of p21 and p27;

induction of PARP
cleavage and release of

cytochrome c [34].
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Table 1. Cont.

Tumor Entity EMT Angiogenesis ECM Degradation Apoptosis

Gastric Carcinoma

Reversal of EMT by
inhibiting

Akt/β-catenin and
Notch signaling
pathways [35].

Decreased migration
and invasion by

regulating Notch1/
PI3K/ AKT/

mTOR/ERK/STAT3
and P38 signaling

pathways; regulation of
several oncogenic miRs
expression in vitro and

in vivo [36].

Suppression of VEGF
secretion by acting on

Notch1 expression and
inhibition of the

formation of tube-like
structures of HUVECs
seeded in a Matrigel

layer [37].

, Reduction of
gelatinases expression

via inhibition of
cMet/Akt/ERK
signaling [38].

Suppression of
PI3K/MAPK signaling

with increase of
Bax/Bcl-2 ratio and

cytochrome c
release [39].

Decrease of Bcl-2
expression through

upregulation of
miR-34a [40].

Lung Cancer

Reversal of TGF-β1
induced-EMT by

slowing down the
activation of

PI3K/Akt/IκBa/NF-
κB/Snail pathway [41].

Inhibition of
hypoxia-induced EMT
by blocking integrin β1

expression and
FAK-signaling
pathway [42].

Repression of VEGF
and gelatinases by

upregulating
miR-133a-p69, and by

regulating
MAPK/PI3K/Akt

signaling
pathways [43].

Downregulation of the
pro-metastatic markers

CXCR4, gelatinases
in vitro and
in vivo [44].

Induction of ROS
accumulation via

suppression of SOD
activity; suppression of

NF-kB potentiating
JNK to sensitize cancer

cells to TNF [45].
Upregulation of
miR-34a-5p via

targeting MDM4
oncogene, increase of

p53 and p21expression;
increase of Bax/Bcl-2

ratio, followed by
activation of caspase-3

and -9 [46].

Pancreatic cancer

Deactivation of STAT3
signaling with

consequent reversal of
Il-6-induced EMT [47].

Decrease of VEGF
secretion and VEGF

mRNA expression via
NF-κB inhibition [48].

-

Attenuation of EGFR
signaling pathway and

induction of PARP
degradation followed

by DNA
fragmentation [49].

Melanoma

Upregulation of E-
cadherin/N-cadherin

ratio through inhibition
of HIF-1α/VEGF

axis [50].
Enhancement of

E-cadherin expression
via inhibition of β3
integrin/FAK signal
pathway in vitro and

in vivo [51].

Inhibition of different
pathways of tumor
neovascularization,

including angiogenesis,
vasculogenesis and

vasculogenic mimicry,
by suppressing

PI3K/AKT signaling
pathway [52].

Downregulation of the
pro-metastatic markers,

gelatinases and
CXCR4 [53].

-

Choroidal melanoma -

Reduction of VEGF
secretion, in a
concentration-

dependent manner,
followed by induction

of cell death [54].

Decrease of gelatinase
secretion in vitro via

inhibition of PI3K/Akt
signaling pathway [55].

Increase of Bax/Bcl-2
ratio [52].
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Table 1. Cont.

Tumor Entity EMT Angiogenesis ECM Degradation Apoptosis

Prostate Cancer -

Inhibition of
VEGFR2/AKT/ERK/

mTOR/P70S6K
signaling pathway and
of neovascularization

in ex vivo chicken
chorioallantoic

membrane (CAM)
assay, and in a Matrigel
plug assay, as well as in
a xenograft model [56].

-

Downregulation of
miR-301 that promotes

the expression of
pro-death

DNA-binding effector
domain-containing

protein 2 (DEDD2) [57].

Haemangioma -

Suppression of VEGF-A
expression with
consequential
inhibition of

microvessel density
and vasculogenesis

in vivo targeting FZD6
signaling pathway [58].

