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Abstract: Progressive multifocal leukoencephalopathy (PML) is a rare demyelinating disease caused
by infection with JC Polyomavirus (JCPyV). Despite the identification of the disease and isolation of
the causative pathogen over fifty years ago, no antiviral treatments or prophylactic vaccines exist.
Disease onset is usually associated with immunosuppression, and current treatment guidelines are
limited to restoring immune function. This review summarizes the drugs and small molecules that
have been shown to inhibit JCPyV infection and spread. Paying attention to historical developments
in the field, we discuss key steps of the virus lifecycle and antivirals known to inhibit each event. We
review current obstacles in PML drug discovery, including the difficulties associated with compound
penetrance into the central nervous system. We also summarize recent findings in our laboratory
regarding the potent anti-JCPyV activity of a novel compound that antagonizes the virus-induced
signaling events necessary to establish a productive infection. Understanding the current panel of
antiviral compounds will help center the field for future drug discovery efforts.

Keywords: polyomavirus; antiviral; drug discovery; progressive multilocal encephalopathy; PML;
signaling inhibitor; GW-5074

1. Introduction

Polyomaviruses are small, non-enveloped, double-stranded DNA viruses of the
family Polyomaviridae [1,2]. Originally grouped with the papillomaviruses into the ob-
solete Papovaviridae mega-family, roughly 100 biologically and genetically distinct poly-
omaviruses have been identified [1,2]. Each polyomavirus is species-specific, and unique
polyomaviruses have been isolated from diverse organisms, including dolphins, scorpions,
monkeys, and geese [3–6]. Fourteen polyomaviruses are known to infect humans, but
only four cause disease: JC polyomavirus (JCPyV), BK polyomavirus (BKPyV), Merkel cell
polyomavirus, and Trichodysplasia spinulosa-associated polyomavirus [7,8].

Polyomavirus infection is ubiquitous, as between 60–80% of adults are seropositive for
JCPyV [9–12]. JCPyV is thought to persist in the kidneys, and asymptomatic individuals
secrete virus in the urine [13,14]. However, human polyomaviruses can all cause seri-
ous and often untreatable disease under immunosuppressive conditions, including those
caused by lymphoproliferative disorders, HIV/AIDS, and the use of immunomodulatory
drugs [7,12–14]. JCPyV is the causative agent of progressive multifocal leukoencephalopa-
thy (PML), a rare but fatal demyelinating disease caused by lytic infection of oligodendro-
cytes and astrocytes [15]. Although PML has been known to scientists and physicians for
nearly 70 years, there are no treatments for this disease [12–14].

2. Progressive Multifocal Leukoencephalopathy
2.1. History

In 1958, Åstrom, Mancall, and Richardson first described a novel demyelinating
disorder characterized by a “progressive increase in the size of the lesions” in patients with
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chronic lymphatic leukemia and Hodgkin’s lymphoma [16]. The presence of viral inclusion
bodies in oligodendrocytes and astrocytes suggested a viral origin [16]. Subsequent reports
visualized virus-like particles in brain sections taken from a patient with PML, and viruses
derived from this patient were cultured by 1971 [17–19]. These viruses were found to
neither cross-react with antisera against known papillomaviruses or polyomaviruses, nor
could they infect the host cells of known papillomaviruses or polyomaviruses [17–19].
These observations allowed for identification of a novel human virus, named JC after the
initials of the patient from whom the virus was first isolated [18].

The historical incidence of PML can be thought of in three phases (Figure 1). PML
has been traditionally associated with (1) hematological malignancies, (2) HIV/AIDS, and
(3) the use of immunomodulatory drugs.
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Figure 1. Graphical history of PML incidence. The historical incidence of PML can be separated into
three distinct phases based on the primary cause of underlying immunosuppression. Created with
BioRender.com.

Initial cases of PML, including those published in 1958, were mostly restricted to
patients with lymphoproliferative disorders. PML remained an obscure disease until the
mid-1980s, as just 230 cases of PML were recorded in the United States between 1958
and 1984 [20,21]. New York City physicians identified the first case of HIV-associated
PML in 1982, and during the 1980s, epidemiological studies suggest that the incidence
of PML increased nearly 50-fold compared to previous decades due to the spread of
HIV/AIDS [22–24]. PML became an AIDS-defining illness, and HIV-associated PML is
estimated to have occurred in up to 10% of HIV/AIDS cases [25–27]. By the mid-2000s,
the adoption of highly active antiretroviral therapy (HAART) significantly decreased
the incidence and fatality of HIV-associated PML in the United States [23]. While HIV-
associated PML is no longer the primary cause of PML, HIV-associated PML still accounts
for ~80% of PML cases and causes significant morbidity [24].

In 2005, a new population of at-risk patients emerged when PML was associated with
Biogen’s natalizumab (Tysabri), an immunosuppressive monoclonal antibody
therapy [28–30]. Natalizumab is used to treat inflammatory conditions, including multiple
sclerosis and Crohn’s disease. The risk for natalizumab-treated patients to develop PML
depends on multiple factors, including prior immunosuppressant use, JCPyV-seropositivity,
and length of natalizumab treatment [31,32]. Still, the incidence of natalizumab-associated
PML reached 13 in 1000 for patients in the highest-risk groups, causing Biogen to recall
natalizumab in 2006 [33,34]. By the mid-2010s, enhanced monitoring strategies, including
extended-interval dosing schemes, decreased the incidence of PML in natalizumab-treated
patients without compromising therapeutic efficacy [35–37]. Recent studies also conclude
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that a subset of PML patients (~10%) express rare deleterious variants of four genes that
regulate various aspects of the immune response, including the complement cascade and
antigen receptor expression on T-cells. As such, genetic screening may further reduce the
incidence of PML by alerting healthcare providers to high-risk patients before beginning
immunomodulatory therapies like natalizumab [38,39].

Ultimately, PML is considered a rare disease, regardless of the primary cause. As of
2023, the incidence of PML is around 1 in 200,000 [40].

2.2. Clinical Presentation

In all cases of PML, under immunosuppressive or immunomodulatory conditions,
JCPyV invades the central nervous system (CNS) and infects oligodendrocytes and astro-
cytes. The timing of JCPyV migration in PML pathogenesis is controversial, as whether
JCPyV enters the CNS before immunosuppression or establishes a persistent brain infection
after a loss of routine immune surveillance is not known [12–14]. Diagnosis of PML requires
(1) detection of JCPyV DNA in the cerebral spinal fluid, (2) consistent clinical presentation
usually including a history of immunosuppression, and (3) characteristic white matter
lesions caused by lytic infection of the myelin-producing oligodendrocytes [31]. Symptoms
are varied due to the diverse localization of lesions but typically include visual deficits,
motor weakness, gait disturbance, and cognitive decline [16,41,42]. Whereas the incidence
of PML is rare, the prognosis of patients affected with PML is extremely poor, as PML is
associated with a 30–50% mortality in the first few months after diagnosis, and patients
that survive are often left with permanent neurological deficits [43–46].

