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Abstract: Persimmon (Diospyros kaki) fruit have significant variation between pollination-constant
non-astringent (PCNA) and pollination-constant astringent (PCA) persimmons. The astringency
type affects not only the soluble tannin concentration but also the accumulation of individual sugars.
Thus, we comprehensively investigate the gene expression and metabolite profiles of individual
sugars to resolve the formation of flavor differences in PCNA and PCA persimmon fruit. The results
showed that soluble sugar, starch content, sucrose synthase, and sucrose invertase were significantly
different between PCNA and PCA persimmon fruit. The sucrose and starch metabolism pathway
was considerably enriched, and six sugar metabolites involving this pathway were significantly
differentially accumulated. In addition, the expression patterns of diferentially expressed genes
(such as bglX, eglC, Cel, TPS, SUS, and TREH genes) were significantly correlated with the content
of deferentially accumulated metabolites (such as starch, sucrose, and trehalose) in the sucrose
and starch metabolism pathway. These results indicated that the sucrose and starch metabolism
pathway maintained a central position of sugar metabolism between PCNA and PCA persimmon fruit.
Our results provide a theoretical basis for exploring functional genes related to sugar metabolism
and provide useful resources for future studies on the flavor differences between PCNA and PCA
persimmon fruit.
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1. Introduction

The persimmon (Diospyros kaki), a plant of the family Ebenaceae, has a long history
of cultivation [1]. The persimmon, as a major fruit variety, has a high commercial value
in Asian countries. In China, the production of persimmon fruit was approximately
3,429,438 tonnes in 2021, which accounted for 79.16% of the total production around the
world. The genetic characteristics of fruit de-astringency allow for the categorization of
persimmon into PCNA (pollination-constant non-astringent), PCA (pollination-constant
astringent), pollination-variant non-astringent (PVNA), and pollination-variant astringent
(PVA) types [2]. More than 950 cultivars are now recognized in China, practically all of
which belong to the PCA type; no PVA and PVNA varieties have been identified [3].

Soluble sugars mainly comprise fructose, sucrose, and glucose in fruit [4]. Fruit can be
categorized into the hexose-accumulating type, sucrose-accumulating type, and interme-
diate type according to the sugar composition in mature fruit [5,6]. Fruit sugar metabolic
processes are complex [7]; according to the different substrates, sugar metabolic processes
can be divided into sorbitol, sucrose, hexose-type sugar, and starch metabolism [8]. Sucrose
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metabolism is the basis of the fruit sugar metabolism; it directly affects fruit sugar accu-
mulation [4] and is vital in forming fruit quality [9]. In the fruit of Rosaceae trees, sorbitol
is important in translocating photosynthate [10]. Sucrose and sorbitol can be converted
to glucose, fructose, and starch after entering the fruit, catalyzed by a range of enzymes
implicated within sugar metabolic processes [4,11]. An essential enzyme in sucrose pro-
duction, sucrose phosphate synthase (SPS), transforms fructose-6-phosphate into sucrose
phosphate [12]. Sucrose synthase (SS) is a bifunctional enzyme that synthesizes/hydrolyzes
sucrose [13]. The enzymes are classified according to their optimum pH into neutral in-
vertase (NI) and acid invertase (AI) [14], which catalyze the sucrose decomposition into
fructose and glucose [15].

Persimmon fruit have significant variation between PCNA and PCA types [16,17]. The
astringency type influences flavonoid metabolite content, soluble tannin concentration, indi-
vidual sugar accumulation, and antioxidant capacity [17,18]. Thus, the differences in sugar
metabolism are crucial for resolving flavor formation between PCNA and PCA persimmon
fruit. This investigation probed sugar accumulation variation across PCNA/PCA fully
matured fruit by analyzing sugar content and enzyme activities between mature PCNA
varieties (‘Yohou’ and ‘Jiro’) and PCA fruit varieties (‘Zhongshi5’). We also examined the
gene expression patterns and the metabolites’ accumulation patterns in the sucrose and
starch metabolism pathway through transcriptomic and metabolomic analyses. The find-
ings of this study may provide basic information on the sugar accumulation of persimmons
and facilitate a flavor formation analysis between PCNA and PCA persimmons.

