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Abstract: Outer membrane vesicles (OMVs) are lipid-membrane-bounded nanoparticles that are
released from Gram-negative bacteria via vesiculation of the outer membrane. They have vital roles
in different biological processes and recently, they have received increasing attention as possible
candidates for a broad variety of biomedical applications. In particular, OMVs have several charac-
teristics that enable them to be promising candidates for immune modulation against pathogens,
such as their ability to induce the host immune responses given their resemblance to the parental
bacterial cell. Helicobacter pylori (H. pylori) is a common Gram-negative bacterium that infects half
of the world’s population and causes several gastrointestinal diseases such as peptic ulcer, gastritis,
gastric lymphoma, and gastric carcinoma. The current H. pylori treatment/prevention regimens
are poorly effective and have limited success. This review explores the current status and future
prospects of OMVs in biomedicine with a special focus on their use as a potential candidate in
immune modulation against H. pylori and its associated diseases. The emerging strategies that can be
used to design OMVs as viable immunogenic candidates are discussed.
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1. Introduction

Bacterial membrane vesicles, originating from both Gram-negative and Gram-positive
bacteria, play various roles in bacterial survival and biological functions [1–4], including
microbial virulence, cellular crosstalk, and host immune response modulation. Furthermore,
they possess unique targeting and packaging abilities [5–7]. Bacterial membrane vesicles
derived from Gram-positive bacteria are called membrane vesicles (MVs) as they are
originating from the cytoplasmic membrane, while bacterial membrane vesicles derived
from Gram-negative bacteria are called outer membrane vesicles (OMVs) as they originate
from the outer membrane of the bacterial cell (Figure 1). They both range between 20 and
500 nm in size and contain parental bacterial cell materials [3,8–12], but since they originate
from different parts, their contents vary accordingly. For instance, the surface of OMVs
contains the same components of the outer membrane (Figure 1A), while the surface of
MVs contains the same components of the cytoplasmic membrane (Figure 1B).
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Figure 1. A graphical overview of extracellular vesicles from Gram-negative bacteria (outer mem-
brane vesicles, OMVs) and Gram-positive bacteria (membrane vesicles, MVs). (A) OMV is consti-
tuted by a continuous lipid bilayer originating from the outer membrane and composed of various 
cytoplasmic and outer membrane proteins, toxins, enzymes, nucleic acids, peptidoglycans, and bi-
omolecules derived from their parental bacterial cell. (B) MV is composed of a continuous lipid 
bilayer originating from the cytoplasmic membrane, and contains different components such as 
membrane proteins, cytoplasmic proteins, enzymes, toxins, and nucleic acids. 

2. OMVs 
OMVs are lipid-membrane-bounded nanoparticles that are secreted via outer mem-

brane vesiculation of Gram-negative bacteria to contribute to different biological pro-
cesses [7,13]. Even if OMVs were observed in early reports, they did not receive any at-
tention and their importance had been overlooked until they were found in the spinal 
fluid of patients infected with meningitis [14]. Since then, the understanding of OMVs’ 
biogenesis, function, production, and how they contribute to the interaction between the 
bacterial cell and the host has received increasing attention. 

OMVs are composed of several components such as lipids, proteins (e.g., enzymes 
and structural proteins), carbohydrates, and genetic material (DNA and RNAs), which 
they originally inherited from the parental cells (Figure 1A) [3]. In the biomedical field, 
OMVs play essential roles in attenuating and treating diseases [15,16]. For instance, OMVs 
can play a significant anti-infection role by inducing and modulating immune responses 
or by inhibiting pathogen localization and proliferation. Thus, OMVs are recognized as 
promising candidates for various biomedical applications such as immune modulation, 
drug delivery, cancer therapy, vaccine development, and anti-bacterial treatments [15,17–
26]; however, their full potential, advantages, future perspectives, and associated prob-
lems need to be further investigated. 

2.1. OMV Biogenesis 
Several models, briefly summarized below, have been reported to explain the vesic-

ulation mechanism (Figure 2, Table S1) [3]. In all cases, vesiculation allowed the separation 
of the outer membrane from the below peptidoglycan layer and budding outward until a 
vesicle can form and separate from the bacterial cell surface. However, one exception was 
reported, which described the vesicle formation mechanism by the “explosive” cell lysis 
that is initiated via a prophage endolysin [27]. 