2.3. Management

There are no antiviral treatments or prophylactic vaccines for PML, and treatment
guidelines focus on restoring immune surveillance. Extended-interval dosing of natal-
izumab and HAART have reduced the incidence and severity of PML in the primary
populations, but despite these successful management strategies, epidemiological, im-
munological, and virological obstacles still exist [31,35,36,47]. The reestablishment of
immune activity is associated with immune reconstitution inflammatory syndrome (IRIS),
a hyperactive immune response that occurs in up to 18% of patients with HIV-associated
PML and nearly 70% of patients with natalizumab-associated PML [47–49]. High-dose
glucocorticosteroids are prescribed to reduce PML-IRIS, but this treatment simultaneously
antagonizes a patient’s ability to fight JCPyV [48,49]. In total, PML-IRIS is associated with a
28% mortality rate [47–49]. While the incidence of HIV- or natalizumab-associated PML has
decreased, new risk groups are emerging, as reports estimate that the number of autoim-
mune diseases associated with PML has increased since 2006 [47]. This increase can likely
be attributed to new immunomodulatory agents [50,51]. More research is therefore needed
to identify viable treatment strategies for PML because there are no antiviral therapies or
vaccines for this disease.

3. JCPyV Genome

A significant body of work has characterized the genome of many polyomaviruses,
including JCPyV and simian virus 40 (SV40); the SV40 genome was one of the first whole
genomes synthesized [52]. Like other polyomaviruses, JCPyV contains a small, circular,
double-stranded DNA genome of around 5000 base pairs (Figure 2). The JCPyV genome is
separated into two segments corresponding to its biphasic replication cycle. The early gene
segment, which is transcribed first, codes for large T-antigen (TAg), small t-antigen (tAg),
as well as T-antigen splice variants. The late gene segment codes for the structural capsid
proteins viral protein (VP) 1, VP2, and VP3, agnoprotein, and a regulatory microRNA
(miR-J1) [53]. These distinct segments are separated by a non-coding control region (NCCR)
containing an origin of replication, enhancers, and promoters organized into genomic blocks
that are named alphabetically. Viral gene expression is regulated by complex interactions
between host transcription factors, viral proteins, and the NCCR [54,55]. Transcription of
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each segment occurs in the opposite direction. Interestingly, while the early and late genes
are organized into discrete genetic regions, the late miR-J1gene is encoded within the early
TAg gene but is transcribed in the opposite sense [56]. The actions of these viral proteins as
well as their potential as therapeutic targets are discussed in the following sections.
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Figure 2. JCPyV genome. The 5130 kb JCPyV genome contains two segments: the early gene
segment that includes large T-antigen (Tag) and small t-antigen (tAg), and the late gene segment that
includes the structural proteins VP1, VP2, and VP3. The non-coding control region (NCCR) separates
these segments, and segments are transcribed in the opposite direction. ORI = origin of replication.
Agno = agnoprotein. Created with BioRender.com.

4. Inhibitors of JCPyV Infection and Spread

Unlike more complex pathogenic viruses, including HIV-1 or SARS-CoV-2, the JCPyV
genome only encodes one enzyme. The relative simplicity of the JCPyV genome has
hindered the development of direct-acting antiviral agents, which target essential virus
components. Historically, drug development efforts have disproportionately favored
this approach, and direct-acting compounds make up the vast majority (~90%) of FDA-
approved antivirals as of 2020 [57,58]. In contrast, the primary focus of anti-JCPyV de-
velopment has been host-directed antivirals, which inhibit cellular components necessary
for virus infection. Whereas host-directed antivirals may induce toxicity by purposely
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disrupting a host process, targeting host factors minimizes the chance a virus mutates to
develop drug resistance [57].

Extensive research characterizing the JCPyV lifecycle, especially virus attachment,
entry, and signaling, has identified many therapeutic targets for antivirals. Key steps of the
virus lifecycle, as well as representative small molecule inhibitors with in vitro or in vivo
anti-JCPyV activity, are shown in Figure 3 and Table 1.
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Figure 3. Events of the JCPyV lifecycle, including representative inhibitors of virus infection
and spread. JCPyV may enter target cells as free virus through receptor-dependent mechanisms
(1) and when associated with extracellular vesicles (EVs) through receptor-independent mechanisms
(2). Virus-induced signaling events (3), which differ between cellular contexts, support JCPyV repli-
cation and occur immediately upon virus binding and internalization. Free virus (and potentially
EV-associated virus) is internalized via clathrin-mediated endocytosis (4). JCPyV then undergoes
retrograde transport to the ER (5), where virus is uncoated and released back into the cytoplasm
(6). After entering the nucleus, JCPyV gene expression occurs in two discrete phases. Transcription of
early phase genes (7) produces the potent oncoprotein large T-Antigen (TAg) and small t-Antigen
(tAg). Late-phase gene expression (8) generates the structural proteins VP1, VP2, and VP3, which are
imported back into the nucleus for virion assembly (9). JCPyV escapes the nucleus via an unknown
mechanism (10) and may associate with extracellular vesicles (11). After sufficient virion production,
the host cell lyses (12), releasing free virus and JCPyV-associated EVs. Representative inhibitors,
including the impacted stage of the virus lifecycle, are shown in boxes. Created with BioRender.com.

Because JCPyV causes neurological disease, evaluating whether lead compounds can
accumulate in the CNS at therapeutic concentrations is crucial.
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4.1. Attachment Inhibitors

Viruses must enter host cells to replicate, so the initial interaction between a virus
and host surface receptors plays a major role in the infectious lifecycle. Like many
viruses, including coronaviruses, adenoviruses, and picornaviruses, JCPyV initially binds
to sialic acids, which are monosaccharide modifications to membrane-bound lipids or
proteins [59,60]. The major capsid protein of JCPyV, VP1, specifically binds to an α(2,6)-
linked sialic acid moiety on lactotetrasaccharide series C (LSTc) [61,62]. This initial binding
partner is distinct from the cellular receptors of other polyomaviruses, including SV40 and
BKPyV, which recognize different oligosaccharides, and is critical for JCPyV infection, as
mutations that disrupt LSTc binding render JCPyV non-infectious [59,61].