2. Results
2.1. Soluble Sugar Content, Starch Content, and Sucrose Synthase and Invertase Activity

For evaluating the differences in sugar accumulation between PCNA and PCA persim-
mons, soluble sugar fructose and glucose concentration, starch concentration, and sucrose
synthase (SPS and SS) and invertase (SS-I, AI, and NI) activities were compared in mature
PCNA (varieties ‘Jiro’ and ‘Youhou’) and PCA (variety ‘Zhongshi No.5’) persimmon fruit
(Figure 1). The fructose, glucose, SS-I, and AI activity levels in the PCNA persimmon fruit
were markedly lower than those in the PCA persimmon fruit. The SS activity was 3.2-fold
and ~3.4-fold higher within PCNA persimmon fruit compared to PCA persimmon fruit.
The starch content was slightly higher within PCNA persimmon fruit compared to PCA
fruit. Overall, the soluble sugar, starch content, and sucrose synthase and invertase of
PCNA and PCA persimmon fruit were significantly different; thus, soluble sugar accumu-
lation may be one of the important reasons for the flavor differences between PCNA and
PCA persimmon fruit.

2.2. RNA-Seq of PCNA and PCA Persimmon Mature Fruit

‘Jiro’, ‘Youhou’, and ‘Zhongshi No.5’ matured persimmon fruit transcriptome sequenc-
ing produced 62.88 GB of raw data. Each sample had 6.99 GB of high-quality data with a
Q30 score at 92.52% after the low-quality reads were removed. A total of 4417 new unique
transcripts were also discovered, and 86.05% of reads could be mapped onto the reference
D. kaki genome. This demonstrates that the sequencing data’s precision and quality were
good enough for further investigation. The samples were segregated into three distinct
groups using PCA depending upon FPKM values, with each sample creating a separate
group with its replicates. This revealed strong correlations within sample replicates and
variations among different samples (Figure 2a).

To examine expression-profile differences linked to sugar accumulation between
PCNA and PCA persimmons, the genes in nine libraries (Jiro vs. Zhongshi No.5 and
Youhou vs. Zhongshi No.5) were compared. A total of 11,088 genes were substantially
different in pairwise comparisons, with 9507 DEGs in Jiro vs. Zhongshi No.5 and 9439 DEGs
in Youhou vs. Zhongshi No.5. A total of 7858 DEGs were differently expressed in both
comparisons, according to the Venn diagram (Figure 2b–d). By comparing the RT-qPCR
assessment of nine sugar-accumulation-associated DEGs together with transcriptomic
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FPKM datasets, a gene expression pattern consistent with the transcriptomic data was
shown (Figure S1).
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Figure 1. Soluble sugar content, starch content, and key enzymes within sugar metabolism in mature 
PCNA (‘Jiro’ and ‘Youhou’) and PCA (‘Zhongshi No.5′) persimmon fruit. (a–h) Fructose, glucose, 
starch, SPS, SS, SS-I, AI, and NI, accordingly. Significant variations (p < 0.05) are represented as 
lowercase letters. All error bars illustrate SD for the mean (n = 3). 
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Figure 1. Soluble sugar content, starch content, and key enzymes within sugar metabolism in mature
PCNA (‘Jiro’ and ‘Youhou’) and PCA (‘Zhongshi No.5’) persimmon fruit. (a–h) Fructose, glucose,
starch, SPS, SS, SS-I, AI, and NI, accordingly. Significant variations (p < 0.05) are represented as
lowercase letters. All error bars illustrate SD for the mean (n = 3).
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from the same varieties were grouped. (c) The volcano plot shows the number of DEGs in Jiro vs. 
Zhongshi No.5 (|log2-fold change| > 1 and padj < 0.05). (d) DEG number in Youhou vs. Zhongshi 
No.5 was shown by the volcano plot (|log2-fold change| > 1 and padj < 0.05). 
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Youhou vs. Zhongshi No.5 was performed using the GO and KEGG databases; padj < 0.05 
represented a significant difference. The DEGs in the comparison of Jiro vs. Zhongshi No.5 
were mainly enriched in two GO terms: DNA-binding transcription regulator activity 
(GO:0140110) and transcription factor activity (GO:0003700). The DEGs in the comparison 
of Youhou vs. Zhongshi No.5 were mainly enriched in several different terms, such as the 
glucan metabolic process (GO:0044042), cellular glucan metabolic process (GO:0006073), 
cellular polysaccharide metabolic process (GO:0044264), cellular carbohydrate metabolic 
process (GO:0044262), and carbohydrate metabolic process (GO:0005975) (Figure 3a,b). 