Figure 1. A graphical overview of extracellular vesicles from Gram-negative bacteria (outer mem-
brane vesicles, OMVs) and Gram-positive bacteria (membrane vesicles, MVs). (A) OMV is constituted
by a continuous lipid bilayer originating from the outer membrane and composed of various cytoplas-
mic and outer membrane proteins, toxins, enzymes, nucleic acids, peptidoglycans, and biomolecules
derived from their parental bacterial cell. (B) MV is composed of a continuous lipid bilayer originat-
ing from the cytoplasmic membrane, and contains different components such as membrane proteins,
cytoplasmic proteins, enzymes, toxins, and nucleic acids.

2. OMVs

OMVs are lipid-membrane-bounded nanoparticles that are secreted via outer mem-
brane vesiculation of Gram-negative bacteria to contribute to different biological pro-
cesses [7,13]. Even if OMVs were observed in early reports, they did not receive any
attention and their importance had been overlooked until they were found in the spinal
fluid of patients infected with meningitis [14]. Since then, the understanding of OMVs’
biogenesis, function, production, and how they contribute to the interaction between the
bacterial cell and the host has received increasing attention.

OMVs are composed of several components such as lipids, proteins (e.g., enzymes
and structural proteins), carbohydrates, and genetic material (DNA and RNAs), which they
originally inherited from the parental cells (Figure 1A) [3]. In the biomedical field, OMVs
play essential roles in attenuating and treating diseases [15,16]. For instance, OMVs can
play a significant anti-infection role by inducing and modulating immune responses or by
inhibiting pathogen localization and proliferation. Thus, OMVs are recognized as promising
candidates for various biomedical applications such as immune modulation, drug delivery,
cancer therapy, vaccine development, and anti-bacterial treatments [15,17–26]; however,
their full potential, advantages, future perspectives, and associated problems need to be
further investigated.

2.1. OMV Biogenesis

Several models, briefly summarized below, have been reported to explain the vesicula-
tion mechanism (Figure 2, Table S1) [3]. In all cases, vesiculation allowed the separation
of the outer membrane from the below peptidoglycan layer and budding outward until a
vesicle can form and separate from the bacterial cell surface. However, one exception was
reported, which described the vesicle formation mechanism by the “explosive” cell lysis
that is initiated via a prophage endolysin [27].
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Figure 2. Current reported OMV biogenesis models. (A) VacJ/Yrb ABC transporter downregulation. 
Vesiculation is promoted via VacJ/Yrb transporter downregulation that causes phospholipid accu-
mulation inside the outer membrane leaflet. (B) The insertion of molecules that trigger the outward 
bulging of the outer membrane (e.g., Pseudomonas aeruginosa (P. aeruginosa) quinolone signal, PQS). 
PQS insertion in the outer leaflet of the outer membrane promotes the curvature of the membrane 
and causes OMV formation. (C) Enrichment of specific components/molecules in some parts of the 
outer membrane. Various types of bacterial components such as lipopolysaccharides (LPS), LPS-
associated molecules, and phospholipids can enrich certain parts of the outer membrane, which 
leads to bulging outward, forming OMV. This phenomenon occurs due to the unique structure or 
charges of these components. (D) Envelope components’ accumulation. The accumulation of vari-
ous components such as misfolded proteins, LPS, or peptidoglycan fragments creates a pressure 
that induces the formation of OMVs. This stress pressure allows the outward bulging of the outer 
membrane and ultimately releases the OMVs at the areas where accumulation occurred. (E) Pepti-
doglycan–lipoprotein crosslink disruption. Enzymes controlling peptidoglycan synthesis and 
breakdown (e.g., peptidoglycan endopeptidases) regulate the envelope’s ability to create pepti-
doglycan–lipoprotein crosslinks. Under this situation, the outer membrane growth rate would be 
faster than the growth rate of the cell wall underneath, which permits the outer membrane to curve 
and consequently release the OMVs. 