Decoy receptors, defined as soluble receptors that can neutralize free virus by out-
competing host receptors for capsid binding sites, are an extremely promising topic in
drug development. Computationally designed decoy receptors have been synthesized
as a potential therapeutic against SARS-CoV-2, the causative agent of COVID-19 [63].
Soluble LSTc, but not other lactoseries tetrasaccharides, has been shown to reduce JCPyV
infection [64]. Similarly, high-throughput in silico screening of ~3500 small molecules
identified 11 compounds with high affinity for the JCPyV VP1-LSTc binding site. The
most promising compound, AY4, inhibited JCPyV binding to SVG-A glial cells in a dose-
dependent manner, as measured by flow cytometry [65]. The ability of AY4 to exert
therapeutic activity within the CNS has not been investigated.

4.2. Entry Inhibitors

Free JCPyV has been shown to require binding to the serotonin receptor (5-HT2R) to
infect target cells [64,66]. 5-HT2R, a family of three isoforms of G-protein-coupled receptors
that bind the neurotransmitter serotonin, are highly expressed in the CNS and regulate
diverse functions, including sleep, appetite, and mood. While 5-HT2R is not believed to
be required for JCPyV attachment, the 5-HT2R-JCPyV binding event initiates a complex
signaling pathway that culminates in viral entry and supports viral replication [64,66–70].

Because 5-HT2R is the target of many FDA-approved therapeutics for psychiatric
disorders, the discovery that 5-HT2R mediates virus entry prompted the investigation of
whether antidepressant and antipsychotic medications could be co-opted to treat PML [7].
Many 5-HT2R inhibitors show in vitro activity against JCPyV infection, including clozapine,
ketanserin, ritanserin, metoclopramide, cyproheptadine, and mianserin [66,71,72]. While
the breadth of this drug class appears promising, many 5-HT2R antagonists fail to slow the
spread of an established JCPyV infection, which is important for managing PML because
viral spread occurs long before symptom onset [71].

5-HT2R inhibitors have been used in PML patients with ambiguous results. Of these,
mirtazapine has been used in single cases of idiopathic PML and drug-associated PML,
and some mirtazapine-treated patients experience improvement in as early as six months
following daily therapy [73,74]. Virological or clinical improvements, evaluated by JCPyV
load and lesion severity, respectively, were associated with nightly mirtazapine use in
four outpatient cases of HIV-associated PML, with the most significant improvement
occurring when mirtazapine therapy began closest to symptom onset [75]. Additional
cases of HIV-associated PML have been shown to respond to mirtazapine in combination
with other antiviral agents, including mefloquine, cytarabine, cidofovir, and interferon
α [76–78]. However, one meta-review of 5 cohort studies and 74 case reports identified
little additional benefit to mirtazapine therapy [79]. Oral administration of the second-
generation antipsychotic risperidone achieved complete disease remission in one case
of lymphoblastic leukemia-associated PML, and a combination therapy of risperidone,
mefloquine, and mirtazapine was associated with improved neurological findings in two
cases of autoimmunity-associated PML and drug-associated PML [80–82]. While promising,
these clinical data have been generated by individual case reports and more research is
needed to assess the efficacy of 5-HT2R inhibitors in PML.
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Following attachment and 5-HT2R binding, JCPyV is primarily internalized via
clathrin-mediated endocytosis (CME) [59,68,83]. While also a 5-HT2R antagonist, the
second-generation antipsychotic chlorpromazine also decreases JCPyV infection by prevent-
ing clathrin recycling [83]. However, combination therapy of chlorpromazine, high-dose
cidofovir, and immunoglobulins in lymphoblastic leukemia-associated PML was associated
with worsening demyelination and death after 3 months of treatment [84]. Additionally,
the maximum plasma and CNS concentrations of chlorpromazine are significantly lower
than concentrations shown to be therapeutic in vitro, which may hinder its applicability
in the clinic [7]. However, multiple compounds that antagonize different components
of CME, such as Pitstop2 and Dynole 34-2, have been shown to reduce JCPyV infection
in vitro, which underscores the potential for CME as an anti-JCPyV target [68]. JCPyV may
also undergo macropinocytosis as an alternative internalization mechanism, as EIPA, an
inhibitor of macropinocytosis, also reduced JCPyV uptake and infection in a reversible
manner [85].

A significant complication of targeting virus attachment and entry is the association
of JCPyV with extracellular vesicles (EVs), which Morris-Love et al. define as receptor-
independent infection [86]. Recent research shows that JCPyV is packaged in EVs, which
are small, lipid-bound vesicles secreted by infected cells [85,87,88]. This host-derived
membrane shields JCPyV from neutralizing antibodies, and cells without LSTc and 5-HT2R
can still be infected by JCPyV-associated EVs, but cannot be infected by free JCPyV [85,88].
Moreover, JCPyV-associated EVs have been shown to enter cells by clathrin-dependent and
clathrin-independent mechanisms of endocytosis depending on the cell type of origin [85].
The difficulties associated with this receptor-independent infection mechanism suggest
that attachment and entry inhibitors, including LSTc analogs, 5-HT2R inhibitors, and
CME inhibitors are unlikely to reduce the infection or spread of JCPyV in vivo, as JCPyV-
associated EVs appear to play an important role in PML pathogenesis [87].

4.3. Endosome Acidification Inhibitors

JCPyV relies on membrane-bound vesicles called endosomes for intracellular transport,
and virus colocalizes with endosomal markers as early as 15 min post internalization [89].
Like other viruses, including HIV and SARS-CoV-2, acidification of these endosomes
is required for JCPyV infection [7,90]. Endosome acidification inhibitors have therefore
received significant attention as novel antivirals. The bacterial products bafilomycin A1 and
monensin reduce JCPyV infection at nanomolar concentrations by inhibiting membrane-
bound proton pumps [90,91]. A high-throughput screen identified mefloquine, a treatment
for chloroquine-resistant malaria, as a potential anti-JCPyV compound due to its ability
to antagonize endosomal acidification [7,92]. Because mefloquine has an established
reputation as a well-tolerated, pharmacologically active compound, many studies have
evaluated the therapeutic efficacy of monotherapies and combination therapies featuring
mefloquine. A randomized clinical trial of mostly HIV-associated PML patients showed no
significant difference associated with mefloquine monotherapy as evaluated by JCPyV loads
and clinical or virological improvement [93]. Because high concentrations of mefloquine
could be detected in brain samples, the lack of antiviral efficacy associated with mefloquine
treatment is unlikely to be attributed to failure to cross into the CNS [93]. However,
some individual case studies report reductions of JCPyV DNA and clinical or virological
improvement when patients are treated with mefloquine in combination with the 5-HT2R
antagonist mirtazapine [76,77,93–96]. In these cases, separating the effects of each drug
appears difficult. More research is therefore needed to understand the clinical efficacy of
mefloquine monotherapy and combination therapy, especially in PML cases not associated
with HIV/AIDS.