Furthermore, KEGG enrichment analysis showed that the DEGs in Jiro vs. Zhongshi 
No.5 were significantly enriched in transcription factors, transporters, plant hormone 
signal transduction, carotenoid biosynthesis, and sucrose and starch metabolism. The 
DEGs in the comparison between Youhou and Zhongshi No.5 were significantly enriched 
in transporters, plant hormone signal transduction, carotenoid biosynthesis, carbon 
fixation in photosynthetic organisms, starch and sucrose metabolism, and biological 

Figure 2. PCNA and PCA persimmon mature fruit transcriptome. (a) Venn diagram of
unique/common DEGs between Jiro vs. Zhongshi No.5 and Youhou vs. Zhongshi No.5. (b) Principal
component analysis (PCA) of Jiro vs. Zhongshi No.5 and Youhou vs. Zhongshi No.5. The samples
from the same varieties were grouped. (c) The volcano plot shows the number of DEGs in Jiro vs.
Zhongshi No.5 (|log2-fold change| > 1 and padj < 0.05). (d) DEG number in Youhou vs. Zhongshi
No.5 was shown by the volcano plot (|log2-fold change| > 1 and padj < 0.05).

2.3. GO and KEGG Enrichment Analysis for DEGs

Further analysis of DEGs in the comparison groups Jiro vs. Zhongshi No.5 and Youhou
vs. Zhongshi No.5 was performed using the GO and KEGG databases; padj < 0.05 represented
a significant difference. The DEGs in the comparison of Jiro vs. Zhongshi No.5 were mainly
enriched in two GO terms: DNA-binding transcription regulator activity (GO:0140110) and
transcription factor activity (GO:0003700). The DEGs in the comparison of Youhou vs. Zhong-
shi No.5 were mainly enriched in several different terms, such as the glucan metabolic
process (GO:0044042), cellular glucan metabolic process (GO:0006073), cellular polysaccharide
metabolic process (GO:0044264), cellular carbohydrate metabolic process (GO:0044262), and
carbohydrate metabolic process (GO:0005975) (Figure 3a,b).
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Figure 3. DEGs in PCNA and PCA. DEG enrichment GO enrichment scatter plot for (a) Jiro vs.
Zhongshi No.5 and (b) Youhou vs. Zhongshi No.5. DEG enrichment KEGG scatter plot for (c) Jiro vs.
Zhongshi No.5 and (d) Youhou vs. Zhongshi No.5.

Furthermore, KEGG enrichment analysis showed that the DEGs in Jiro vs. Zhongshi
No.5 were significantly enriched in transcription factors, transporters, plant hormone
signal transduction, carotenoid biosynthesis, and sucrose and starch metabolism. The
DEGs in the comparison between Youhou and Zhongshi No.5 were significantly enriched
in transporters, plant hormone signal transduction, carotenoid biosynthesis, carbon fixation
in photosynthetic organisms, starch and sucrose metabolism, and biological processes
(Figure 3c,d). Though the enrichment analysis, sucrose and starch metabolic processes
were highly enriched between the two combinations. To understand the differences in
sugar accumulation between PCNA and PCA persimmon fruit, the starch and sucrose
metabolism were considered for downstream analysis (Figure 3).