One of the currently reported models for OMV biogenesis is vesiculation via the 
VacJ/Yrb ATP-binding cassette ABC transporter, belonging to the family of phospholipid 
transporters (Figure 2A). This mechanism is associated with the accumulation of phos-
pholipids in the outer membrane’s outer leaflet due to the transcriptional silencing or in-
activation of the VacJ/Yrb transporter, which is responsible for the maintenance of outer 
membrane lipid asymmetry [28,29]. This trafficking system is highly conserved in Gram-
negative bacteria and was primarily reported to be responsible for phospholipid trans-
portation from the outer membrane to the inner cytoplasmic membrane [30]. The accu-
mulation of phospholipids inside the outer membrane leaflet due to the downregulation 
of the Vac/Yrb transporter induces the outward curvature which facilitates the formation 
of the outer membrane budding and OMV release (Figure 2A). 

The second model of OMV biogenesis involves the insertion of some molecules into 
the outer membrane outer leaflet (e.g., B-band of lipopolysaccharides (LPS) and Pseudo-
monas aeruginosa (P. aeruginosa) quinolone signal (PQS)), which can trigger the outward 
bulging of the outer membrane and promote OMV formation (Figure 2B). For instance, 

Figure 2. Current reported OMV biogenesis models. (A) VacJ/Yrb ABC transporter downregulation.
Vesiculation is promoted via VacJ/Yrb transporter downregulation that causes phospholipid accu-
mulation inside the outer membrane leaflet. (B) The insertion of molecules that trigger the outward
bulging of the outer membrane (e.g., Pseudomonas aeruginosa (P. aeruginosa) quinolone signal, PQS).
PQS insertion in the outer leaflet of the outer membrane promotes the curvature of the membrane and
causes OMV formation. (C) Enrichment of specific components/molecules in some parts of the outer
membrane. Various types of bacterial components such as lipopolysaccharides (LPS), LPS-associated
molecules, and phospholipids can enrich certain parts of the outer membrane, which leads to bulging
outward, forming OMV. This phenomenon occurs due to the unique structure or charges of these
components. (D) Envelope components’ accumulation. The accumulation of various components
such as misfolded proteins, LPS, or peptidoglycan fragments creates a pressure that induces the
formation of OMVs. This stress pressure allows the outward bulging of the outer membrane and ulti-
mately releases the OMVs at the areas where accumulation occurred. (E) Peptidoglycan–lipoprotein
crosslink disruption. Enzymes controlling peptidoglycan synthesis and breakdown (e.g., peptidogly-
can endopeptidases) regulate the envelope’s ability to create peptidoglycan–lipoprotein crosslinks.
Under this situation, the outer membrane growth rate would be faster than the growth rate of the cell
wall underneath, which permits the outer membrane to curve and consequently release the OMVs.

One of the currently reported models for OMV biogenesis is vesiculation via the
VacJ/Yrb ATP-binding cassette ABC transporter, belonging to the family of phospho-
lipid transporters (Figure 2A). This mechanism is associated with the accumulation of
phospholipids in the outer membrane’s outer leaflet due to the transcriptional silencing
or inactivation of the VacJ/Yrb transporter, which is responsible for the maintenance of
outer membrane lipid asymmetry [28,29]. This trafficking system is highly conserved in
Gram-negative bacteria and was primarily reported to be responsible for phospholipid
transportation from the outer membrane to the inner cytoplasmic membrane [30]. The ac-
cumulation of phospholipids inside the outer membrane leaflet due to the downregulation
of the Vac/Yrb transporter induces the outward curvature which facilitates the formation
of the outer membrane budding and OMV release (Figure 2A).

The second model of OMV biogenesis involves the insertion of some molecules into the
outer membrane outer leaflet (e.g., B-band of lipopolysaccharides (LPS) and Pseudomonas
aeruginosa (P. aeruginosa) quinolone signal (PQS)), which can trigger the outward bulging of
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the outer membrane and promote OMV formation (Figure 2B). For instance, the B-band of
LPS was proposed to localize to a specific area of the outer membrane, and because of the
close proximity of similar charges, it was hypothesized to force the outer membrane to bulge
out [31]. Similarly, the insertion of PQS into the outer membrane’s outer leaflet was found
to increase the OMV production in Gram-negative bacteria [32]. PQS interacts with lipid A
of LPS and sequesters cations such as Ca2+ and Mg2+. The anionic repulsion that occurs
between neighboring LPSs could lead to outer membrane blebbing and OMV formation.
Moreover, the interaction of PQS with lipid A decreases LPS fluidity, facilitating the outer
leaflet expansion and promoting curvature [33]. The PQS-based model is considered one of
the best-investigated models. However, it is species-specific since PQS is only produced by
P. aeruginosa.

