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Abstract: Rare ginsenosides are the major components of red ginseng. However, there has been little
research into the relationship between the structure of ginsenosides and their anti-inflammatory activ-
ity. In this work, BV-2 cells induced by lipopolysaccharide (LPS) or nigericin, the anti-inflammatory
activity of eight rare ginsenosides, and the target proteins expression of AD were compared. In
addition, the Morris water maze test, HE staining, thioflavins staining, and urine metabonomics were
used to evaluate the effect of Rh4 on AD mice. Our results showed that their configuration influences
the anti-inflammatory activity of ginsenosides. Ginsenosides Rk1, Rg5, Rk3, and Rh4 have significant
anti-inflammatory activity compared to ginsenosides S-Rh1, R-Rh1, S-Rg3, and R-Rg3. Ginsenosides
S-Rh1 and S-Rg3 have more pronounced anti-inflammatory activity than ginsenosides R-Rh1 and
R-Rg3, respectively. Furthermore, the two pairs of stereoisomeric ginsenosides can significantly
reduce the level of NLRP3, caspase-1, and ASC in BV-2 cells. Interestingly, Rh4 can improve the
learning ability of AD mice, improve cognitive impairment, reduce hippocampal neuronal apoptosis
and Aβ deposition, and regulate AD-related pathways such as the tricarboxylic acid cycle and the
sphingolipid metabolism. Our findings conclude that rare ginsenosides with a double bond have
more anti-inflammatory activity than those without, and 20(S)-ginsenosides have more excellent
anti-inflammatory activity than 20(R)-ginsenosides.

Keywords: red ginseng; rare ginsenosides; structure–activity relationship; Alzheimer’s disease;
inflammasome

1. Introduction

Red ginseng is the principal product of ginseng, processed in steaming conditions.
With modern technology development, the processing of red ginseng improved. Many red
ginseng products are emerging at the same time, such as sun ginseng [1], black ginseng [2],
fermented red ginseng [3], and puffed red ginseng [4]. Rare ginsenosides are nominated
for being the least abundant constituents in ginseng. However, rare ginsenosides as
activity components are abundant in red ginseng steamed at a higher temperature, such as
ginsenosides Rg3, Rk1, Rg5, Rh1, Rk3, Rh4, et al. These rare ginsenosides have less polar
and greater pharmacological activities, including anti-oxidant [5], anti-inflammatory [6],
anti-cancer [7], and anti-apoptotic [8] activities.

Ginsenosides can incur structural change during red ginseng processing by demalony-
lation, decarboxylation, deglycosylation, and dehydration [9,10]. Ginsenoside is a triter-
penoid saponin with a dammarane skeleton. Carbon-3, carbon-6, or carbon-20 combine
with glycosyl residue by the ether bond. The 20(S)-ginsenosides are the natural products in

Int. J. Mol. Sci. 2023, 24, 8625. https://doi.org/10.3390/ijms24108625 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms24108625
https://doi.org/10.3390/ijms24108625
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-0622-6951
https://orcid.org/0000-0002-6374-0503
https://doi.org/10.3390/ijms24108625
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms24108625?type=check_update&version=2


Int. J. Mol. Sci. 2023, 24, 8625 2 of 22

ginseng. When fresh ginseng is processed into red ginseng, the deglycosylation in carbon-
20 is easy. It is present in the 20(S) and 20(R) epimers, such as ginsenosides Rg3 and Rh1
(shown in Figure 1A,B). Furthermore, the dehydration in carbon-20 can present a double
bond in carbon-20, 21 or carbon-20, 22, which offers positional isomers of the double bond
at carbon-20(21) or carbon-20(22). While the double bond at carbon-20(21) has no present
cis-trans isomers, such as ginsenosides Rk1 and Rk3 (shown in Figure 1C), the double
bond at carbon-20(22) has cis-trans isomers, such as Rh4 and Rg5 (shown in Figure 1D). A
previous study provided evidence that red ginseng, steamed at higher temperature and
pressure, has the major components of these eight rare ginsenosides.
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Alzheimer’s disease (AD) is neurodegenerative, with various pathophysiological
aspects under investigation [11]. More and more experimental evidence, including ge-
netic [12,13] and epigenetic [14] studies, transcriptome analysis of brains of patients with
AD [15], and expression quantitative trait experiments in monocytes [16], supports a con-
tributing role of innate immune mechanisms in AD. Microglia act as macrophages in the
brain, which have the function of host defense and immune surveillance of the brain [17].
Microglia are known to lead to neuronal damage by releasing excessive pro-inflammatory
cytokines and cytotoxic factors, which include nitric oxide (NO), tumor necrosis factor-α
(TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) [18]. Usually, microglia are acti-
vated for host defense in the brain. However, aberrant microglia activation can result in
neuroinflammation, one of the leading causes of AD [19,20]. At the same time, pathological
innate immune activation and subsequent production of inflammatory mediators, such as
NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3), ASC (apoptosis-associated
speck-like protein), and caspase-1, promote the progress of AD and provide an effective
therapeutic target for treating AD [21]. As we all know, many ginsenosides were reported
to have an anti-inflammatory effect, especially rare ginsenosides such as Rh1, Rg3, Rk1,
Rg5, Rk3, and Rh4. Nevertheless, there is little research to report the structure–activity
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relationship of anti-inflammatory activities between these ginsenosides. Additionally,
whether rare ginsenosides can inhibit the expression of inflammatory mediator targets
needs further investigation.