2.4. Metabolic Features of Starch and Sucrose Metabolism

A total of 728 compounds were identified throughout quasi-targeted metabolome anal-
ysis, allowing us to characterize metabolic changes in mature PCNA (‘Jiro’ and ‘Youhou’)



Int. J. Mol. Sci. 2023, 24, 8599 6 of 13

and PCA (‘Zhongshi No.5’) persimmon fruit (Table S2). Organic acids and derivatives (197);
phenylpropanoids and polyketides (126); lipids and lipid-like molecules (119); organic
oxygen compounds (93); organic heterocyclic compounds (79); nucleosides, nucleotides,
and analogs (60); benzenoids (34); and organic nitrogen compounds (13) were all included
in the eight major categories of metabolites (Figure 4a). There were apparent similari-
ties within sample replicates and differences between the samples, as shown by the PCA
analysis results based on intensity values for metabolites, which clustered samples into
three groups (Figure 4b).
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For starch and sucrose metabolism, 11 metabolites were identified, including UDP-
D-glucose, GDP-α-D-glucose, sucrose, isomaltose, maltose, D-glucose 1-phosphate, α,α-
trehalose, trehalose 6-phosphate, D-glucose 6-phosphate, D-(+)-Cellobiose, D-glucopyranose,
and D-glucose (Table S3). PCNA (‘Jiro’ and ‘Youhou’) persimmon fruit differed from
PCA (‘Zhongshi No.5’) persimmon fruit in sucrose, maltose, D-(+)-Cellobiose, D-glucose
1-phosphate, α,α-trehalose, and trehalose 6-phosphate content. The contents of sucrose,
maltose, and trehalose 6-phosphate in PCA persimmon fruit were markedly higher than
compared to the two PCNA varieties of fruit, while D-glucose 1-phosphate contents were
markedly reduced compared to PCNA fruit. Most of these differentially expressed su-
crose metabolites were related to trehalose synthesis, a module of the starch and sucrose
metabolism pathway, indicating that the trehalose synthesis pathway might influence the
sugar accumulation between PCNA and PCA persimmon fruit.

2.5. Expression of Genes Implicated within Sucrose and Starch Metabolic Pathway

Fifty-eight DEGs related to the starch and sucrose metabolic pathway that encode
11 key enzymes were identified (Figure 5). These enzymes include granule-bound starch
synthase (EC:2.4.1.242), 1,4-alpha-glucan branching enzyme (EC:2.4.1.18), trehalose
6-phosphate synthase (2.4.1.15), Alpha-amylase and beta amylase (EC:3.2.1.1; 3.2.1.2),
beta-glucosidase (EC:3.2.1.21), glucan endo-1,3-beta-Dglucosidase (EC:3.2.1.39), sucrose
synthetase (EC 2.4.1.13), alpha,alpha-trehalase (EC:3.2.1.28), trehalose 6-phosphate phos-
phatase (EC:3.1.3.12), and 4-alpha-glucanotransferase (EC:2.4.1.25). Out of 58 genes,
42 were differentially expressed in both comparison groups, Jiro vs. Zhongshi No.5
and Youhou vs. Zhongshi No.5. Ten bglX, five eglC, four Cel, four TPS, one GBE1, one
GYG1, one malQ, one SUS, and one TREH genes were upregulated in Jiro and Youhou
in comparison with Zhongshi No.5, though the other genes had reduced expression
levels. Differing transcripts from identical genes were dysregulated, suggesting that
intermediate products may be being converted between each other (Figure 5a). Sugar
accumulation may be facilitated by gene expression implicated within the sucrose and
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starch metabolic pathway since there was a robust association between their expression
and metabolite levels in PCNA and PCA persimmon fruit (Figure 5b).
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PCA; (b) correlation analysis between sucrose and starch metabolic pathway DEGs and metabolite
content in PCNA and PCA persimmon fruit.

Combined KEGG analysis and gene expression patterns showed that widespread
shifts within sucrose and starch metabolic processes mainly concentrated on converting
sucrose into glucose. These changes indicate that converting sucrose into glucose might
influence sugar accumulation between PCNA and PCA persimmon fruit.