4.4. Signaling Inhibitors

While research has extensively characterized the early events in the viral lifecycle, the
complex symphony of virus-induced signaling events required to support JCPyV infection
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is only beginning to be understood. Recent research has shown that these signaling events
are highly context-dependent and differ between model cell types [70,97,98]. Additionally,
how these signaling events change during receptor-independent infection via EVs is not
clear. Nevertheless, because there are many already-approved cancer therapeutics that
antagonize signaling cascades, the development of signaling inhibitors is a promising new
direction of anti-JCPyV drug discovery.

Many studies of JCPyV are conducted in the SVG-A fetal glial cell line, which is
transformed with SV40 Large T-antigen [99]. In these cells, JCPyV activates the mitogen-
activated protein kinase extracellular response kinase (MAPK-ERK)
pathway [67,69,70,97,100,101]. The MAPK-ERK pathway mediates cellular responses to the
external stimuli that direct cells to proliferate and survive. The external signaling molecule
that initiates the cascade may bind to a variety of extracellular receptors, including epi-
dermal growth factor receptor or 5-HT2R, but MAPK-ERK signaling events converge on
the kinases Raf, MEK, and ERK [100,102,103]. The importance of this signaling cascade in
the JCPyV lifecycle is supported by the observation that the genetic knockdown of these
kinases potently reduces JCPyV infection [67,69]. JCPyV-induced ERK phosphorylation
occurs immediately upon virion internalization, peaks at two hours post internalization,
and decreases until nine hours post internalization. Later ERK phosphorylation is also
observed, which could facilitate late-stage events in the viral lifecycle, including replica-
tion [67,69,70]. Many of the transcription factors required for JCPyV infection, including
the nuclear factor of activated T-cells (NFAT), are downstream of ERK, suggesting that ERK
may be a critical mediator of virus replication in SVG-A cells [104].

Chemical inhibitors of the MAPK-ERK cascade, including U0126 (MEK1/2), PD98059
(MEK1), and sorafenib (c-Raf, receptor tyrosine kinase), potently reduce JCPyV infection
in SVG-A cells by inhibiting ERK phosphorylation [67,101]. Other compounds, including
genistein, target initial signaling events by inhibiting receptor tyrosine kinases [70]. Be-
cause other polyomaviruses, including SV40, do not require activation of the MAPK-ERK
cascade to infect target cells, the effect of these MAPK-ERK antagonists seems specific to
JCPyV [59,67,100].

In contrast to the virus-induced MAPK-ERK signaling events observed in SVG-A
cells, JCPyV requires the phosphoinositide 3-kinase (PI3K)—protein kinase B (Akt)—
molecular target of the rapamycin (mTOR) cascade to infect primary normal human astro-
cytes [59,67,69,70,97,100,101]. While the MAPK-ERK and PI3K-Akt-mTOR pathways show
significant cross-inhibition and cross-activation, these cascades involve distinct kinases and
phosphatases [105]. A distinct panel of signaling inhibitors is therefore effective in each
target cell line. In primary normal human astrocytes, PI3K-Akt-mTOR inhibitors, including
wortmannin (PI3K), MK2206 (Akt), and rapamycin (mTOR), reduce JCPyV infection, but
MAPK-ERK inhibitors like U0126 lose antiviral activity [97]. However, MAPK-ERK in-
hibitors reduce JCPyV infection in normal human astrocytes when transformed with SV40
TAg, suggesting that the involvement of MAPK-ERK in SVG-A cells may be a consequence
of immortalization. No clinical results have been reported with PML patients treated with
signaling inhibitors [7]. The relative importance of each signaling pathway has not been
explored in other cell types that may contribute to PML pathogenesis, including the choroid
plexus epithelium and meninges [106]. As such, more research is needed to resolve these
context-dependent complexities.

Signaling inhibitors with targets other than MAPK-ERK or PI3K-Akt-mTOR have
also been reported to reduce JCPyV infection. The involvement of the calcium-sensitive
transcription factor NFAT in JCPyV infection suggests that calcium signaling could play
a role in the viral lifecycle, and topiramate, a blood–brain-barrier-permeable antagonist
of calcium-mediated signaling, inhibits JCPyV infection [100,104,107]. Cyclosporine, the
canonical inhibitor of calcineurin-NFAT signaling, also reduces JCPyV replication [108].
Additional inhibitors of calcium signaling also appear to possess anti-JCPyV activity via
inhibition of calcium flux through the inositol triphosphate pathway, including U73122
(Phospholipase C), 2-APB (IP3R), and Xestospongin C (IP3R) [109]. Because calcium
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signaling is an extremely important physiological event that regulates diverse responses,
including muscle contraction and neuronal conduction, targeting calcium efflux to reduce
JCPyV infection could cause unintended deleterious side effects, especially within the
CNS. The cyclin-dependent kinase inhibitor roscovitine also reduces JCPyV proliferation
by inhibiting TAg phosphorylation in neuroblast-derived cell lines [110]. Despite the
identification of these antivirals, the involvement of cyclin-dependent kinase-mediated
and calcium-mediated signaling in JCPyV infection is not fully understood and requires
further research.

4.5. Trafficking Inhibitors

JCPyV undergoes trafficking from the cellular periphery to the endoplasmic reticulum
(ER) via microtubules and intermediate filaments [90,111,112]. This process, called retro-
grade transport, can be inhibited by the dihydroquinazolinones Retro-2cycl, Retro-2.1, and
DHQZ36, which all prevent JCPyV colocalization with the ER [111,112]. These compounds
are better tolerated in vitro than the canonical retrograde transport inhibitor brefeldin
A, a macrocycle that reduces JCPyV infection by altering cellular recognition of vesicles
destined for the ER [89]. Retro-2.1, a second-generation dihydroquinazolinone, reduces
JCPyV infection at eightfold lower concentrations than the parent drug, Retro-2cycl, with
minimal cytotoxic effects at therapeutic concentrations [112]. Preclinical studies evaluating
the ability of dihydroquinazolinone to exert therapeutic activity within the CNS are lacking.

Antimitotic compounds that alter cytoskeletal architecture also possess anti-JCPyV
activity. Nocodazole and cytochalasin D, which inhibit microtubule and actin assembly,
respectively, have been shown to inhibit JCPyV infection [90].

4.6. Uncoating Inhibitors

Once in the ER, resident isomerases catalyze changes in the viral capsid to reveal the
JCPyV genome [59,111]. Viral uncoating may be calcium-dependent, as transfection by JC
Pseudovirus, a novel virus-like particle used to study early events of the virus lifecycle, can
be inhibited with thapsigargin, an inhibitor of ER-bound calcium channels [91].