The third model is based on the presence of specific types of LPS, and/or phospholipids
that are enriched in the outer membrane areas where vesiculation occurs (Figure 2C) [34].
These molecules have the ability to induce vesiculation due to their charges or atypical
structure that promote the outward bulging of the outer membrane, and consequently the
release of the OMVs into the external milieu. The elevated levels of the negatively charged
LPS in certain areas of the outer membrane are an indication of the induction of OMV
formation in these areas that could be triggered by specific conditions such as oxidative
stress (Figure 2C) [35,36]. For instance, OMVs isolated from P. aeruginosa were found to
primarily consist of negatively charged LPS.

The fourth model associates the accumulation of misfolded proteins, peptidoglycan
fragments, and other molecules inside the periplasmic space with the increase in local
pressure on the outer membrane responsible for OMV formation (Figure 2D) [37,38]. It
was proposed that vesiculation occurs as a protective mechanism to remove toxic and/or
unwanted cellular components. Indeed, vesiculation was increased in Escherichia coli
(E. coli) carrying a deletion of DegP, which is a periplasmic chaperone/protease known
to correlate with the stress response in the envelope. DegP activity prevents the accu-
mulation of misfolded or damaged proteins inside the periplasm [38]. The role of the
periplasmic chaperone/protease in avoiding the accumulation of toxic components was
identified in several Gram-negative bacteria, which validates this model for OMV biogene-
sis (Figure 2D) [38–40].

The fifth model proposes the disruption of crosslinks between the peptidoglycan layer
and lipoproteins as a determining step for OMV formation (Figure 2E). The outer mem-
brane of Gram-negative bacteria is well known to be stabilized by the crosslinks between
lipoproteins present in the outer membrane and the underlying peptidoglycan layer located
in the periplasmic space. However, the lack of these crosslinks in some areas of the outer
membrane allows the outer membrane in these regions to curve and form OMVs [41].
Thus, the biogenesis of OMVs is maintained by specific enzymes that are involved in
the outer membrane–peptidoglycan layer interactions [42], such as enzymes involved in
peptidoglycan synthesis and breakdown (e.g., peptidoglycan endopeptidases) [43].

Despite all the efforts to describe the OMV biogenesis, more investigations are required
to better understand the process and to investigate why certain molecules/components are
present in the OMVs. For instance, the current OMV biogenesis models can explain the
presence of some OMV contents (e.g., phospholipids, LPS, and peptidoglycan) but cannot
explain the presence of others such as DNA and other bacterial contents that are usually
present in the cytoplasm.

2.2. OMVs in Biomedical Applications

One of the strengths of using OMVs in biomedicine is the possibility of using them
as therapeutic vehicles. Various factors should be considered in developing extracellular
vesicles for biomedical applications; e.g., they should be cost-effective, easy to synthesize,
biocompatible, non-toxic, feasible to scale up, and with high therapeutic efficacy [44]. Other
extracellular vesicles such as exosomes lack important aspects of their potentiality such
as the unfeasibility of undertaking large-scale mammalian cultures for vesicle production.
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OMVs have been suggested as a viable alternative that can be manufactured and produced
easily at a large scale and at lower cost [44]. Moreover, OMVs can combine several de-
sirable effects such as delivering the targeted drug (e.g., chemotherapeutic agents) into
the specific (e.g., tumor) microenvironment and at the same time recruit immune cells
into it, and therefore, enhance their efficacy with no apparent toxicity [45–47]. In this
regard, naturally acquired OMVs could be used directly or could be modified or geneti-
cally engineered to achieve this aim [20,24,25,48,49]. Naturally derived OMVs can serve
as DNA, RNA, antigen, and antibody carriers, or as delivery vehicles for their natural
cargos (Figure 3A). Meanwhile, the modified OMVs can be used in various applications
depending on the needed function: they can serve as carriers of specific nanoparticles,
DNA and RNA molecules, antigens, antibodies, or drugs (Figure 3A). The modifications of
OMVs can be applied by loading the desired cargos inside the OMV lumen, by warping
nanoparticles inside the OMVs, by concealing OMVs inside nanoparticles, or by embedding
the desired components (e.g., antigen, antibody, ligand, etc.) within the outer membrane
layer (Figure 3B). Cargo loading into OMVs can be performed using different techniques,
one of these being electroporation, which involves the use of high-voltage pulses to create
pores in the membrane of OMVs, which leads to a temporary permeable state [50–52]. This
temporary permeability allows the loading of drugs, proteins, nucleotides, small-sized
nanoparticles (e.g., metallic gold nanoparticles, AuNPs), etc., which can be achieved using
different electric pulses at different durations. After loading the desired molecules, the
membrane of OMVs can recover its original structure and lose the temporary permeability
without any damage. Similarly, the treatment of OMVs with saponin containing reagents
increases their membrane permeability, which facilitates cargo loading without damaging
the membrane structure [53,54]. The controlled and temporary disruption of OMV mem-
branes allows cargo loading to also be achieved by applying multiple freeze–thaw cycles in
a buffer that contains the material of interest [55–57].