- -

Glioblastoma - -

Inactivation of the
p-IGF-

1R/PI3K/AKT/mTOR
signaling pathway and

alteration of the
gelatinase/TIMPs

ratio [59].

Stimulation of PARP
cleavage, DNA

degradation and
caspases

activation [60].

Colon cancer - - -

Activation of
antioxidant enzymes
and MAPK signaling;
by unbalancing ROS,

acting on cytochrome c
release and caspase-9
and -3 activation [61].
Activation of caspases

3, 7, 9 and PARP
cleavage;

downregulation of p21,
survivin, Mcl-1,

Bcl-x(L) and
Mdm-2 [62].

By involving Wnt/β-
catenin/GSK-3β

signaling, increase of
Bax/Bcl-2 ratio and

activation of
caspase-3 [63].

Colorectal Cancer - -

Inactivation of
gelatinases by

suppressing Raf/PI3K
signaling

pathways [64].
Downregulation of

MMP-2, -9, -3 and -16
expression coupled

with an enhancement
of miR-384 biogenesis
and with suppression

of PTN [65].

-
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Table 1. Cont.

Tumor Entity EMT Angiogenesis ECM Degradation Apoptosis

Cholangiocarcinoma - - -

Inhibition of Nrf2 with
consequent

downregulation of the
antioxidant genes
γ-glutamylcysteine

ligase and heme
oxygenase-1, and

increase of
mitochondrial

membrane potential
dissipation and

caspases -3 and 9
activation [61].

Cervical cancer - - -

Disruption of
pro-apoptotic/anti-

apoptotic genes
equilibrium interfering

with the RAS-
RAF/MAPK/AKT/

PI3K signaling
pathway; triggering

collapse of the
mitochondrial

membrane and DNA
fragmentation [33].

Leukemia - - -

Induction of histone H3
hyper-acetylation by
activating the ERK
/JNKs pathways;

increase of Fas and
FasL expression
culminating in
caspases-8/-3
activation [66].

2. Luteolin

Luteolin is a flavonoid belonging to the flavone family; it is isolated from several
vegetables and edible herbs, including radicchio, broccoli, raw brussels sprouts, onion
leaves, parsley, carrots, peppers and rosemary, where it can occur either as aglycone or
bound to one or several carbohydrates as glycoside [67] (Figure 2).

Luteolin is extracted as a yellow crystalline compound and its chemical structure
presents a classic flavone C6-C3-C6 skeleton, consisting in two benzene rings with 4 hy-
droxyl groups located at positions 3, 4, 5 and 7, and one oxygen-containing ring which
presents a C2-C3 double bond [67]. All these functional groups account for the biologi-
cal/biochemical properties of luteolin, some of them being specifically involved in main-
taining redox balance in various pathological processes [68,69] (Figure 3).
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involved in oxido-reductive properties are marked in red.

In fact, preclinical studies ascribed to luteolin several pharmacological properties,
including anti-inflammatory, neuroprotective, antimicrobial/antiviral, cardioprotective,
antidiabetic and pro-/antioxidant effects [70]. Interestingly, since this flavone can interact
with various signaling pathways, experimental evidence attributes to luteolin important
chemopreventive effects, indicating its ability to interfere with almost all cellular processes
underlying cancer development, including metastasis formation [23,24,71]. The available
data related to the pharmacokinetics of the free or glycosylated forms of luteolin derive
mainly from studies on rat models [72–74]. Despite the numerous beneficial effects already
mentioned, studies on absorption, metabolism and bioavailability of luteolin in humans
are very difficult, partly due to its hydrophobicity, which affects bioavailability and limits
the yields of the bioactive flavonoid [70].