4.7. Nuclear Transport Inhibitors

At multiple points in the virus lifecycle, JCPyV DNA or newly synthesized viral
proteins traffic between the nucleus and the cytoplasm. These mechanisms are not unique to
JCPyV and are shared by many host and viral proteins. The nuclear entry of polyomavirus
capsid proteins and T-antigens appears to be mediated by importins, which direct proteins
tagged with nuclear localization signals into the nucleus [113]. The canonical importin
inhibitor MK-933 reduces BKPyV infection, but similar data have not been reported for
JCPyV [114]. The nuclear export inhibitor verdinexor potently reduces JCPyV infection by
disrupting transport of viral components out of the nucleus [115]. Verdinexor is licensed to
treat canine lymphoma and shows antiviral activity against respiratory syncytial virus and
influenza virus, underscoring the potential safety and efficacy of targeting nuclear export
to reduce virus infection [116].

4.8. Large T-Antigen Inhibitors

JCPyV TAg contains an ATP-dependent helicase domain that unwinds viral DNA so
various proteins involved in replication may interact with the NCCR. Other TAg domains
also play an important role in the virus lifecycle via inhibition of host tumor suppressors
and initiation of the cell cycle [117–119]. Because the TAg ATPase is the only enzyme
encoded in the JCPyV genome, the possibility of developing virus-directed antivirals with
limited off-target toxicity is extremely attractive.

A high-throughput screen of blood–brain-barrier-permeable compounds identified
LDN-0012754, a substituted indole with potent inhibitory activity of TAg ATPase [117].
Later studies investigated TAg inhibitors based on different heterocyclic cores, including
carbonyl-containing dihydropyrimidinones and carbonylothioyl-containing dihydropy-
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rimidinethiones. The most potent TAg inhibitor, AMT580-043, inhibits JCPyV infection at
nearly fourfold smaller concentrations than the first-generation inhibitor SMAL. Interest-
ingly, despite targeting a viral protein, AMT580-043 was more toxic in vitro than established
anti-JCPyV compounds [120]. Some speculate that targeting TAg ATPase without affecting
the other TAg domains may increase the risk of oncogenesis, as TAg is a potent oncogene [7].
Nevertheless, exploiting the structural differences between host and viral ATP-dependent
helicases to develop specific antiviral agents warrants further compound optimization and
preclinical investigation.

4.9. Replication Inhibitors

Because JCPyV does not encode a polymerase, the virus relies on host machinery for
replication. As such, many established antiviral and anticancer drugs have been evaluated
as potential anti-JCPyV compounds. Due to their longer history, many of the metabolic
steps required to activate these inhibitors have been extensively characterized. Replication
inhibitors antagonize multiple aspects of JCPyV replication, including DNA elongation,
nucleic acid synthesis, topoisomerase-mediated stabilization of the unwound DNA, and
DNA repair mechanisms.

Used to treat certain kinds of leukemia, a phosphorylated metabolite of the nucle-
oside analog cytarabine antagonizes viral replication by competitively inhibiting DNA
polymerase [7]. Cytarabine potently inhibits JCPyV replication in a persistently infected
cell line, and cytarabine treatment was first attempted in the early 1970s [121,122]. Since
then, clinical trials have failed to identify any benefit associated with cytarabine therapy.
Over 70% of patients in the cytarabine treatment group in one uncontrolled study of HIV-
associated PML experienced disease progression and had increased JCPyV viral loads [123].
A later multicenter trial found no difference in the prognosis of HIV-associated PML pa-
tients when treated with either intravenous or intrathecal cytarabine, relative to treatment
with HAART alone [124]. Importantly, cytarabine also causes significant neurological
toxicity in up to 15% of patients. Intrathecal cytarabine is associated with irreversible
spinal cord damage, and intravenous cytarabine is associated with peripheral neuropathy,
seizures, and an acute cerebellar syndrome [125]. Due to the high toxicity and limited
antiviral activity, cytarabine is not recommended for treatment of PML.

Other pyrimidine nucleotide analogs show more promise as anti-JCPyV compounds.
Cidofovir, an acyclic nucleotide analog, shows antiviral activity against other DNA viruses,
including human cytomegalovirus, but fails to reduce JCPyV infection in vitro [7,122].
Multiple studies have found that cidofovir treatment is not associated with improved
outcomes in HIV-associated PML, and that cidofovir in combination with HAART is not
more effective than HAART alone [126,127]. This observation may be explained by failure
of cidofovir to penetrate the CNS [7]. However, brincidofovir, a synthetic cidofovir prodrug,
increases oral bioavailability and penetrates the blood–brain barrier in mice. Brincido-
fovir is a lipid conjugate of cidofovir, and the addition of this hydrophibic side group
enhances the bioavailability of brincidofovir relative to cidifovir [128]. Now approved to
treat smallpox infection, brincidofovir potently suppresses JCPyV replication and spread at
nearly 100× smaller concentrations than required to achieve similar responses with cido-
fovir [129,130]. Oral formulations of brincidofovir have been prescribed as monotherapies
or in combination with other anti-JCPyV agents, including mefloquine, risperidone and
mirtazapine, with favorable clinical and virological results [131]. However, outcomes may
depend on when brincidofovir treatment begins relative to PML onset, as one patient with
drug-associated PML died after brincidofovir therapy, although treatment began 2 years
after symptom onset [132]. While promising, larger trials of brincidofovir are needed to
evaluate its efficacy as a therapeutic for PML.

Leflunomide is a synthetic isoxazole with immunosuppressive effects that is pre-
scribed to treat rheumatoid arthritis. Physiological cleavage of the isoxazole ring yields
teriflunomide, the active metabolite with potent inhibitory activity against dihydroorotate
dehydrogenase, an enzyme that catalyzes the rate-limiting step of uridine biosynthesis [133].
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It is not surprising that some case reports associate leflunomide treatment with PML [134].
However, long-term studies of teriflunomide, which is prescribed to treat multiple sclerosis,
fail to associate teriflunomide use with an increased risk of developing PML [135]. Interest-
ingly, teriflunomide has been shown to inhibit JCPyV infection and spread in astrocytes
and choroid plexus cells, and high blood teriflunomide concentrations are associated with
reductions of BKPyV load in patients with BKPyV-associated nephropathy [133,136]. This
apparent paradox may be resolved by the observation that coincubation of teriflunomide
with uridine precursors downstream of dihydroorotate dehydrogenase fails to rescue
JCPyV infection in vitro, suggesting that the antiviral mechanism of teriflunomide may
derive from another interaction with an unidentified target [133]. In contrast, inhibition
of BKPyV infection with teriflunomide is rescued by the addition of uridine, which may
suggest that two polyomavirus-dependent antiviral mechanisms may exist [137]. While
these data are promising, more work is needed to resolve these complexities.