3. Discussion

Quality improvement and efficiency are currently important issues for the persimmon
industry, and flavor is the most important component of persimmon fruit quality, which
has an important impact on both the fresh and processed quality of persimmon fruit. The
fruit flavor quality varies greatly among different types and varieties, and there are few
germplasm resources with excellent flavor. In this study, we analyzed the differences in
the accumulation of various sugars and the differences in gene expression and enzyme
activities related to sugar metabolism in different PCNA and PCA types of persimmon
varieties, to further provide basic information on the sugar accumulation between PCA
and PCNA persimmon fruit and facilitate a flavor formation analysis between PCNA and
PCA persimmons.

Glucose and fructose are generally considered the main sugars, while sucrose is
present as a minor component in mature persimmon fruits [19,20]. The HPLC method is
less sensitive and has a higher detection limit, while the ultra-performance liquid chro-
matography coupled with triple quadrupole mass spectrometer has a lower detection limit
and can detect compounds generally greater than 10 ng/mL, allowing a broad-spectrum de-
termination of compounds in plant samples. Thus, the fructose and glucose contents were
determined by HPLC, and the sucrose was determined by LC/MS-MS due to its low con-
tent in this study. The fructose and glucose levels of PCNA cultivars were lower than those
of non-PCNA cultivars in tree maturity, which agrees with the work by Yildiz et al. [17].
Changes in the content of soluble sugars in fruits were closely related to their metabolic
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enzyme activities. By measuring the content of sugar fractions and enzyme activities
related to sucrose metabolism during fruit ripening in different astringent-type persimmon
varieties, it was shown that SS, SS-I, and AI activities differed significantly in PCNA and
PCA persimmons. Sucrose metabolism in red Fuji apple fruit was mainly regulated by AI
and SS enzyme activities [21]. Studies on ‘Malaysia 1’ pineapple honey found that sucrose
accumulation was significantly negatively correlated with AI activity and significantly pos-
itively correlated with SS and SPS activities [22], in agreement with studies on grapes [23].
Bubba et al. [24] showed that sucrose content peaked at the beginning of October and
then gradually decreased, while glucose and fructose content showed an increasing trend
throughout development. The above studies suggest that sucrose synthesis decreases and
catabolism increases in PCNA and PCA persimmons before ripening, which results in an
increase in soluble sugar content in ripe persimmon fruit. In addition, the difference in
resource enzyme activity changes between PCNA and PCA persimmons eventually led to
a lower soluble sugar content in PCNA persimmon fruit than in PCA persimmons.

The post-harvest conversion of starch to sugar improves fruit quality and flavor [25–28].
KEGG analysis showed that the two comparative combinations of sweet and astringent
persimmons were significantly enriched in starch and sucrose metabolism. Therefore,
analysis for differences in metabolites on the starch and sucrose pathways revealed that
PCNA (‘Jiro’ and ‘Youhou’) persimmon fruits differed from PCA (‘Zhongshi No.5’) per-
simmon fruit in trehalose and tre6p content. The trehalose metabolic pathway is involved
in processes such as cell wall cellulose synthesis, energy release from respiration, and the
carbon skeleton composition of amino acids and fatty acids, and it is central to cellular
metabolism [29]. Tre6P is a precursor of trehalose metabolism, employing UDP-glucose and
glucose-6-phosphate as substrates, which TPS catalyzes to produce Tre6P; subsequently,
Tre6P is dephosphorylated by TPP to produce trehalose [30]. Tre6P regulates various
vital activities of tissues by effectively regulating the content of UDPG and G6P, reflects a
vital signal for controlling plant growth and development [31], and is implicated within
metabolic/genomic expression regulation within plants [32]. Tre6P acts as a signaling
metabolite for sucrose; its content exists in proportion to sucrose content and affects starch
synthesis [33,34]. Tao et al. [35] found that the possible reasons for the increase in sugar
content during apple fruit development were related to the synthesis of Tre6P and trehalose.
In this study, we found that Trehalose and Tre6P were both significantly higher in mature
PCA persimmons than in PCNA persimmons, that Tre6P may act in key signaling to regu-
late the metabolic pathways of sucrose and starch in persimmon fruit, and that trehalose
can be degraded to produce large amounts of glucose under the catalysis of Treh.