3. Luteolin Affects the Epithelial-Mesenchymal Transition

EMT is the differentiation process of epithelial cells toward mesenchymal ones; sev-
eral events are observed during this process, including a disorganization of epithelial cell
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polarity, the dissolution of cellular junctions, as well as a reorganization of the cytoskele-
ton [75–77]. Thus, EMT involves the downregulation of epithelial markers expression, such
as E-cadherin, claudins, zonula occludens-1 (ZO-1), and the acquisition of many facets
of the mesenchymal cells, including the expression of N-cadherin and vimentin, coupled
with a high propensity to cell motility, invasiveness, and resistance to anoikis [76–78]. Sev-
eral signaling pathways have been identified in EMT induction, such as the transforming
growth factor-beta (TGF-β), Notch, Wnt/β-catenin, as well as the Hippo-YAP/TAZ path-
ways [79,80]. Moreover, several transcription factors (and their target genes) promote EMT,
including Snail1/2, Twist1/2, ZEB1/2 and hypoxia-inducible factors 1/2 (HIF1/2) [81].
Physiologically, EMT occurs during embryonic development and in tissue remodeling.
In cancer, this process assumes a crucial role in promoting metastasis [76,77]. There-
fore, blocking or reversing EMT may represent an attractive approach to prevent cancer
spreading [77].

As aforementioned, luteolin inhibits or prevents cell invasion and metastasis in several
cancer types, due to a modulation of EMT [82]. In this regard, both in vitro and in vivo
studies demonstrated that treatment of highly metastatic triple-negative breast cancer
(TNBC) with luteolin reduced β-catenin expression and downregulated mesenchymal
markers, such as N-cadherin, vimentin, Snail and Slug [25]. Moreover, cancer cells regained
their epithelial features by overexpressing cell-cell junctional proteins, such as E-cadherin
and claudins [25].

MicroRNAs (miRs) are small, endogenous, noncoding RNAs that can post-
transcriptionally regulate gene expression and play an important role in maintaining
normal cellular functions [83]. On the other hand, growing evidence shows that some miRs
participate in the initiation and progression of cancer, taking part in the EMT process [84,85].
Luteolin was able to reverse EMT in breast cancer cells (MDA-MB-453 and MCF-7) by
overexpressing miR-230, which, in turn, inhibited the Ras/Raf/MEK/ERK signaling path-
way, known as a marker of cancer invasiveness [26]. Furthermore, luteolin administration
significantly inhibited gastric carcinoma (GC) upregulating miR-139, miR-34a, miR-422a,
miR-107 levels, while suppressing the oncogenic expression of miR-21, miR-155, miR-
224, miR-340 [36]. Regulation of this panel of miRs was accompanied by reduced cell
proliferation, cell cycle arrest, and induction of apoptosis [36]. In a different study, the
flavonoid inhibited the oncogenic properties of YAP/TAZ in highly metastatic breast cancer,
both in vitro and in xenograft models [27]. Moreover, Zang et al. demonstrated that, by
interfering with Notch1 and Akt/β-catenin signaling in GC, luteolin reversed the EMT
process and, consequently, inhibited tumor progression and invasion, both in vitro and
in vivo [35]. By using cultures of human lung adenocarcinoma cells (A549), Chen et al.
showed that luteolin inhibited cell proliferation and migration through an attenuation of
TGF-β1-induced EMT, by activating the PI3K/Akt–NF-κB–Snail signaling pathway [41].
Furthermore, luteolin (in a time- and dose-dependent manner) reversed IL-6-induced EMT
acting on STAT3 signaling and, consequently, reduced the invasiveness of cancer cells by
inhibiting the release of metalloproteases (MMPs) in in vitro models of human pancreatic
cancer (i.e., Panc-1 and SW1990 cells) [47].