JCPyV TAg recruits host topoisomerases to stabilizing unwinding of the JCPyV ds-
DNA. Many topoisomerase inhibitors have been screened for anti-JCPyV activity, including
topotecan and β-lapachone. Both compounds are well-established chemotherapeutics
and potently inhibit JCPyV replication, infection, and spread in neuroblastoma cells [138].
Results from a Phase II clinical trial showed that topotecan may reduce lesion size and
prolong lifespan in HIV-associated PML, although further studies are needed to validate
these results [139]. The ortho-naphthoquinone β-lapachone possesses modest anticancer
activity when prescribed as a monotherapy. β-lapachone derivatives can cause significant
anemia, but new formulations like ARQ791 seem to be associated with less dose-limiting
toxicity [140]. Importantly, mouse and human studies show that both topotecan and β-
lapachone can pass the blood–brain barrier [141,142]. Recent reports demonstrate that
another blood–brain-barrier-permeable topoisomerase inhibitor, CPT11, has more potent
anti-JCPyV activity than either topotecan or β-lapachone, even at concentrations as low as
1 µM [143,144]. These topoisomerase inhibitors therefore warrant further investigation as
potential therapeutics for PML.

Viral replication also seems to involve host DNA repair mechanisms as compounds,
including 3-aminobenzamide (3-AB) reduce JCPyV replication and spread by inhibiting
PARP-1, an enzyme that mediates excision repair [145]. However, 3-AB is a representative
inhibitor, and lead optimization is needed to identify more specific PARP-1 antagonists.

4.10. Extracellular Vesicle Association Inhibitors

JCPyV association with EVs appears to involve multiple redundant packaging path-
ways, including secretory autophagy and exosome budding. In particular, the genetic
knockdown of neutral sphingomyelinase 2 (nSMase2), an enzyme involved in sphingolipid
metabolism and extracellular vesicle formation, reduces JCPyV spread and association with
extracellular vesicles. Cambinol, a small molecule nSMase2 inhibitor, also reduces JCPyV
spread over 9 days, suggesting that virus association with extracellular vesicles may be a
viable therapeutic target to control PML progression in vivo [87].

4.11. Inhibitors of Unknown Mechanisms

Several small molecule antivirals have been discovered without any knowledge of their
mechanism of action. One notable compound is artesunate, a semi-synthetic medication
used to treat severe malaria. Artesunate is associated with a dose-dependent decrease
in JCPyV replication and has been prescribed in combination with mirtazapine with no
apparent clinical benefit [146,147]. Importantly, this result could be attributed to failure
to penetrate the CNS, as no artesunate could be detected in the CNS two hours after
intravenous administration in a clinical study of severe malaria [148]. A high-throughput
screen identified ellagic acid and spiperone as compounds with anti-JCPyV activity. While
the exact mechanism remains unknown, some hypothesize that the antioxidant effects of
ellagic acid may be responsible for its antiviral activity. Surprisingly, although spiperone is
a 5-HT2R inhibitor, this seems to be unrelated to its anti-JCPyV properties, as spiperone
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also inhibits infection by BKPyV and SV40, which do not require the serotonin receptor for
entry [149].

Table 1. Small molecule inhibitors of JCPyV infection and spread in vitro. Antiviral compounds are
separated by putative mechanism of action and year of identification.

Mechanism Target Compound Name Year Reference

Attachment inhibitor LSTc binding pocket AY4 2015 [65]

Soluble LSTc 2013 [64]

Entry inhibitor

5-HT2R

Clozapine 2003 [72]

Mirtazapine

2008 [71]Cyproheptadine

Risperidone

Ketanserin

2004 [66]

Ritanserin

Mianserin

Volinsanserin

Metoclopramide

5-HT2R Chlorpromazine 2000 [83]
Clathrin-mediated endocytosis

Clathrin terminal domain Pitstop2
2019 [68]

Dynamin Dynole 34-2

Macropinocytotis EIPA 2020 [85]

Endosomal acidification
inhibitor

Unknown Mefloquine 2009 [92]

Na+/H+ ATPase Monensin

2013 [91]Vacuolar H+ ATPase Bafilomycin A1

Uncoating inhibitor SERCA Thapsigargin

Receptor tyrosine kinase
inhibitor Receptor tyrosine kinase Genistein 2004 [70]

MAPK-ERK signaling inhibitor

c-Raf
GW-5074 2023 [150]

Sorafenib 2019 [101]

MEK1/2
U0126

2018 [67]
PD98059

PI3K-AKT-mTOR signaling
inhibitor

AKT MK2206

2021 [97]
PI3K Wortmannin

mTOR
PP242

Rapamycin

Ca2+ signaling

Calcineurin Cyclosporine 2012 [108]

L-type Ca2+ channels Topiramate 2020 [107]

Phospholipase C U73122

2018 [109]IP3R
2-APB

Xestospongin C

Cyclin-dependent kinase
inhibitor CDK2, CDK7, CDK9 Roscovitine 2008 [110]
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Table 1. Cont.

Mechanism Target Compound Name Year Reference

Cytoskeleton disruptors β-tubulin Nocodazole
2003 [90]

F-actin Cytochalasin D

Retrograde transport inhibitors
ASNA1

Retro-2cycl
2013 [111]

DHQZ36

Retro-2.1 2020 [112]

ADP-ribosylation factor Brefeldin A 2006 [89]

TAg inhibitor TAg ATPase
SMAL

2016 [120]
AMT580-043

LDN-0012754 2014 [117]

Nucleoside analog DNA Polymerase Cytarabine
1974 [121,122]

Nucleotide analog DNA Polymerase Cidofovir

Brincidofovir 2010 [129,130,132]

Pyrimidine synthesis inhibitor Dihydroorate dehydrogenase Teriflunomide 2006 [133]

Topoisomerase inhibitor
Topoisomerase

β-lapachone
2016 [138]

Topotecan

CPT11 2017 [143]

DNA repair inhibitor PARP-1 3-AB 2013 [145]

Nuclear export inhibitor SINE Verdinexor 2018 [115]

Extracellular vesicle
association inhibitor nSMase2 Cambinol 2022 [87]

Unknown
Unknown

Artesunate 2014 [146]

Ellagic acid
2009 [149]