Here, we established an inflammatory cell model of macroglia induced by lipopolysac-
charide (LPS) and/or nigericin. Griess reagents, Elisa, and Q-PCR determined the inflam-
matory factors released. This work compared the anti-inflammatory activity of ginsenoside
(S-Rg3, R-Rg3, Rk1, Rg5, S-Rh1, R-Rh1, Rk3, and Rh4) and explored the structure–activity
relationship between these ginsenosides. Further, we researched the rare ginsenosides’ ac-
tivity in inhibiting the expression of AD-related target proteins, including NLRP3, caspase-1,
and ASC. So, rare ginsenosides can be the candidate drugs for treating and preventing
AD by inhibiting the expression of inflammatory mediator targets. This study verified the
structure–activity relationship and effects on target proteins through molecular docking.
The impact of Rh4 on improving the symptoms of AD mice was studied with an in vivo
experiment. This study provides a reliable basis for preventing and treating AD with
rare saponins.

2. Results
2.1. Protective Effect of Ginsenosides on LPS-Induced Microglial Inflammation
Ginsenosides for Inhibiting Inflammatory Factors Released

NO, TNF-α, and IL-6 are the primary inflammatory factors to assess tissue and cell
inflammation. We further analyze the role of ginsenosides in the inflammatory factor
release of BV-2 cells. Among the eight rare ginsenosides, ginsenosides Rk1 and Rg5 are the
dehydration products of ginsenosides S-Rg3 and R-Rg3. Ginsenosides Rk3 and Rh4 are the
dehydration products of ginsenosides S-Rh1 and R-Rh1. For selecting the adequate time of
ginsenosides, ginsenoside Rg5 was treated at 0.5–4 h to determine the NO release in the
supernatant. Figure 2A shows that ginsenoside Rg5 pre-treated for one h can significantly
inhibit NO release, which is the better time for taking effect.

The activities of eight rare ginsenosides S-Rh1, R-Rh1, S-Rg3, R-Rg3, Rk1, Rg5, Rk3,
and Rh4 for inhibiting NO, TNF-α, and IL-6 release are presented in Figure 2B–D. We can
see that ginsenosides Rk1, Rg5, Rk3, and Rh4 have greater pharmacological activity than
ginsenosides S-Rh1, R-Rh1, S-Rg3, and R-Rg3 in inhibiting NO, TNF-α, and IL-6 release,
respectively. In addition, all ginsenosides Rk1, Rg5, Rk3, and Rh4 have dramatically
reduced NO, TNF-α, and IL-6 release. However, all ginsenosides S-Rh1, R-Rh1, S-Rg3, and
R-Rg3 can remarkably reduce NO. Ginsenosides S-Rh1, R-Rh1, and S-Rg3 can significantly
reduce TNF-α. Only ginsenosides S-Rh1 and S-Rg3 can considerably reduce IL-6 levels.
So, the double bond structure of ginsenosides exhibits greater pharmacological activity
in anti-inflammation.

Similarly, ginsenosides S-Rh1 and S-Rg3 have a more significant effect than ginseno-
sides R-Rh1 and R-Rg3 in inhibiting NO, TNF-α, and IL-6 release, respectively. Ginsenoside
S-Rh1 can significantly reduce the level of NO, TNF-α, and IL-6 release. However, ginseno-
side R-Rh1 can significantly reduce NO and TNF-α release levels. Ginsenoside S-Rg3 can
substantially reduce the level of NO, TNF-α, and IL-6 release. However, ginsenoside R-Rg3
can only significantly reduce the level of NO release. In addition, (S)-ginsenosides have
a lower level of the same inflammatory factor than (R)-ginsenosides. So, we can indicate
that the S epimers of ginsenosides have more excellent pharmacological activity than the R
epimers of ginsenosides in inhibiting inflammatory factor release.
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Figure 2. Eight rare ginsenosides affect the release of NO, TNF−α, and IL−6 in LPS−induced
microglia cells. (A): Pre−treated ginsenoside Rg5 at different times; (B): NO release inhibition;
(C): TNF−α release inhibition; (D): IL−6 release inhibition. The bar represents the mean ± standard
error of the mean (n = 3). The Student’s t-test determined significant differences (### p < 0.001
compared with normal cells) or ANOVA (* p < 0.05, ** p < 0.01, *** p < 0.001 compared with
LPS−treated cells).

2.2. qRT-PCR Analysis of the Gene Expression of Inflammatory Factors

Ginsenosides can influence the release of inflammatory factors in the supernatant of
BV-2 cells induced by LPS. Furthermore, total RNA from BV-2 cells was extracted to analyze
how ginsenosides affect gene expression of TNF-α, IL-6, IL-1β, and iNOs. As shown in
Figure 3, the LPS group showed a higher level of inflammatory factors (TNF-α, IL-6, IL-1β,
iNOs), and ginsenosides Rk1, Rg5, Rk3, Rh4 can significantly reduce the expression of
those. We can also see that ginsenosides S-Rh1, R-Rh1, S-Rg3, and R-Rg3 influenced gene
expression of TNF-α, IL-6, IL-1β, iNOs in Figure 4. Ginsenosides S-Rh1, R-Rh1, S-Rg3, and
R-Rg3 can dramatically reduce the gene expression of iNOs. Ginsenosides S-Rh1, R-Rh1,
and S-Rg3 can markedly reduce the gene expression of TNF-α. Ginsenosides S-Rh1 and
S-Rg3 can considerably reduce the gene expression of IL-6. Only ginsenoside S-Rh1 can
drastically reduce the gene expression of IL-1β. Ginsenosides Rk1, Rg5, Rk3, and Rh4
have more significant pharmacological activity than ginsenosides S-Rh1, R-Rh1, S-Rg3, and
R-Rg3 in anti-inflammation, which is coincident with inflammatory factor release.