The co-extrusion technique is a process of repeating mechanical extrusion using
polycarbonate filter membranes that have various pore sizes, which allows the loading of
the desired cargo into the OMVs [58]. In this method, OMVs are mixed with the cargo of
interest (e.g., drugs, nanoparticles, etc.) and extruded together to force them to interact [59].
Similarly, sonication can be applied as a simpler method for OMV loading. Ultrasonic
frequencies can be applied to a mixture of OMVs with the material of interest. This
leads to their loading or could result in the attachment of the cargo to the surface of the
OMVs due to the temporary disruption of their membrane [60,61]. On the other hand, a
simpler alternative technique such as incubating OMVs with the material of interest can
be applied. For example, OMVs from Klebsiella pneumoniae (K. pneumoniae) were loaded
with doxorubicin hydrochloride (chemotherapeutic drug) by incubating the drug with
the OMVs at 37 ◦C for 4 h [47]. Similarly, the loading process can also be applied by
incubating the bacteria of interest with the cargo material during the bacterial growth
phase. In this method, the bacteria engulf the material of interest that is present in the
medium, pack it into the OMVs, and then release it into the extracellular medium. A study
by Huang, et al. [62] successfully used this method to synthesize antibiotic-loaded OMVs
from Acinetobacter baumannii (A. baumanii) that resulted in effectively killing certain bacteria
in vitro and in vivo [62].

Genetic engineering could be applied to add certain molecules to the surface of
OMVs [48,49]. Cargo loading can be applied by the transformation of bacteria using
an engineered plasmid that expresses the desired cargo [63,64]. Using this method, the
material of interest such as antibodies, antigens, enzymes, and proteins can be loaded into
the OMVs [63–67]. Genetic engineering techniques allow the use of different methods
to load various types of cargo into OMVs. For instance, recombinant DNA technology
enables introducing specific modification into OMVs that can be beneficial for a specific
desirable application (e.g., inserting antigens for immune modulation). In addition, genetic
engineering can also be applied to knockout genes responsible for a specific undesirable
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function to be eliminated from the generated OMVs, such as knocking out genes responsible
for toxic proteins [68,69].
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RNA, antigen, and antibody carriers, or as delivery vehicles for natural cargos; meanwhile, modified
OMVs can be used as nanoparticle, DNA, RNA, antigen, and antibody carriers, or as drug delivery
vehicles. (B) OMVs can be modified by loading cargos inside the OMV lumen, warping nanoparticles
inside the OMVs, concealing OMVs inside nanoparticles, or embedding the desired components
within the outer membrane layer.

In short, natural or modified/engineered OMVs could serve as nanopharmaceuticals
based on their desired characteristics in a variety of biomedical applications, such as
vaccines, adjuvants, cancer immunotherapy, drug delivery, and anti-bacterial adhesion
agents (Figure 3) [15,70–78].