Spiperone

5. GW-5074: A Novel JCPyV Inhibitor That Antagonizes Signaling Events

A major research focus in our laboratory is the development of new anti-JCPyV
compounds. This begins by understanding the viral lifecycle, which can inform new targets
for host-directed antivirals. Recent research into the mechanisms by which viruses co-
opt host signaling networks to enter the cell, replicate their genetic material, and evade
immune detection has generated significant interest in targeting signaling cascades to
inhibit viral infection. Signaling inhibitors are a promising class of compounds because
many have clinical use as anticancer therapeutics, so extensive preclinical studies have
already established pharmacodynamic and safety profiles. For instance, the FDA-approved
anticancer therapy sorafenib has been shown to reduce JCPyV infection by inhibiting
c-Raf, a central kinase in the MAPK-ERK cascade [69]. However, sorafenib fails to cross
into the CNS, and therefore is unlikely to be an effective therapy for PML [151]. Because
c-Raf plays an important role in JCPyV infection, and the safety of targeting c-Raf has
already been established with cancer therapies like sorafenib, we sought to characterize
blood–brain-barrier-permeable c-Raf inhibitors as novel anti-JCPyV agents.

We selected GW-5074 (3-(3,5-dibromo-4-hydroxybenzylidene)-5-iodoindolin-2-one) to
screen for antiviral activity. Initially synthesized in 2000 by Lackey et al., GW-5074 shows
potent and specific inhibitory activity of c-Raf [152]. We were drawn to this compound
because of its oxindole core. Oxindole (2-indolone) has been used as a nucleus to synthesize
many structurally diverse pharmacological compounds with different biological activities,
including anticancer, antibacterial, antiviral, and antifungal effects (Table 2) [153–155]. Two
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oxindole-based compounds, nintedanib and sunitinib, antagonize signaling events and are
clinically-used cancer therapeutics [156–164]. Ropinirole and ziprasidone are approved to
treat Parkinson’s Disease and schizophrenia, respectively, which underscores the potential
of oxindole-based drugs to pass the blood–brain barrier and exert therapeutic effects
within the CNS [165–167]. Oxindole-based antivirals also reduce HIV-1 and parvovirus
B19 infection [168,169].

Table 2. Structures of approved oxindole-based compounds. The oxindole core is highlighted in red.

Compound Structure Commercial Name Disease Target(s) Year Licensed Reference
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2001 [167]

Bipolar disorder

Pretreating transformed SVG-A glial cells and primary normal human astrocytes
(NHA) with non-toxic concentrations of GW-5074 potently reduced initial JCPyV infection,
as evaluated by indirect immunofluorescent quantification of viral proteins after one round
of productive infection. The 50% inhibitory concentration (IC50) associated with GW-5074
treatment was 6.8 µM and 0.84 µM in SVG-A and NHA cells, respectively. GW-5074 was
well-tolerated by both cell lines, as the 50% cytotoxic concentration (CC50) associated
with GW-5074 treatment was greater than 100 µM and 20 µM in SVG-A and NHA cells,
respectively. Using these values, we calculated the minimum 50% selectivity index (SI50),
defined as the ratio between the CC50 and IC50, associated with GW-5074 to be 11.8 in SVG-
A cells and 20.2 in NHAs [150]. SI50 values are important metrics in drug discovery, and
an SI50 greater than 10 is commonly considered to be an important starting point in drug
development [7]. The SI50 associated with GW-5074 treatment is larger than the SI50 values
associated with established compounds with anti-JCPyV activity, including chlorpromazine
(SI50 = 2.0), mefloquine (SI50 = 4.0), and Retro-2cycl (SI50 = 7.4) [7]. Importantly, GW-5074
also inhibited long-term cell-to-cell spread of JCPyV when introduced after establishment
of a productive infection. This result suggests that GW-5074 could be used to control
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PML in vivo, as most patients support uncontrolled virus replication before symptom
onset [150].

Because GW-5074 is known to inhibit c-Raf, we suspected that the antiviral activity
of GW-5074 was associated with its antagonistic effects on MAPK-ERK signaling. We
observed that GW-5074 inhibited endogenous ERK phosphorylation, and that ERK activity
could not be restored upon coincubation with the Protein Kinase C (PKC) agonist phorbol
12-myristate 13-acetate (PMA). PKC directly activates c-Raf, so these results are consistent
with the known signaling antagonism of GW-5074. Similar results were obtained in the
context of virus infection, as JCPyV infection could not be rescued by cotreating SVG-A
cells with PMA and GW-5074 [150]. Taken together, these data support the hypothesis that
GW-5074 disrupts MAPK-ERK signaling events needed to establish a productive JCPyV
infection (Figure 4).
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with BioRender.com.

However, our experiments also suggest that GW-5074 may have another mechanism
underpinning its antiviral activity. MAPK-ERK inhibitors fail to reduce JCPyV infection
in NHAs because JCPyV seems to co-opt the PI3K-Akt-mTOR cascade in these primary
cells [97]. Although crosstalk has been characterized between molecular players in the
PI3K-Akt-mTOR and MAPK-ERK pathways, we were surprised to observe that the antiviral
activity of GW-5074 was more dramatic in NHAs [105]. Additionally, SV40 is not sensitive
to MAPK-ERK inhibitors, but GW-5074 reduced SV40 infection in SVG-A cells [67]. These
potentially conflicting results may be explained by observations that GW-5074 disrupts
nuclear import of viral proteins by altering the importin α/β1 heterodimer [170]. Although
small molecule inhibitors of nuclear import, including MK-933, are not known to reduce
JCPyV infection, our experiments do not rule out the possibility that disrupting nuclear
transport may play a role in the antiviral activity of GW-5074, especially in contexts where
MAPK-ERK signaling does not mediate JCPyV infection.

Ultimately, our laboratory has characterized GW-5074 as a novel antiviral agent that
potently reduces JCPyV infection in spread in primary and transformed cell lines. Phase
I clinical trials evaluating whether combination therapies of sorafenib and GW-5074 can
inhibit tumor growth show that GW-5074 is largely well-tolerated, but poor water solubility
of this highly lipophilic compound reduces its bioavailability. However, novel oral formu-
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lations, including MG010, an ionic salt formed by combining an ammonium cation with the
phenoxide anion of GW-5074, increase drug solubility in water almost 20-fold relative to
unsalted GW-5074 [171]. Further experiments in our laboratory are focused on evaluating
whether GW-5074 can exert therapeutic activity within the CNS by using in vitro and in
silico models of the barriers that restrict access to the CNS.

6. Current Obstacles in PML Drug Development

Extensive preclinical research has identified numerous compounds that inhibit JCPyV
infection in vitro, but none have become approved therapeutics with clear clinical benefits.
The obstacles hindering drug discovery can be attributed to three main factors, including the
relative rarity of developing PML, the absence of a PML animal model, and the challenges
associated with designing compounds that exert therapeutic activity within the CNS.