RNA-seq data showed that the gene expressions encoding the starch synthesis en-
zymes (i.e., AGPase and GBE1) in PCNA and PCA persimmon mature fruits were sig-
nificantly differentially expressed. From the summary of differential genes, it can be
concluded that the conversion from sucrose to glucose may be the main difference in sugar
metabolism between PCNA and PCA mature fruits by means of the trehalose pathway,
cellulose degradation, β-D-glucosidase conversion, and glucose hydrolysis. β-glucosidase
is a hydrolytic enzyme and is the rate-limiting enzyme in the cellulose degradation pro-
cess [36]. During the metabolism of starch and sucrose in dragon fruit pulp, β-glucosidase
mainly catalyzes the generation of cellobiose from fibrous dextrin, and cellobiose generates
glucose under the catalysis of β-glucosidase [37]; in addition, β-glucosidase also catalyzes
the generation of glucose from β-D-glucoside [38]. The number of downregulated genes
encoding bglX (10 DEGs) was obviously higher than the number of upregulated genes
(3 DEGs) between PCNA and PCA persimmons; In addition, glucan hydrolysis may play
a role in the difference between PCNA and PCA persimmons. The eglC gene encodes
an endoglucanase, and the expressions of the eglC gene were also upregulated in PCNA
persimmons; starch degraded to dextrin, and then dextrin was converted to maltose and
glucose [39]. The expression of GYG1, GBE1, ISA, and malQ se in PCNA persimmons was
obviously downregulated (Figure 5b). Taken together, gene expressions that related to
sucrose and starch metabolism (sucrose hydrolyses) in PCNA persimmon were significantly
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upregulated compared to PCA persimmons, and the results confirmed the downregulation
of sucrose content. Interestingly, we found that PCNA persimmon glucose content was
not higher than that of PCA under sucrose hydrolysis, probably because sucrose content
is very low even if hydrolysis is not the main pathway of glucose synthesis, but this still
needs further investigation. In conclusion, we suggest that sucrose catabolism in the starch
and sucrose metabolic pathways may be the main difference in sugar metabolism between
PCNA and PCA persimmons.

4. Materials and Methods
4.1. Plant Material

PCNA (varieties ‘Jiro’ and ‘Youhou’) and PCA (variety ‘Zhongshi No.5’) persimmons
were planted in the forest planting base managed by the Research Institute of Non-timber
Forestry (34◦55′18′′–34◦56′27′′ N, 113◦46′14′′–113◦47′35′′ E), Yuanyang County, Henan
Province, China. These 10-year-old cultivars were managed using conventional cultivation
measures, with a row spacing of 3 × 4 m. Persimmon fruit without astringency were col-
lected during the matured-fruit phase. To ensure sample consistency, completely matured
PCA persimmons on the trees were collected when they lost enough astringency to be
eaten. The fruits of three varieties were randomly collected from the three clones with each
replicate consisting of ten fruits. Until they could be processed for metabolic detection and
RNA extraction, the flesh in the equatorial plane was flash-frozen within liquid nitrogen
and kept at −80 ◦C in a refrigerator.

4.2. Soluble Sugar, Starch, and Sucrose Synthase and Invertase Activity Measurement

The soluble sugar content in persimmon fruit was measured according to previous
studies with some modifications [40]. Approximately 1 g of fruit was grounded into
powder and then extracted in 80 ◦C water using 4.5 mL of Milli-Q® ultrapure water for
30 min. After being chilled, the sample was centrifuged at 10,000 rpm for 20 min. The pellet
extraction was performed once again, and the supernatant was saved. After combining
the supernatants, the final volume was 10 mL. High-performance liquid chromatography
(HPLC) with a CNW Athena NH2-RP column (4.6 × 250 mm, 5 µm) was used to determine
the concentration of glucose and fructose together with the following parameters: injection
volume = 10 µL, mobile phase = 75% acetonitrile, flow rate = 1.0 µL/min, and column
heater temperature = 40 ◦C. An external reference fructose and glucose solution acquired
from Beijing Solarbio Science & Technology Co., Ltd. (Beijing, China) was employed for
determining the total amount of sugar in all samples. By comparing each sample’s peak
area and retention duration to that of a calibrated sugar solution, we could determine each
sample’s concentration. Each experiment had four independent replications.