As abovementioned, HIF-1 and HIF-2 are implicated in cancer-associated EMT [81].
Based on these premises, Li et al. observed that luteolin, by inhibiting the HIF-1α/VEGF
signaling pathway, decreased the expression of N-cadherin and vimentin mesenchymal
markers, while augmenting the level of epithelial cadherin isoform in human and murine
melanoma cells (i.e., A375 and B16-F10 cell lines, respectively) [50]. The inversion of
hypoxia-induced EMT was also observed in a murine melanoma model, where luteolin in-
hibited lung metastasis formation by stopping the β3 integrin/FAK signaling pathway [51].
Similarly, luteolin prevented hypoxia-induced EMT of human non-small cell lung carci-
noma cells (NSCLC; A549 and NCI-H1975 cell lines), as evidenced by a downregulation
of mesenchymal specific markers, such as vimentin and N-cadherin; contextually, lute-
olin treatment repressed cancer cell motility and adhesion, interfering with integrin β1
expression and with the FAK-signaling pathway [42].
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The ability of luteolin to reverse EMT in cancer cells is often enhanced by adding
other flavonoids, such as quercetin [86,87]. Indeed, a mixture of luteolin and quercetin
was able to attenuate (in a time- and dose-dependent manner) EMT-correlated events,
migration and invasiveness of human squamous carcinoma, both in vivo and in vitro,
by suppressing the Src/Stat3/S100A signaling pathway [86]. Similarly, the addition of
luteolin to quercetin inhibited metastasis of skin squamous carcinoma by blocking the
Akt/mTOR/c-Myc signaling pathway to suppress RPS19-activated EMT signaling [87].

In summary, luteolin appears capable to block or reverse EMT by acting on multiple
molecular targets, hindering the first steps of cancer spreading (Figure 4).
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4. Luteolin Suppresses Angiogenesis

Angiogenesis is the process by which new blood vessels form, starting from pre-
existing vasculature; this event depends on pro-angiogenic mediators, such as vascular
endothelial growth factor (VEGF), basic-fibroblast growth factor (bFGF), metalloproteases,
etc., and on negative regulators of angiogenesis, including thrombospondin and endo-
statin [88]. Angiogenesis plays a crucial role during a variety of physiological processes,
such as wound healing, embryonic development and pregnancy [88]. On the other hand,
neovascularization is a key event for pathological processes, such as tumor progression,
invasion and metastatic cascade [89]. This last aspect is pharmacologically relevant: in fact,
many authorized cancer therapies are directed against the tumor-associated vessels [89–92].

Several investigations demonstrate that various flavonoids—including luteolin—act
as negative regulators of VEGF and other pro-angiogenic factors [93–95]. For instance,
Cai and co-workers demonstrated that luteolin decreased VEGF secretion and VEGF
mRNA expression in pancreatic carcinoma cells (PANC-1, CoLo-357 and BxPC-3 cell
lines), via inhibition of the NF-κB transcriptional factor activity [48]. Furthermore, treating
human choroidal melanoma cells (C918 and OCM-1) with luteolin not only inhibited VEGF
expression, but also increased cancer cell death [54]. Additionally, an in vitro study on
breast cancer showed that luteolin, by interfering with Notch1 expression, inhibited VEGF
secretion from tumor cells, decreased endothelial cell migration, proliferation, and their
propension to form tube-like structures on a Matrigel layer [37]. Cook and co-coworkers
demonstrated the ability of luteolin to block the production of VEGF in human breast
cancer cells (T47-D and BT-474) responsive to (natural and synthetic) progestins, both
in vitro and in a xenograft model [28]. In a similar study, the authors showed that luteolin
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(in a dose- and time-dependent fashion) significantly reduced VEGF secretion in human
TNBC cells (i.e., MDA- MB-435 and highly aggressive MDA-MB-231 (4175) LM2), coupled
with a significantly decreased cell viability and reduced migration and invasion in vitro; at
the same time, the authors showed that the flavonoid inhibited lung metastasis formation
in a dedicated xenograft model [29].