In addition, ginsenosides S-Rh1 and S-Rg3 have a more significant effect than gin-
senosides R-Rh1 and R-Rg3 in reducing the gene expression of TNF-α, IL-6, and IL-1β,
respectively. Ginsenoside S-Rh1 can significantly reduce the levels of NO, TNF-α, IL-6,
and IL-1β released. However, ginsenoside R-Rh1 can significantly reduce NO and TNF-α
release levels. Ginsenoside S-Rg3 can considerably reduce the levels of NO, TNF-α, and
IL-6 released. However, ginsenoside R-Rg3 can only significantly reduce the level of NO
released. The S epimers of ginsenosides exhibit much stronger anti-inflammation activity
than the R epimers of ginsenosides from the count of anti-inflammatory factors.
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Figure 4. Ginsenosides S-Rh1, R-Rh1, S-Rg3, and R-Rg3 affect the expression of inflammatory factors
in LPS-induced microglia cells. (A): iNOs mRNA expression; (B): TNF-α mRNA expression; (C): IL-6
mRNA expression; (D): IL-1β mRNA expression. The bar represents the mean ± standard error of
the mean (n = 3). The Student’s t-test determined significant differences (### p < 0.001 compared with
normal cells) or ANOVA (* p < 0.05, ** p < 0.01, *** p < 0.001 compared with LPS-treated cells).
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2.3. Molecular Docking Analysis for S and R Epimers of Ginsenosides

In Elisa and qPCR experiments, S and R epimers of ginsenosides have different anti-
inflammation activities. Molecular docking was conducted to research the interaction
relationship further. Table S1 shows the detailed parameters of ginsenosides S-Rh1, R-Rh1,
S-Rg3, and R-Rg3 docking with target proteins of iNOs, IL-6, TNF-α (4NOS, 1ALU, 2AZ5).
The molecular docking mode and interactions of 2AZ5 are shown in Figure 5. We can see
the bond energy of S-Rh1, R-Rh1, S-Rg3, and R-Rg3 was less than −5.3 kcal/mol, which
indicates the stability of the complex. The S epimers of ginsenosides have many hydrogen
bonds and higher scores than the R epimers of ginsenosides. This illuminates why the S
epimers of ginsenosides have greater anti-inflammation than the R epimers of ginsenosides
at the molecular level.
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2.4. qRT-PCR Analysis of the Protein Expression of AD

More and more reports reveal that the cause and development of AD are related to
brain inflammation. The proteins NLRP3, ASC, and caspase-1 are vital in preventing and
treating AD. So, we established an inflammatory model with LPS and nigericin, an activator
of NLRP3. Once the NLRP3 was activated, ASC and caspase-1 influenced the following
and produced IL-1β. Compared to the anti-inflammation of eight rare ginsenosides, we
can see that Rk1, Rg5, Rk3, and Rh4 have a more significant effect than ginsenosides S-Rh1,
R-Rh1, S-Rg3, and R-Rg3.

So, ginsenosides Rk1, Rg5, Rk3, and Rh4 were utilized to study the relationship with
these target proteins of AD. From Figure 6, we can see that ginsenosides Rk1, Rg5, Rk3, and
Rh4 can significantly reduce the IL-1β level of BV-2 supernatant, which indicates a high
correlation with target proteins NLRP3, ASC, and caspase-1. Furthermore, RT-PCR was
applied to analyze the gene expression of these target proteins. We can see that ginsenosides
Rk1, Rg5, Rk3, and Rh4 can significantly reduce the gene expression of NLRP3, ASC, and
caspase-1 in BV-2.
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Figure 6. Ginsenosides Rk1, Rg5, Rk3, and Rh4 affect IL-β and inflammatory proteins in LPS
and nigericin-induced microglia cells. (A): IL-1β release in supernatant; (B): NLRP3 mRNA ex-
pression; (C): ASC mRNA expression; (D): caspase-1 mRNA expression. The bar represents the
mean ± standard error of the mean (n = 3). The Student’s t-test determined significant differences
(# p < 0.05, ## p < 0.01 compared with normal cells) or ANOVA (* p < 0.05, ** p < 0.01, *** p < 0.001
compared with LPS-treated cells).

2.5. Laser Confocal Microscope Analysis of the Protein Expression of AD

Furthermore, ginsenoside Rh4 was used to analyze the influence on the proteins
NLRP3 and ASC with a Laser confocal microscope. We can see NLRP3 with red fluorescence
was expressed in both the control and model groups. The model group had significantly
more expression than the control group. Ginsenoside Rh4 can dramatically reduce the
protein expression of NLRP3 in BV-2 (Figure 7). Similarly, ASC with green fluorescence
was expressed in the control and model groups. The model group had significantly more
expression than the control group. Ginsenoside Rh4 can markedly reduce the protein
expression of ASC in BV-2 (Figure 8).

Therefore, these ginsenosides may play an essential role in inflammasome signaling
by inhibiting the expression of NLRP3, ASC, and caspase-1. The NLRP3 inflammasomes
promote AD’s progression and provide a therapeutic target for AD. So, these results can
elucidate the mechanism of ginsenosides in preventing and treating AD.
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Figure 7. Effect of ginsenoside Rh4 on NLRP3 expression in LPS and nigericin-induced microglia
cells. (A): NLRP3 (red) and nuclei (blue) using a laser confocal microscope; (B): Quantitative analysis
of NLRP3 fluorescence intensity. Scale bars, 70 µm. The bar represents the mean ± standard error of
the mean (n = 3). The Student’s t-test determined significant differences (### p < 0.001 compared with
normal cells, *** p < 0.001 with LPS and nigericin-treated cells).
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Figure 8. Ginsenoside Rh4 effects on ASC expression in LPS and nigericin-induced microglia cells.
(A): ASC (green) and nuclei (blue) using a laser confocal microscope; (B): Quantitative analysis of
ASC fluorescence intensity. Scale bars, 70 µm. The bar represents the mean ± standard error of the
mean (n = 3). The Student’s t-test determined significant differences (### p < 0.001 compared with
normal cells, *** p < 0.001 with LPS and nigericin-treated cells).
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2.6. Molecular Docking Analysis for Ginsenosides to the Potential Proteins of AD