Starch content was estimated using anthrone colorimetry by Cao et al. [41]. A fruit
sample of approximately 1.0 g was placed in a prechilled mortar, ground into a homogenate
with 80% (v/v) ethanol on an ice bath and transferred into a stoppered test tube. Then,
9 mL of 80% (v/v) ethanol was added, and the mixture was boiled in a boiling water bath
for 30 min. Afterwards, it was removed and cooled in ice water, then it was centrifuged
at a low temperature of 8000 r/min for 20 min, and the supernatant was discarded. An
amount of 9 mL of 80% (v/v) ethanol was added again and the above steps were repeated
once. The residue was dried, then 2 mL of distilled water was added. It was boiled in a
boiling water bath for 15 min and cooled in ice-cold water. Then, 2 mL of cold 9.2 mol/L
perchloric acid (HClO4) was added for 15 min, followed by an addition of 6 mL of distilled
water, mixing and centrifuging at a low temperature of 8000 r/min for 10 min, and the
transference of the supernatant to a 25 mL volumetric flask. An amount of 2 mL of cold
4.6 mol/L HClO4 was added to the filter residue for 15 min, then 6 mL of distilled water
was added, followed by centrifugation for 20 min and the transference of the supernatant
to a 25 mL volumetric flask. The precipitate was washed twice with 2 mL of distilled
water, followed by centrifugation and the transference of the supernatant to the volumetric
flask. Finally, the volumetric flask was filled with distilled water to 25 mL, resulting in the
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starch extraction solution. The detection of starch was performed at 620 nm with a visible
ultraviolet spectrophotometer UV. Starch content was determined according to an external
sucrose standard solution (Beijing Solarbio Science & Technology Co., Ltd.).

The enzyme activities of NI, AI, sucrose synthase-invertase (SS-I), SS, and SPS were
determined by using the kit purchased from Beijing Solarbio Science & Technology Co., Ltd.
(BC0565, BC0575, BC0585, BC0605, and BC4315). These assays were conducted according
to the protocol of the correlated kit.

4.3. Transcriptome Sequencing

Total RNA was isolated with TRIzol Reagent (B511321; Sangon, Shanghai, China).
Paired-end sequencing libraries were prepared with three biological replicates for each
sample and subsequently placed for sequencing through the Illumina™ NovaSeq® plat-
form (Illumina™, San Diego, CA, USA). We used the hexaploid persimmon genome (D.
kaki (variety ‘Xiaoguo-tianshi’, unpublished) as a reference sequence for alignment and sub-
sequent analysis. Sequencing reads and read alignments were compared using HISAT2 [42]
and assembled using StringTie. To determine how many reads were mapped to each gene,
we utilized FeatureCounts® v1.5.0-p3 to further predict new transcripts [43]. The Frag-
ments Per Kilobase of Transcript per Million Mapping Reads (FPKM) was then calculated
by multiplying its length by the number of mapped reads. We used DESeq2 (1.18.0) to
compare the expression levels of two distinct groups [44]. Genes that had a padj ≤0.05 and
|log2-fold change| ≥ 1 were considered DEGs.