The anti-proliferative/anti-mitotic effect on endothelial cells was also tested in infantile
haemangioma in vitro and in vivo, by using haemangioma-derived stem cells (HemSC) [58].
In detail, the results of this study demonstrated that luteolin suppressed VEGF expression
and inhibited HemSC growth in a dose-dependent manner, and, at the same time, the
flavonoid inhibited both angiogenesis and vasculogenesis, in a murine model, by acting on
the frizzled6 (FZD6) signaling pathway [58]. In prostate cancer, luteolin strongly suppressed
neovascularization in different experimental settings by inhibiting the activation of VEGFR-
2/AKT/ERK/mTOR/P70S6K signaling pathways [56]. In fact, it abolished angiogenesis in
an ex vivo chicken chorioallantoic membrane (CAM) assay and in a Matrigel plug assay;
in addition, the flavone suppressed both vascularization and growth of the tumor in a
xenograft model [56]. Moreover, luteolin inhibited different pathways of vascularization
in an in vitro model of uveal melanoma, including angiogenesis, vasculogenesis and
vasculogenic mimicry, by suppressing the PI3K/AKT signaling pathway [52].

As previously cited, miRs have a role in cancer evolution, including angiogenesis [85].
In an experimental model of NSCLC, luteolin repressed the expression of the rich element
binding protein B (PURB) and crucial proangiogenic factors, including VEGF and MMP-2/-
9, by overexpressing the miR-133a-p69 and by regulating MAPK and PI3K/Akt signaling
pathways [43]. In breast cancer, the flavonoid upregulated the biogenesis of miR-34a, miR-
181a, miR-139-5p, miR-224 and miR-246, while it decreased the level of miR-155, coupled
with a significant inhibition of VEGF/Notch signaling and MMPs downregulation [30].

Tumor growth and its progression also depend on proangiogenic factors secreted by
the surrounding microenvironment cells (e.g., fibroblasts, tumor associated macrophages
(TAMs), etc.) [8]. Fang et al. demonstrated that luteolin inhibited the ability of TAMs to
induce angiogenesis, thereby inhibiting tumor growth and its spreading, in both normoxic
and hypoxic conditions [96].

Taken together, these studies show promise for luteolin as a potent anti-angiogenic
agent, evading tumor evolution and metastatic cascade (Figure 5).
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5. Luteolin Slows down Extracellular Matrix Degradation

Lysis of extracellular matrix (ECM) molecules occurs through the proteolytic action
of a family of zinc-dependent metalloproteases (MMPs), facilitating angiogenesis and
promoting cancer cell invasion and dissemination [97–100]. Luteolin significantly inhibited
MMP-2 and MMP-9 (also known as gelatinases) and VEGF expression by suppressing
Notch signaling and by modulating specific miRs with a crucial role in breast cancer pro-
gression [30]. Another study showed that the flavonoid repressed the invasiveness of
androgen receptor-positive TNBC cells by epigenetically downregulating MMP-9 expres-
sion (due to a hypoacetylation of the histone H3) via the induction of the AKT/mTOR
signaling pathway [31]. A substantial downregulation of migratory propensity was also
reported in an in vitro model of human glioblastoma, where an unbalanced MMPs/TIMPs
ratio was attributed to inhibition of the pro-invasive p-IGF-1R/PI3K/AKT/mTOR signal-
ing pathway [59]. Furthermore, the flavonoid abolished MMP-2 and MMP-9 activity in a
concentration-dependent effect by suppressing pro-invasive Raf/PI3K signaling in murine
colorectal carcinoma (CRC) [64]. Recent studies have further reinforced the negative effect
of luteolin in CRC dissemination [65]. In fact, in in vitro and in vivo models of this tumor,
luteolin induced a downregulation of gelatinases and MMP -3 and -16 expression, coupled
with enhanced miR-384 biogenesis, as well as suppression of pleiotrophin (PTN), a small
cytokine with a polyhedral role in tumor evolution (PTN promotes cancer cell migration
and invasion, and stimulates angiogenesis) [65]. An independent research showed that the
flavonoid inhibited the spreading of GC, both in vitro and in a xenograft model, due to a
downregulation of MMP-9 associated to a suppression of cMet/Akt/ERK signaling [38].
Chemopreventive properties of the abovementioned compound were further supported
by a B16F10 mouse xenograft model, in which the levels of pro-metastatic markers, in-
cluding MMP-9, MMP-2 and CXCR4, were significantly decreased in the lung tissues
isolated from tumor-bearing nude mice after luteolin treatment [53]. Additionally, Shi and
co-workers showed that luteolin (in a dose-dependent manner) suppressed the prolifer-
ation, migration and invasion of human choroidal melanoma cells in vitro by blocking
the secretion of the gelatinases by cancer cells, essentially interfering with the PI3K/Akt
signaling pathway [55].