Molecular docking was conducted to research the interaction relationship between
ginsenosides Rk1, Rg5, Rk3, and Rh4 and AD potential proteins. Table S2 shows the
detailed parameters of ginsenosides Rk1, Rg5, Rk3, and Rh4 docking with target proteins
of NLRP3, ASC, and caspase-1 (2ANQ, 6KI0, and 5MTK). The molecular docking mode
and interactions of 5MTK are shown in Figure 9. We can see that the bond energy of
ginsenosides Rk1, Rg5, Rk3, and Rh4 was less than −5.8 kcal/mol, which indicates the
stability of the complex and the great anti-inflammation of ginsenosides.
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2.7. Rh4 Ameliorates Dementia Conditions in APP/PS1 Mice
Effect of Rh4 on APP/PS1 Mouse Behavior

Water maze experiments can effectively evaluate the learning and memory ability
of mice. The time of crossing the platform is an important indicator of the space search
experiment. At a certain time, the number of times the experimental animals crossed the
original platform was recorded. The more times the animal crossed the original platform,
the better its spatial learning and memory ability [22]. Figure 10A shows the behavioral
trajectories of different groups of mice. Based on the experimental results of the above cell
experiments, we found that ginsenoside Rh4 had good activity, so we carried out in vivo
experiments. It can be seen that there is a significant difference between the model group
and the blank group, and the times of the model group are significantly less than that of the
blank group. The positive drug donepezil hydrochloride group and ginsenoside Rh4 group
showed substantially increased numbers of AD mice crossing the platform, and showed
improvements in AD mouse behavior and memory disorders, indicating that ginsenoside
Rh4 has pharmacological activity in the prevention and treatment of AD.
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Figure 10. Mouse water maze, escape latency, and target quadrant stays time. (A), Water maze
behavior trajectory; (B,C), Comparison of escape latency and target quadrant residence time of mice
treated with different groups. (n = 6; #: compared with the control group, # p < 0.05; * compared with
the model group, * p < 0.05).

Figure 10B,C shows the escape latencies and target quadrant dwell times of the
different groups of mice. Latency is an important indicator of the positioning and navigation
stage of the Morris water maze, and it is the time required for the animal to successfully
find the platform for the first time after each entry into the water. Its length also represents
the quality of the animal’s spatial learning and memory ability, and a short incubation
period indicates that the animal’s learning and memory ability is good [23]. The time in
the quadrant where the platform is located is an index to evaluate the learning ability
of animals. The longer the time and distance of animals in this quadrant, the better the
spatial memory ability of animals [24]. It can be seen that the escape latency of the model
group is significantly higher than that of the blank group. The positive drug donepezil
hydrochloride group and the ginsenoside Rh4 group can dramatically reduce the escape
latency of the mice. At the same time, the target quadrant residence time of the model
group was significantly less than that of the blank group. The positive drug donepezil
hydrochloride group and ginsenoside Rh4 group could significantly improve AD mouse
target quadrant residence time.

2.8. HE Observed Pathological Changes in the Mouse Brain

HE staining showed that compared with the control group, the hippocampal CA1
and CA3 regions of mice in the model group were significantly different. The cells in the
hippocampal CA1 region of mice in the model group were loosely arranged. In contrast, the
cells in the hippocampal CA1 area of mice in the ginsenoside Rh4 group were significantly
improved and tightly arranged (Figure 11A–C). There were significant differences in the
hippocampal CA3 region of the model group, with cell solidification atrophy and hyper
staining of the whole cell. The ginsenoside Rh4 group had an improved effect on cells in
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the hippocampal CA3 region of mice (Figure 11D–F). Ginsenoside Rh4 has a significant
protective effect on hippocampal neuronal cells in AD mice.
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Figure 11. HE staining in hippocampal CA1 and CA3 regions and A β plaque staining in the cerebral
cortex of mice in different treatment groups; (A–C), HE staining of CA1 region, 20×; (D–F), HE
staining of CA3 region, 10×; (G–I), cortical Aβ plaque staining.

2.9. Th-S Staining to Observe the Changes of Aβ in the Mouse Brain

The fluorescent dye thioflavin s can specifically bind to mature Aβ amyloid protein
and has green fluorescence, which can be used to detect Aβ amyloid deposition in AD
mice. The staining of the cerebral cortex of mice in different treatment groups is shown in
Figure 11G–I. As can be seen from the figure, there was a pronounced deposition of amyloid
beta in the cerebral cortex of mice in the model group compared with the control group.
The ginsenoside Rh4 group can significantly reduce the amount and area of amyloid beta
deposition in the cerebral cortex of mice. Ginsenoside Rh4 affects amyloid beta deposition
in the cerebral cortex of AD mice.

2.10. Rh4 Regulates Multiple Metabolic Pathways in AD Mice and Plays a Therapeutic Role

After methodological investigation, the results showed good repeatability and high
stability (Tables S3 and S4, Figures S1 and S2. Multivariate statistical analysis showed that
the control group, model group, and Rh4 group could be significantly separated, indicating
that the urine metabolism of AD mice changed significantly compared with the normal
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group. Administration of Rh4 can regulate urine metabolism, indicating that there are
some mechanisms to alleviate metabolic disorders (Figure 12A,B).
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Figure 12. Multivariate statistical analysis of urine metabolism and enrichment of metabolic path-
way in different groups of mice. (A,B), OPLS−DA analysis; (C,D), S−plot analysis, red represents
components with significant differences between the two groups; (E), metabolic pathway analy-
sis. a: TCA cycle, b: glyoxylate and dicarboxylate metabolism, c: primary bile acid biosynthesis,
d: phenylalanine metabolism, e: sphingolipid metabolism, f: tryptophan metabolism. Red represents
significant pathways.