OMVs are considered excellent vaccine candidates against pathogenic bacteria, and
can be used as antigens to induce cellular (cytokines and activated T cells) and humoral (an-
tibody) immune responses after immunization of humans and animals (Figure 4A) [17,18].
The first vaccine trial of OMVs was in 1991 and was employed against Neisseria meningitidis
(N. meningitidis) [79]. Meningitis type B (MenB) is an OMV-based vaccine that is currently
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approved to treat patients [80–82]. Subsequently, efforts continued for new vaccine devel-
opment against various diseases caused by pathogenic Gram-negative bacteria [49,83,84].
However, there are no other OMV-based vaccines to treat pathogenic Gram-negative bacte-
ria currently available on the market.
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bacteria to induce cellular and humoral immune responses after immunization of humans and
animals. (B) OMVs can be used as adjuvants that enhance the immune responses against an antigen.
This can be achieved by mixing the OMVs with the antigen in the vaccine preparations. (C) OMVs can
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be used as cancer immunotherapy agents in order to eradicate tumor tissues by inducing the required
immune response against cancer cells, or by acting as nanocarriers for loading chemotherapeutic
agents/drugs. (D) OMVs can serve as a delivery system that can transport their cargo to other cells
and/or microenvironments (e.g., a vehicle for drugs). (E) OMVs can act as ideal biomarkers for all
Gram-negative bacteria or as biomarkers to differentiate between bacterial species. (F) OMVs can
serve as communication tools by transporting signaling molecules between cells. (G) OMVs can act
as a secretory system to disseminate bacterial products to their environment or targeted locations.
(H) OMVs can act as anti-adhesion agents to interfere with the adhesion of pathogenic bacteria by
binding competitively with the targeted host cells and subsequently preventing bacterial infection.
(I) OMVs can be used in antibacterial therapy as active antibacterial agents or by loading antibiotics
inside the OMVs.

OMVs can also be employed as adjuvants to enhance the immune responses against
an antigen (Figure 4B). This can be achieved by mixing the OMVs with the antigen of
interest in the vaccine preparations, linking the antigen to the OMV surfaces, loading
the antigen inside the OMVs, or by genetically engineering the bacteria to express the
antigen in their outer membrane and consequently into their released OMVs [15]. After
immunization, the OMV-containing formulations could trigger robust cellular and humoral
immune responses. Contrary to most of the other classic adjuvants that cause systemic and
local hypersensitivity, OMVs were found to have low toxicity as well as high potency for
inducing T cell responses [85].

The use as agents in cancer immunotherapy to annihilate tumor tissues is another
intriguing OMV application (Figure 4C). OMVs have been proposed as a good platform for
anti-tumor vaccine development for several reasons, such as OMV strong immunogenicity,
the ability of OMVs to carry the anti-tumor antigen (inside the vesicle or on its surface), to
enhance the antigen presentation, and the lack of OMV proliferation [19,20]. OMV-based
anti-tumor vaccines are primarily developed by genetic engineering to express a foreign
protein inside the OMVs or linked to the OMV surfaces. This antigen should have the ability
to induce the required immune response against cancer cells without causing undesired
side effects. OMV-based anti-tumor vaccines can be used to kill cancer cells and/or to
silence relevant genes [20]. Various bacterial components such as enzymes, peptides, and
toxins have been investigated for cancer therapy [86]. OMVs provide a unique vehicle
to combine several anti-tumor components that can initiate an immune response, which
is considered a sought-after cancer immunotherapy agent. For instance, OMVs contain
parental components (e.g., LPS) that can stimulate an immune response that enables
immune cell maturation and tumor damage [45,46]. Moreover, OMVs can function as
nanocarriers for loading chemotherapeutic agents. Indeed, the use of doxorubicin passive-
loaded OMVs isolated from the attenuated K. pneumonia not only caused a cytotoxic effect
and cell apoptosis resulting from the doxorubicin, but it was also observed in vivo that
OMVs worked synergistically with their cargo to recruit macrophages into the tumor
microenvironment, which enhanced the anti-tumor efficacy with no apparent toxicity [47].