In conclusion, luteolin is able to interfere with different initial steps of the metastatic
cascade, including ECM degradation, angiogenesis and cell invasion, by blocking activation
pathways of MMPs (Figure 6).
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6. Luteolin Induces Apoptosis

Apoptosis, a programmed cell death, is an essential mechanism involved in several
physiological conditions, including organ development and tissue homeostasis, due to its
role in controlling cell depletion, somehow opposing to mitosis in the regulation of cell prolif-
eration [101]. In the tumor context, the intricate machinery of apoptosis plays a polyhedral
role, ranging from malignant transformation of cells to metastatic cascade or overstepping
anticancer drugs’ resistance, thus suggesting that the balance of pro-survival and pro-death
pathways can be impaired at several steps of the apoptotic process [102]. Apoptosis can
occur through either the death receptor-mediated extrinsic pathway and/or the mitochondria-
mediated intrinsic route, both converging to caspases (cysteine-aspartate proteases) activation,
resulting in characteristic morphological and biochemical cellular changes [103].

Apoptotic cellular death can be triggered by different cellular events, including a
perturbation of the intracellular redox status, followed by reactive oxygen species (ROS)
overproduction and enhanced cellular oxidative stress [44,104]. In this regard, luteolin
exhibits pro-apoptotic effects on various cancer cells, acting both on antioxidant activ-
ity and on ROS overproduction [45,61,104,105]. Luteolin- induced accumulation of ROS,
suppressed NF-κB and potentiated JNK in an in vitro model of NCSLC, hence sensitiz-
ing lung cancer cells to TNF-triggered apoptosis [45]. Furthermore, luteolin caused an
overproduction of ROS, coupled with the release of cytochrome c from collapsed mito-
chondria, and with the activation of caspase-3 and -9 in cholangiocarcinoma cells [61].
These molecular changes were associated with inhibition of the Nrf2 transcription factor,
with resulting downregulation of its antioxidant target genes, including those encoding
γ-glutamylcysteine ligase and heme oxygenase-1 [61]. Kang and co-workers showed that
in vitro treatment of human colon cancer (CC) cells (HT-29 cell line) with luteolin was
able to cause apoptosis [105]. The authors described an upregulation of intracellular and
mitochondrial ROS and enhanced Bax/Bcl-2 ratio, followed by release of cytochrome c
from mitochondria to the cytosol and activation of caspase-9 and -3 [105]. Other studies
further support the pro-apoptotic effects of the flavone in cancer; in fact, HT-29 cells treated
with 60 µM of luteolin for 48 h showed an increased activation of caspase-3, -7, and -9 and
Poly-ADP ribose polymerase (PARP) cleavage, followed by the upregulation of several
members of the Bcl-2 protein family (Bcl-xL, Mcl-1, survivin, p21 and Mdm-2) [62]. Simi-
larly, luteolin induced apoptosis of human colon tumor cells (HCT-15 cell line), increasing
the Bax/Bcl-2 ratio and activating caspase-3 via Wnt/β-catenin/GSK-3β signaling [63].
The intrinsic pro-apoptotic effect of luteolin was also tested in an in vitro model of human
GC [39]. In detail, upon exposure to high concentration of the flavonoid (60 µM), GC
cells (BGC-823 cell line) showed a significant increase of the Bax/Bcl-2 ratio, coupled with
the release of cytochrome c from mitochondria and consequent caspases activation [39].
These molecular events were correlated with the suppression of PI3K/MAPK signaling
pathways [39]. In a very extensive study, luteolin treatment induced apoptosis in HeLa
cells, by either the intrinsic or extrinsic pathways [106]. Indeed, increased expression of
various pro-apoptotic factors, including BAX, BAD, BID, APAF1, TRADD, FAS, FADD,
Caspase-3 and -9, correlated with a reduction of anti-apoptotic mediators, such as MCL-1
and BCL-2. Additionally, in this experimental context, luteolin was found to suppress the
AKT/mTOR and MAPK/ERK1/2 pathways, highlighting the pro-apoptotic features of
protein p53 [106]. Interestingly, luteolin triggered apoptosis through the downregulation
of the human telomerase reverse transcriptase (hTERT) via the NF-κB/c-Myc pathway,
which correlated to increased Bax/Bcl-2 ratio and caspase-3 protein expression in human
breast cancer cells [32]. Another study, performed in HL-60 leukemia cells, demonstrated
that luteolin caused a hyperacetylation of histone H3 by activating the ERK and JNKs
pathways, with consequential increase of Fas and FasL expression, followed by caspase-8
and -3 activation [66].