The characteristic ions of two groups of samples can be obtained with partial least
square analysis (Figure 12C,D). The molecular formula of the compound can be calculated
according to the exact molecular weight of the characteristic ions. Then the structure of the
compound can be preliminarily determined by searching the database and consulting the
literature. The structure of the compound is further determined according to the fragment
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information, and the attribution of characteristic ions is shown in Table 1. They are the
characteristic ions of urine samples in positive and negative ion modes, including 11 in
positive and 13 in negative ion modes.

Table 1. Characteristic ions of urine samples in positive and negative ion mode.

No. tR
(min)

Precursor Ions and/or
Adduct Ions Exact Mass Error

(ppm) Formula Identification

1 0.86 173.0076 [M − H]− 173.0086 −5.78 C6H6O6 cis-Aconitate acid
2 0.92 191.0193 [M − H]− 191.0192 0.52 C6H8O7 Isocitric acid
3 0.98 254.9802 [M − H]− 254.9811 −3.53 C6H8O9S Ascorbic acid-2-sulfate
4 2.66 286.0014 [M + FA-H]− 286.0021 −2.62 C9H7NO5S Indole-3-carboxilic acid-O-sulphate
5 2.81 158.0809 [M − H]− 158.0817 −5.06 C7H13NO3 Valerylglycine

6 3.18 206.0445 [M − H]− 206.0453 −3.88 C10H9NO4
4-(2-Aminophenyl)-2,4-

dioxobutanoic acid
7 3.19 178.0498 [M − H]− 178.0504 −3.37 C9H9NO3 Hippuric acid
8 3.31 212.0017 [M − H]− 212.0018 −0.47 C8H7NO4S Indoxyl sulfate
9 3.49 222.0788 [M − H]− 222.0767 9.46 C11H13NO4 N-Acetyl-L-tyrosine

10 3.68 283.0818 [M − H]− 283.0818 0.00 C13H16O7 p-Cresol glucuronide
11 4.91 377.1959 [M − H]− 377.1964 −1.33 C21H30O6 18-Hydroxycortisol
12 8.59 407.2787 [M − H]− 407.2798 −2.70 C24H40O5 Cholic acid
13 10.26 391.2840 [M − H]− 391.2849 −2.30 C24H40O4 Chenodeoxycholic acid
14 2.21 206.0460 [M + H]+ 206.0453 3.40 C10H7NO4 Xanthurenic acid
15 2.83 162.0560 [M + H]+ 162.0555 3.09 C9H7NO2 Indole-3-carboxylic acid
16 2.84 338.0883 [M + H]+ 338.0876 2.07 C15H15NO8 3-Indole carboxylic acid glucuronide

17 2.84 338.0883 [M + H]+ 338.0876 2.07 C15H15NO8
2,8-Dihydroxyquinoline-beta-D-

glucuronide
18 3.20 164.0705 [M + H]+ 164.0711 −3.66 C9H9NO2 3-Methyldioxyindole
19 3.81 162.0554 [M + H]+ 162.0555 −0.62 C9H7NO2 2-Indolecarboxylic acid
20 4.90 379.2115 [M + H]+ 379.2121 −1.48 C21H30O6 18-Hydroxycortisol
21 6.32 181.0870 [M + H]+ 181.0864 3.31 C10H12O3 3-Methoxybenzenepropanoic acid
22 10.46 302.3061 [M + H]+ 302.3059 0.66 C18H39NO2 Sphinganine
23 10.86 328.3220 [M + H]+ 328.3215 1.52 C20H41NO2 D-erythro-C20-Sphingosine
24 11.89 330.3385 [M + H]+ 330.3372 3.94 C20H43NO2 eicosasphinganine

2.11. Analysis of Metabolic Pathway in Urine Samples

The metabolic pathway information of potential biomarkers in related databases such
as METLIN, HMDB, and KEGG can be presented visually in graphs and tables. The results
showed that 24 potential biomarkers were involved in six metabolic pathways (Figure 12E),
including the TCA cycle, the glyoxylate and dicarboxylate metabolism, the primary bile
acid biosynthesis, the phenylalanine metabolism, the sphingolipid metabolism, and the
tryptophan metabolism. Among them, the TCA cycle, the glyoxylate and dicarboxylate
metabolism, and the sphingolipid metabolism have relatively large impact values. The
primary bile acid biosynthesis can also be significantly enriched.

3. Discussion

As we all know, ginsenosides are the effective compounds of ginseng products. Gin-
senosides are named “Rx,” where the “R” stands for the root, and the “x” describes the
chromatographic polarity in alphabetical order [25]. Customarily, the seven fingerprint
ginsenosides (Rb1, Rb2, Rc, Rd, Re, Rg1, and Rf) are often measured to standardize ginseng
extracts. Except for ginsenoside Rf, the other six ginsenosides are the most abundant
ginsenosides in Panax ginseng, which are called major ginsenosides [26]. Other ginseno-
sides are called rare ginsenosides in ginseng products, except for these major ginsenosides.
Previous research has indicated that ginseng steaming at a high temperature can transform
major ginsenosides into rare ones. Ginsenosides S-Rg3, R-Rg3, Rk1, Rg5, S-Rh1, R-Rh1,
Rk3, and Rh4 are the main components of ginseng steamed at a high temperature, which is
much higher than in traditional red ginseng [9].