4.4. Metabolite Profiling Analysis

Extracts of 100 mg of persimmon fruit powder were made by vortexing 500 µL of
80% (v/v) prechilled methanol. There were 3 biological replicates for each sample. Then,
500 µL of the supernatant from centrifugation (15,000× g, 4 ◦C/20 min) was diluted
into 53% methanol using Milli-Q® ultrapure water. After that, the samples were filtered
(0.22 µm membrane filter) and subjected to centrifuging (15,000× g for 20 min at 4 ◦C).
The persimmon fruit extract samples were separated through the ExionLCTM AD system
(SCIEX™) connected to a QTRAP®6500+ mass spectrometer (SCIEX™) and fitted with an
Xselect HSS T3 column (2.1 × 150 mm, 2.5 µm). The column temperature was 50 ◦C, the
injection volume was 1.5 µL, and the flow rate was 0.4 mL/min; these were the settings used
for the analysis. Water was the mobile phase. The gradient program for phase A/phase
B was 98:2 (v/v) at 0 min, 98:2 (v/v) at 2 min, 0:100 (v/v) at 15 min, 0:100 (v/v) at 17 min,
98:2 (v/v) at 17.1 min, and 98:2 (v/v) at 20 min.

To check the system’s consistency and the experimental data’s accuracy, samples
were placed into quality control (QC) within a queue mode. Electrospray ionization
(ESI) source settings allowed each sample to be run in both negative and positive ion
modes. Mass spectrum databases from the MRM (Multiple Reaction Monitoring) of the
Novogene in-house database were consulted to compare the spectra and the retention
index (RI) with the reference compounds previously examined with the same system.
KEGG (http://www.genome.jp/kegg/) [45], HMDB (http://www.hmdb.ca/) [46], and
Lipidmaps databases (http://www.lipidmaps.org/) [47] were used for metabolite anno-
tation. Principal components analysis (PCA) was performed at metaX [48]. Differential
metabolites were defined as those with a p-value < 0.05 and fold change ≥ 2.

4.5. Quantitative RT-PCR Assessments

The cDNA used in the RNA-seq study was converted from total RNA through a TRUE-
script First-Strand® cDNA Synthesis Kit (Kemix™, Beijing, China). RT-qPCR runs were
conducted with the LightCycler 480 II (Roche), using 96-well plates. Each gene underwent
a three-minute reaction at 95 ◦C, with 45 subsequent cycles of 5 s at that temperature and
30 cycles at 55–60 ◦C. Using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a
reference gene [49], the 2−∆∆Ct technique determined the relative expression for each gene,
and three replicates of each reaction were performed. A Pearson’s correlation assessment

http://www.genome.jp/kegg/
http://www.hmdb.ca/
http://www.lipidmaps.org/
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was conducted through SPSS® (v 24.0; SPSS Inc.™, Chicago, IL, USA). The RT-qPCR
primers are listed in Table S1.

4.6. Statistical Analysis

ANOVA and the post hoc test were performed using Excel 2019 and SPSS 24.0 software.
The Pearson correlation analysis was carried out through Hiplot [50].

5. Conclusions

In conclusion, a comprehensive transcriptomic and metabolomic analysis of PCNA
(‘Jiro’ and ‘Yohou’) and PCA (‘Zhongshi No.5’) persimmon fruit was conducted. The
concentration of soluble sugar, starch content, and sucrose synthase and invertase of PCNA
and PCA persimmons were significantly different. For example, the fructose, glucose, SS-I,
and AI activity levels in the PCNA persimmon fruit were markedly lower than those in
the PCA persimmon fruit. Through the KEGG enrichment analysis, it was found that
the sucrose and starch metabolic pathways were highly enriched in the PCNA and PCA
fruit. For the starch and sucrose metabolism pathway, 11 metabolites were identified.
Moreover, most of these differentially accumulated sucrose metabolites were related to
trehalose synthesis, indicating that the trehalose synthesis pathway might influence the
sugar variation between PCNA and PCA persimmons. In addition, the expression patterns
of deferentially expressed genes (such as bglX, eglC, Cel, TPS, SUS, and TREH genes)
were significantly correlated with the content of deferentially accumulated metabolites
(such as starch, sucrose, and trehalose). These results showed that the sucrose and starch
metabolism pathway maintained a central position of sugar variation between PCNA
and PCA fruit. This study provides basic information and useful resources for future
studies on the influence of astringency types on sugar differences between PCNA and PCA
persimmon fruit.
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