In addition to the modulation of transcription events and/or epigenetic changes,
several miRs are integrated into critical pathways of cancer spreading [107]. Accordingly,
in vitro studies by Han and collaborators demonstrated that luteolin induced apoptosis
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in prostate cancer (PC3 and LNCaP cell lines) through downregulation of miR-301, cou-
pled with the expression of pro-death DNA-binding effector domain-containing protein 2
(DEDD2) [57]. Another study showed that administration of the flavone to human breast
cancer cells (MCF-7) modulated the level of miR-21 and miR-16, reducing cell viability in a
dose- and time-dependent manner, but also inducing apoptosis through the intrinsic and
extrinsic pathways via upregulation of Bax/Bcl-2 expression [33]. Furthermore, luteolin
decreased Bcl-2 expression by upregulating miR-34a in human GC (BGC-823 and SGC-7901
cell lines) [40]. Moreover, Jiang and co-workers demonstrated that luteolin triggered in-
trinsic apoptosis in NSCLC, in both in vitro and in vivo studies, by enhancing the level of
miR-34a-5p and targeting the oncogene MDM4, thus indirectly increasing the availability
of the pro-apoptotic features of p53 and p21 [46].

Several cancers acquire drug resistance through different mechanisms, including
involvement of PI3K/Akt pathway and tyrosine-kinases activation [4,108–110]. Thus, in-
hibition of PI3K/Akt pathway seems to be crucial to stop cancer progression. Indeed,
Lin and co-workers showed that luteolin suppressed PI3K/Akt phosphorylation in an
in vitro model of human breast cancer (MCF-7 cells), through the induction of forkhead
box O3 (FOXO3a), followed by DNA damage; all these events culminated in mitochondrial
apoptotic cascade [34]. The epidermal growth factor receptor (EGFR) is a tyrosine kinase
receptor which is commonly upregulated in several types of carcinoma [111]. Various
tyrosine kinases inhibitors (TKIs) can suppress EGFR phosphorylation and, consequently,
suppress its downstream signaling pathways, including ERK and AKT, with the final effect
of inducing apoptosis [112]. Nevertheless, first responses to TKIs (or even to EGFR anti-
bodies) are followed by acquisition of drug resistance for several cancer types. Therefore,
studies are consistently searching for new therapeutic alternatives [4,110]. In this scenario,
medicinal plants extracts, including luteolin, have been ascribed surprising efficacy as
promising anticancer and anti-metastatic compounds [5]. For example, human ductal
pancreatic cancer cells (MiaPaCa-2) treated with luteolin showed a markedly decreased acti-
vation of EGFR and its downstream protein kinases activity; indeed, treated cells exhibited
typical apoptosis features, such as shrinkage of the cell morphology, PARP cleavage and
DNA fragmentation [49]. Similarly, luteolin attenuated cell proliferation and growth by
inhibiting EGFR/MAP/ERK phosphorylation in an in vitro model of human glioblastoma
(U-87 MG and U-251 MG cell lines), inducing apoptosis via PARP cleavage and activation
of caspase cascade [60].