Int. J. Mol. Sci. 2023, 24, 8625 14 of 22

Pharmacological activities were directly related to the structure of ginsenoside. The
20(S)-malonyl-ginsenosides are an initial form of ginsenosides in fresh ginseng. Inter-
estingly, in red ginseng processing, the length of the sugar moiety in ginsenoside was
reduced, and stereoisomers occurred at C-20, such as R, S-epimers, and double-bond iso-
mers. Figure 13 shows the formation of S and R epimers of ginsenoside Rg3 in red ginseng
processing. Ginsenoside Rd is a protopanaxadiol (PPD) type of ginsenoside and precursor
of ginsenoside Rg3, which has a glycosyl at chiral C-20. Deglycosylation produces a carbo-
cation, which is then attacked by hydroxide anion from both sides with equal probability.
As a result, ginsenoside transforms into retention configuration and inversion configura-
tion. Figure 14 is shown the formation of double-bond positional and cis-trans isomers of
ginsenosides in red ginseng processing. When the chiral C-20 of ginsenoside Rg3 is further
dehydrated, the double bond occurs at carbon-20(21) and carbon-20(22). The chiral C-20
connects a methylene group. The double bond at this site has no cis-trans isomers and
is transformed into ginsenoside Rh4. However, the double bond at carbon-20(22) has a
pair of cis-trans isomers for the rotation of the C-C single bond, i.e., ginsenoside Rg5 and
Rz1. Similarly, ginsenoside Rg1 is a protopanaxatriol (PPT) type of ginsenoside and the
precursor of ginsenoside Rh1, the epimers (S and R) of ginsenoside Rh1 and ginsenoside
Rk1, Rh4 are produced by deglycosylating and dehydrating, respectively.
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In terms of anti-cancer activity, 20(S)-ginsenosides have a more substantial effect than
their 20(R)-stereoisomer, and ginsenosides with a double bond at C-20(21) exhibit more
activities than those at C-20(22) [27]. In other pharmacological activities, 20(R)-Rg3 shows
higher adjuvant effects on the OVA-induced immune system than 20(S)-Rg3 in mice [28],
20(S)-Rg3 epimer exhibited higher pharmacological effects in insulin secretion and AMPK
activation than 20(R)-Rg3 [29]. Ginsenosides Rk1 and Rg5, which have a double bond
at C-20, have great pharmacological activities in anti-cancer [30], anti-inflammation [31],
and anti-erectile dysfunction [32]. However, there is little research to analyze the anti-
inflammatory activity of ginsenosides in different stereoisomers. So, in this work, we
focused on eight rare ginsenosides to research their structure–activity relationship for anti-
inflammatory activity. The S epimers of ginsenoside have greater anti-inflammation than
the R epimers of ginsenoside by inhibiting the inflammatory factors’ release and expression.
Furthermore, the double bond of ginsenoside has greater anti-inflammation than the S and
R epimers of ginsenoside by inhibiting the inflammatory factors’ release and expression.

The ginsenoside stereoisomers may exhibit a different effect on the same pharma-
cological activity, and those results are not contradictory. The experimental design of
other animal models and cell lines may lead to different conclusions based on diverse
therapeutic targets. Thus, further research should be performed to elucidate the underlying
mechanisms of these stereoisomers. In addition, the interaction of rare ginsenosides with
AD target proteins needs to be further studied.
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Microglia, the resident immune macrophages in the central nervous system (CNS),
play a crucial role in responding to brain injuries and infections [33]. Microglia can be
stimulated to an M1 phenotype by LPS or IFN-γ for the expression of pro-inflammatory
cytokines such as TNF-α, IL-1β, IL-6, superoxide, NO, or M2 phenotype by IL-4/IL-13
for resolution of inflammation and tissue repair [34]. More and more evidence indicates
that microglia-mediated neuroinflammation contributes significantly to the pathogenesis
of neurodegenerative diseases, such as AD, Parkinson’s disease (PD), amyotrophic lateral
sclerosis (ALS), and Huntington’s disease (HD) [35].

NLRP3 inflammasomes comprise NLRP3, ASC, and pro-caspase1 (precursor caspase-1),
which activates caspase-1 to release IL-1β and IL-18 [36]. The activation of NLRP3 inflam-
masomes enhances Aβ aggregation. It drives tau hyperphosphorylation, which promotes
the progression of NFTs (Neurofibrillary Tangles) and SPs (Senile Plaques) in AD [21,37].
Once the NLRP3 inflammasome is activated, it triggers ASC helical fibrillar assembly. It
then makes ASC fibrils into large para-nuclear ASC specks [38,39]. In vitro, ASC speck
formation and release can be induced in pre-stimulated mouse microglia or human THP-1
cells with exposure to NLRP3 inflammasome activators such as nigericin and ATP [21,40].

There is pervasive metabolic dysregulation in vivo with AD-related pathological
changes. The tricarboxylic acid cycle was shared between aging and AD [41]. In this exper-
iment, the contents of cis-aconitic acid and isocitrate in the urine of AD mice in the model
group were significantly lower than those in the blank group, which indicated that AD mice
had abnormal energy metabolism. The glyoxylate and dicarboxylate metabolism is related
to the significant decrease in glycine concentration in PScDKO mice. Although glycine is
the simplest amino acid, it plays an essential role in the pathogenesis of AD [42]. Bile acids
(BAs) have primary regulatory and signaling functions and seem dysregulated in AD. The
primary BA of serum concentrations in AD was significantly lower compared to cognitively
normal older adults, indicating that bile acid metabolism plays a vital role in AD develop-
ment [41]. AD was reported to be closely linked with abnormal lipid metabolism (such as
glycerolipids, glycerophospholipids, and sphingolipids) and phenylalanine metabolism.
The experiment showed that the contents of C20 sphingosine were significantly lower
than those in the blank group but upregulated phenylalanine metabolism in the hippocam-
pus, indicating sphingolipid metabolites and phenylalanine metabolism can be used as
biomarkers for AD diagnosis [42–44]. Activating tryptophan (Trp) metabolism along the
Kyn pathway can prevent excessive inflammation and induce long-term immune tolerance.
With an increase in age and age-related diseases, the levels of Trp and Kyn in the whole body
change. In addition, regulating Trp metabolism can aggravate or prevent inflammation-
related diseases. Studies have shown that low tryptophan levels can lead to weight loss,
emotional disorders, and cognitive impairment [45]. The above literature indicates that
there may be disorders of energy metabolism, lipid metabolism, and inflammation-related
pathways in AD, and Rh4 plays a reverse regulatory role in these metabolic pathways, thus
exerting the therapeutic effect on AD.