6.1. Obstacle 1: PML Is a Rare Disease

The incidence of PML is around 1 in 200,000, and just 4000 people are estimated to be
diagnosed with PML per year in the United States and Europe [40]. PML also progresses
rapidly, which complicates the organization of the randomized clinical trials needed to
evaluate the efficacy of novel antivirals [172]. In the 70-year history of PML, 24 clinical
trials associated with PML have been recorded. Only seven tested antiviral compounds:
four clinical trials evaluated small molecules (mefloquine, cytarbine, topotecan, cidofovir,
and zidovudine) while two clinical trials examined immunotherapies (pembrolizumab,
NT-I7), and one clinical trial evaluated a combination therapy of a small molecule and an
immunotherapy (zidovudine and α interferon) (Table 3). These clinical trials were mostly
small, with the largest including 90 patients. At the time of this writing, one clinical trial
evaluating the use of NT-I7, a recombinant human interleukin 7, was still ongoing (ID:
NCT04781309). Ultimately, large, randomized clinical trials are needed to develop new
treatments for PML, but patient recruitment is challenging due to the low incidence and
rapid progression of the disease.

Table 3. Clinical trials for PML therapeutics as of 2023. From clinicaltrials.gov.

Identifier Phase Drug(s) Drug Class Size Status

NCT00746941 II Mefloquine Small Molecule 37 Terminated
NCT00001048 II Cytarabine Small Molecule 90 Terminated
NCT00002395 II Topotecan Small Molecule 54 Completed
NCT04091932 II Pembrolizumab Antibody 10 Unknown
NCT04781309 I NT-I7 Recombinant interleukin 12 Recruiting
NCT00002270 N/A α interferon, zidovudine Combination Unknown Unknown
NCT00000945 N/A Cidofovir Small Molecule 24 Completed

6.2. Obstacle 2: No Reliable Animal Model for PML Exists

Like other polyomaviruses, JCPyV infection is highly species-specific. Studies with
mouse polyomavirus (MPyV) and BKPyV suggest that this narrow tropism could arise
from the interaction of host factors, particularly host DNA polymerase, with the viral origin
of replication [173,174]. Intracerebral inoculation of non-human primates, hamsters, and
transgenic mice with JCPyV results in non-productive viral infection, characterized by
overexpression of the early gene products, including TAg. Instead of inducing a PML-type
demyelinating phenotype, high TAg expression promotes integration of the viral DNA into
the host genome, which favors tumor formation [175–178].

Despite these obstacles, significant progress has been made towards developing an
animal model for PML. One notable approach is repurposing MPyV as a JCPyV-type agent
in mice. These two polyomaviruses share many virological and immunological similarities,
including induction of disease following immunosuppression, persistence in the renal–
urinary system, and infection of oligodendrocytes, choroid plexus epithelial cells, and
meningeal cells [179–183]. MPyV and JCPyV also seem to have similar interactions with
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the immune system, particularly CD8+ T-cells [180–184]. However, unlike the multifocal
white matter lesions characteristic of PML, MPyV neuropathology is largely defined by
generalized encephalopathy with demyelination [183].

The absence of a reliable animal model for PML has severely inhibited the develop-
ment of an effective therapeutic. Except for Retro-2.1, which has been shown to reduce
MPyV viral burden in immunosuppressed mice, most anti-JCPyV compounds are evalu-
ated in patients following tissue culture studies because there is no intermediary animal
model [185]. Escalating directly to patient administration skips the preclinical studies
needed to optimize antiviral activity, including studies of drug metabolism, in vivo toxicity,
and CNS penetration.

6.3. Obstacle 3: Few Compounds Accumulate in the CNS

Because JCPyV is a neurotropic virus, an effective antiviral agent will need to pass
into the CNS. While intrathecal antiviral administration maximizes compound bioavail-
ability within the CNS, there are many disadvantages associated with this route, including
(1) the surgical challenges involved in drug administration and (2) patient inconvenience
and pain [186,187]. As such, the ideal anti-JCPyV therapeutic would be delivered via an
oral or intravenous route. However, only compounds with a narrow range of drug-like
physiochemical properties will effectively diffuse across the barriers that restrict access to
the CNS. While the usefulness of different qualitative rules is controversial, molecular size
(MW), total polar surface area (TPSA), the number of hydrogen bond donors (HBD), serum
binding, and lipophilicity (cLogP) appear predictive of CNS accumulation. CNS-targeting
drugs are typically small (MW ≤ 450 Da, TPSA < 60 Å2), non-polar (HBD ≤ 2, cLogP < 5),
and bind poorly to serum proteins (Kd albumin < 10 µM) [188–191]. P-glycoproteins (P-gp),
a family of efflux transporters highly expressed in the blood–brain barrier, significantly
restrict small molecule access to the CNS; most CNS-targeting drugs are not P-gp sub-
strates [191]. Additionally, CNS-targeting compounds should be stable in the plasma and
resistant to metabolism by hepatic Cytochrome P450s, which catalyze oxidations of foreign
compounds, increase compound polarity, and may transform a drug into a metabolite with
no therapeutic activity [192].

Preclinical studies of anti-JCPyV agents should attempt to evaluate whether lead
compounds will accumulate in the CNS. While in vivo pharmacodynamic studies are im-
portant, these experiments are costly and require ethical considerations. Multiple accessible
in vitro systems exist that model drug diffusion across the barriers that restrict access to
the CNS [193]. Additionally, in silico approaches, including the SwissADME Web Tool, can
also help researchers evaluate lead compounds before performing expensive in vitro or
in vivo experiments [194].

7. Conclusions

The current panel of anti-JCPyV compounds includes attachment inhibitors, entry
inhibitors, transport inhibitors, TAg helicase inhibitors, replication inhibitors, and extra-
cellular vesicle inhibitors. Because JCPyV is a relatively simple virus, most anti-JCPyV
compounds antagonize a host process required for virus infection rather than a viral com-
ponent. Co-opting cancer therapeutics to antagonize virus-induced cell signaling events
may be a promising new approach to antiviral drug development, as the safety and phar-
macokinetic profiles of these approved inhibitors are already well-characterized. One novel
signaling inhibitor, the oxindole GW-5074, potently reduces JCPyV infection and spread in
primary and immortalized cells. Despite identification of these druggable targets, in vitro
inhibitors of virus infection and spread have largely failed to treat or prevent PML in vivo.
Researchers must continue to explore new treatment strategies to overcome the virological
and physiological obstacles that have hindered previous drug development efforts in order
to develop viable therapies for PML.
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