To sum up, the anti-metastatic effect of luteolin may depend on its ability to stim-
ulate both intrinsic and extrinsic pathways of apoptosis, by promoting an increase of
Bax/Bcl-2 ratio, cytochrome c release and the activation of caspases cascade, by modulating
the expression of oncogenic miRs and, in some cases, by overstepping drug resistance
(Figure 7).
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7. Conclusions and Perspectives

Luteolin is able to quench the initial steps of the metastatic cascade. In fact, it inhibits
EMT, tumor-associated angiogenesis and ECM degradation. Furthermore, by targeting
multiple cellular signals, this flavone induces apoptosis in malignant cells through both
the intrinsic pathway and receptor-mediated extrinsic route, with minimal side effects
and insignificant toxicity on normal cells [71]. Additionally, luteolin is not only able to
overstep drug resistance, but also represents a good adjuvant to other flavonoids, including
quercetin [86,87]. However, most of the known activities of luteolin have been investigated
only in vitro and/or in animal models, except for a very few non-oncology clinical studies
in humans [113–118]. Besides, to date, no clinical trials using luteolin as cancer therapy
have been performed yet. The main challenges faced by investigators to test this compound
in cancer studies include limited funding, absence of product consistency, contamination,
and manufacturing difficulties. Indeed, its biological applications are currently limited,
due to its hydrophobic nature, although improvement of luteolin bioavailability could
be achieved by using nanostructured lipid carriers, microemulsions, and other similar
devices [118–121]. Since preclinical experiments strongly advise for the potential efficacy of
luteolin in cancer treatment, the development of strategies that improve its bioavailability,
increase its efficacy and decrease its toxicity, will support future clinical studies.
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Abbreviations

Akt Protein-kinase B
Bax BCL2 associated X, apoptosis regulator
Bcl-2 B-cell lymphoma 2
bFGF Basic-fibroblast growth factor
CAM Chorioallantoic membrane
Caspases Cysteine-aspartate proteases
CC Colon cancer
C-Myc bHLH transcription factor
CXCR4 C-X-C motif chemokine receptor-4
DNA Deoxyribonucleic Acid
EGFR Epidermal growth factor receptor
ECM Extracellular matrix
EMT Epithelial-mesenchymal transition
ERK1/2 Extracellular-regulated kinase1/2
FAKs Focal adhesion kinases
FZD6 Frizzled family receptor 6
GC Gastric cancer
GSK-3β Glycogen synthase kinase 3-beta
HIF1/2 Hypoxia-inducible factor 1/2
hTERT human telomerase reverse transcriptase
HUVECs Human umbilical vein endothelial cells
IL-6 Interleukin 6
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JNK Jun N-terminal kinase
MAPK Mitogen-activated protein kinase
MEK MAP kinase-ERK kinase
miRs MicroRNA
MMPs Metalloproteases
mRNA Messenger ribonucleic acid.
mTOR Mammalian target of rapamycin
NF-κB Nuclear factor-κappaB
Notch Signal transducer and activator of transcription
NSCLC Non-small cell lung carcinoma
PARP Poly-ADP ribose polymerase
PI3K Phosphatidylinositol-3-kinase
Raf Rapidly accelerated fibrosarcoma
Ras Small guanosine triphosphatases
Snail Snail homolog 1/2 of drosophila
ROS Reactive oxygen species
RPS19 Ribosomial protein S19
Src Proto-oncogene tyrosine-protein kinase
STAT3 Signal transducer and activator of transcription-3
TGF-β Transforming growth factor-beta
TIMPs Tissue inhibitors of metalloproteases
TNBC Triple-negative breast cancer
TNF Tumor necrosis factor
TWIST Twist family bHLH transcription factor
VEGF Vascular endothelial growth factor
VEGFR2 Vascular endothelial growth factor receptor-2
ZEB Zinc finger E-box binding homeobox
ZO-1 Zonula Occludens-1
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