Accounts of ginsenosides’ great anti-inflammation activity play an essential role
in preventing and treating AD by inflammasome signaling, shown in Figure 15. In this
signaling, LPS and TNF-α are used for activating the formation of NLRP3. Meanwhile,
nigericin is used for activating the aggregation of NLRP3. In general, LPS and nigericin
are both used to stimulate inflammasome signaling at the same time. Ginsenosides Rk1,
Rg5, Rk3, and Rh4, in particular, can inhibit the formation and aggregation of NLRP3
by suppressing the release of inflammatory factors and the gene expression of ASC
and caspase-1. That is the molecular mechanism of ginsenosides in preventing and
treating AD.
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4. Materials and Methods
4.1. Antibodies and Reagents

The standards of ginsenosides S-Rg3 (ST03850120MG) and R-Rg3 (ST02530120MG)
were purchased from Shanghai Nature Standard Biotechnology Co., Ltd. (Shanghai,
China). The standards of ginsenosides S-Rh1 (PS010067), R-Rh1 (PS010068), Rk1 (PS010828),
Rg5 (PS180126-03), Rk3 (PS010059), and Rh4 (PS100051) were purchased from Chengdu
Push Bio-Technology Co., Ltd. (Chengdu, China). The purity of these standards was
more than 98%, stored in a refrigerator under 4 ◦C. Other reagents related to cell culture
were purchased from Corning (One Riverfront Plaza Corning, New York, NY, USA). LPS
(Escherichia coli serotype 055: B5, L2880) was acquired from Sigma Chemical Co. (St. Louis,
MI, USA). Nigericin (S01D8L49263, purity ≥ 97%) was obtained from Shanghai Yuanye
Bio-Technology Co., Ltd. (Shanghai, China). A nitric oxide assay kit (DEM106) was bought
from Beijing BioDee Biotechnology Co., Ltd. (Beijing, China). Elisa kits of TNF-α (KE10002),
IL-6 (KE10007), and IL-1β (KE10003) were purchased from Proteintech Group Inc. (Chicago,
IL, USA).

4.2. Cell Experiment
4.2.1. Cell Culture and Treatment

Microglia cell line BV-2 originated from murine and was purchased from the Cell
Resource Center of Peking Union Medical College (Beijing, China). Then the cell was
cultured in DMEM (10-013-CVR, Mediatech Inc., New York, NY, USA) supplemented with
10% FBS (900-108, Gemini, CA, USA), 100 U/mL penicillin (30-002-Cl, Mediatech Inc., New
York, NY, USA), and 100 µg/mL streptomycin (30-002-Cl, Mediatech Inc., New York, NY,
USA) at 37 ◦C in a humidified atmosphere of 5% CO2. The stock solutions of ginsenosides
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were prepared in DMSO, the final concentration of which in the cell culture media was
less than 0.1%. LPS was used at a concentration of 1 µg/mL for microglia stimulation.
LPS-primed microglia were also activated with nigericin (10 µM) to assess the release of
ASC, NLRP3.

4.2.2. Biochemical and Elisa Analysis

Microglia cells (1 × 105 cells per well in a 24-well plate) were pre-treated for 1 h with
50 µM ginsenosides S-Rh1, R-Rh1, S-Rg3, R-Rg3, Rk1, Rg5, Rk3, Rh4 and nigericin for 6 h,
and then stimulated for 24 h with LPS (1 µg/mL). The supernatants of different cultured
microglia were collected after LPS stimulation for 24 h, the NO concentrations determined
with a nitric oxide assay kit, and the Elisa kit, respectively, determined the TNF-α, IL-1β,
and IL-6 concentrations.

4.3. Quantitative PCR and Immunocytochemistry (ASC, NLRP3) in BV-2 Cell

Total RNA was extracted using TRIzol Reagent (Life Technologies Corporation, Carls-
bad, CA, USA) following the manufacturer’s instructions. RNA concentration and integrity
were analyzed using a Nanodrop OneC microvolume UV-Vis spectrophotometer and
agarose gel electrophoresis. RNA was reverse transcribed to single-stranded cDNA using
the TIANScriptIIRT kit (KR106, Tiangen Biotech, Beijing, China). Relative mRNA levels
were quantified using TransStart Top Green qPCR SuperMix (Transgen Biotech, Beijing,
China). The reaction conditions were 10 min at 95 ◦C, followed by 40 cycles of 15 s at 95 ◦C,
60 s at 60 ◦C, and then melt curve analysis to identify PCR specificity. The sequences of the
primers used for qPCR were listed as follows in Table 2.

Table 2. PCR primer sets for RT-PCR analysis.

Gene Forward (5′→3′) Reverse (3′→5′) Length

iNOs GAGCGAGTTGTGGATTGTC CCAGGAAGTAGGTGAGGG 133 bp
TNF-α GTGAAGGGAATGGGTGTT GGTCACTGTCCCAGCATC 198 bp

IL-6 CCACCAAGAACGATAGTCAA TTTCCACGATTTCCCAGA 392 bp
IL-1β TGGGCTGGACTGTTTCTA ATCAGAGGCAAGGAGGAA 184 bp

NLRP3 ACCTCCAAGACCACTACGG CAGCCAGTGAACAGAGCC 118 bp
ASC TGCCAGGGTCACAGAAGT CCAGGTCCATCACCAAGTA 209 bp

Caspase-1 CCCCAGGCAAGCCAAATC TGAGGGTCCCAGTCAGTCC 202 bp
GAPDH ATGTACGTAGCCATCCAGGC AGGAAGGAAGGCTGGAAGAG 420 bp

Nonspecific staining was performed with 5% goat serum for 1–2 h. The cells were
incubated at 4 ◦C overnight with primary antibody anti-ASC (67824S, 1:500, Rabbit mAb,
CST) and anti-NLRP3 (MAB7578, 5 µg/mL, Monoclonal Rat IgG2A, R&D). Goat Anti-
rabbit IgG(H + L)-Alexa Flexa®488 (DE0635) and Goat Anti-rat IgG(H + L)-Dylight 594
(A23440) were used as secondary antibodies at a dilution of 1:250 and 1:500. The cells were
sequentially stained for 15 min with Hoechst 33342. Fluorescence staining was visualized
on a laser confocal microscope.

4.4. Molecular Docking Analysis

The three-dimensional (3D) coordinates of target proteins for iNOs, IL-6, TNF-α,
NLRP3, ASC, and caspase-1 were downloaded from the Protein Data Bank (http://www.
rcsb.org, accessed on 26 October 2022) and the PDB IDs were 4NOS, 1ALU, 2AZ5, 2ANQ,
6KI0, and 5MTK, respectively. The crystal structure of these proteins was determined
with X-ray diffraction and the resolution was less than 3 Å. The 3D structures of eight
ginsenosides were downloaded from ChemSpider (http://www.chemspider.com, accessed
on 26 October 2022) and drawn using the ChemBio3D Ultra 14.0 software. Molecular
docking studies were performed to investigate the binding mode of ginsenosides to target
proteins by using Autodock 4.2.6 and Discovery Studio 4.5. The docking results of receptors
and ligands were visually analyzed using the PyMOL 2.0.6 software.

http://www.rcsb.org
http://www.rcsb.org
http://www.chemspider.com
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4.5. Animal Experiment
Animal Grouping and Drug Administration

Constituting around 70% of individuals with AD, women have a greater lifetime risk
for AD than men, and display approximately a threefold higher rate of disease progression
with a broader spectrum of cognitive symptoms [46,47]. Therefore, only female animals
were used in this experiment. APP/PS1 double transgenic mice were purchased from
Beijing Hufukang Biotechnology Co., Ltd. (Beijing, China), five months old, weighing
about 20 g, female. The temperature of the animal feeding room is 24–26 ◦C, the light is
14 h, the dark is ten h, and the water and food are free.

The animal experiment was reviewed and approved by the Laboratory Animal Ethics
Review Committee of the Beijing University of Chinese Medicine (BUCM-4-2019060501-2037).
Thirty APP/PS1 double transgenic mice were randomly divided into three groups, ten
mice in each group, namely, model group, ginsenoside Rh4 group (dose of 20 mg/kg), and
donepezil hydrochloride positive drug group (dose of 2 mg/kg). The model group and
control group (ten mice of C57BL/6J strain) were given the same volume of distilled water
instead for four months.

4.6. Morris Water Maze Test, HE Staining, and Thioflavin S Staining

Four months after drug administration, the mice first completed the water maze
experiment, including the navigation experiment and space exploration experiment, to
evaluate the learning and memory of mice, as described previously [47]. The diameter of the
circular pool was 120 cm, the height was 50 cm, the water depth in the pool was 30 cm, the
bottom of the pool was white, and the water temperature was kept at (23 ± 2) ◦C. The pool
was divided into four quadrants, and a quadrant was selected for placement of a platform
equidistant from the pool wall and pool center. The platform was 12 cm in diameter, 29 cm
in height, and submerged 1 cm in water. In the experimental training stage, the mice
were placed in the maze for training once a day and adapted to the environment. After
six consecutive days, learning and memory function tests were performed. An automatic
camera and Xmaze analysis system were used to track and record animal movement
trajectories in real-time.

At the end of the administration, the mice were placed in a metabolic cage, and 12 h
urine was collected from each group and stored in a refrigerator at −80 ◦C. At the end of
the experiment, all mice were anesthetized with 1% pentobarbital (65 µL/10 g, i.p.). The
mice were sacrificed, and the brain tissues were stored in formalin solution, dehydrated in
gradient ethanol, transparent in xylene, immersed in wax, embedded in paraffin, sectioned,
and stained with HE after xylene dewaxing. The histopathological changes were observed
under a light microscope. Brain tissue was stained with thioflavins and photographed
using a confocal laser.

4.7. Metabolomics Study of Urine

The urine samples were removed from the −80 ◦C refrigerator and thawed at room
temperature. After high-speed centrifugation (14,000 rpm, 10 min, 4◦C), the supernatant
was vortexed and mixed with an equal volume of ultrapure water. The filtrate was passed
through a 0.22 µm microporous filter membrane. All the details about metabolic analysis
are contained in the Supplementary Information documentation.

4.8. Statistical Analysis

All data are shown as the mean ± SD of triplicate samples. The significance between
the control and treated groups was examined with two-tailed Student’s t-tests or a one-way
ANOVA test. Any p-values of less than 0.05 were considered significant.

5. Conclusions

In conclusion, the anti-inflammatory activity of eight rare ginsenosides in red ginseng
was compared using comprehensive in vitro data, which indicated that the configuration
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of ginsenosides was closely connected with anti-inflammatory activity. It was proven that
Rh4 has to regulate and improve its effect on AD mice through in vivo experiments. Rare
ginsenosides with a double bond have more significant anti-inflammatory activity. The
S configuration of ginsenosides has more excellent anti-inflammatory activity than the R
configuration. Ginsenosides Rk1, Rg5, Rk3, and Rh4 can significantly reduce the target
proteins NLRP3, ASC, and caspase-1 of AD in BV-2 cells by inhibiting inflammasome
signaling. The tricarboxylic acid cycle, glyoxylate and dicarboxylate metabolism, and the
sphingolipid metabolism play an important role in preventing and treating AD with Rh4.
Red ginseng, abundant in these ginsenosides, can be a valuable medicament for preventing
and treating AD.
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