OMVs are also considered an efficient delivery system to transport their cargo to
other cells and/or microenvironments (Figure 4D). OMV contents can be transported to
any targeted cell through two possible mechanisms. The first system proposes the spon-
taneous lysing of OMVs, which allows their contents to diffuse. The second mechanism
is based on the OMV fusion with the targeted cell, on their proximal lysis or internaliza-
tion [21]. OMV ability for long-distance transportation is one of the main strengths of
the OMVs as a vehicle for drug delivery. OMVs can enhance the pharmacodynamics and
pharmacokinetics of the loaded drugs by extending the blood circulation time as well as
by protecting the loaded molecules from degradation [66]. OMVs have an outstanding
targeting capability for bacteria, cells, or inflammatory sites through surface functional
protein modifications [24]. Genetic engineering can be applied to express specific target-
ing ligands onto OMV surfaces [48]. Moreover, pathogen-associated molecular patterns
(PAMPs) on the OMVs facilitate their recognition and ingestion by immune cells, which
hold great potential for targeted drug delivery against immune cells [87]. OMVs inherit the
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same surface antigens as the parental cell. Thus, they have the ability to be ingested and
recognized by the immune cell, and this can be beneficial in targeted therapy.

The identification of pathogenic bacteria in humans is sometimes difficult for several
reasons such as localized infections or aggressive antibiotics concurrent treatments as well
as slow-growing bacteria and poor sensitivity of the diagnostic methods [22]. For instance,
the analysis of more than 2.5 million sepsis cases using the Premier Healthcare Database
in the United States showed that the specific causal organism responsible for sepsis could
not be identified in over 70% of the cases [88]. In another study by Stranieri et al. [89],
the causal organism of neonatal sepsis was identified only in 41% of the blood cultures
from patients [89]. Indeed, bacterial cultures can take up to 24 h to grow and thus they
are not compatible with a quick diagnosis and proper specific antimicrobial treatment that
is suggested within 1 to 3 h from the recognition of the infection types (e.g., sepsis) [90].
While bacterial cultures fail to provide an accurate and fast method to identify the bacteria
that caused the infection, OMVs can persist and permit a more definitive diagnostic ap-
proach [91,92]. Due to OMV size, they can widely circulate in the body and freely cross
tissue barriers, which allows efficient diagnosis from easily obtained biofluids (e.g., urine
or blood) [22]. As stated above, OMVs contain various components of the parental cells.
The OMV cargo conserved among bacteria can act as ideal biomarkers for their presence;
meanwhile, the OMV cargo specific for a given bacterium can be extremely useful as a
rapid differentiation and identification tool for bacterial species identification in OMVs
isolated from biofluids (Figure 3E) [22]. For instance, the widely expressed LPS can serve
as a biomarker for Gram-negative bacteria, whereas a species-specific component (e.g.,
16S r RNA, urease A (UreA) and heat shock protein (Hsp60) for H. pylori) that is conserved
within the targeted bacterial species can be used as a biomarker for the bacteria of interest
following its characterization [93–96]. The presence among pathogenic bacteria of species-
specific repeats, both at genomic and protein levels, can be identified using computational
methods [97–99]. This allows the recognition of highly conserved species-specific hallmarks.
Subsequently, they can be used as reliable biomarkers for identifying a specific species
present in biological fluids that contained the targeted bacteria or its OMVs.

OMVs also play a vital role in cell–cell communication since signaling molecules can be
protected inside the OMV lumen until they reach the target location (Figure 4F). For instance,
it was reported that 86% of total PQS were packed inside the OMV-derived P. aeruginosa [23].
When these OMVs were removed from the bacterial population, the PQS-controlled group
behavior and cell–cell communication were inhibited. Similarly, the hydrophobic quorum-
sensing molecule CAI-1 and the hydrophobic signal N-hexadecanoyl-L-homoserine lactone
from Vibrio harveyi and Paracoccus sp., respectively, which are responsible for coordinating
bacterial group behavior and involved in long-distance communication, were found to be
present inside the OMVs [100,101]. OMVs spread far from their parental cell, and therefore,
they can be considered as an intra-kingdom communication mechanism that enables the
transportation of signaling molecules [102,103]. In addition, OMVs can facilitate trans-
kingdom exchange and the delivery of biomolecules between bacteria and their hosts [104].

OMVs are a secretory system, as they have the ability to disseminate bacterial products
to their environment (Figure 4G), but with unique features. Besides the cargo protection
described above, unlike other systems, OMV-mediated secretion can allow the simultaneous
secretion of various soluble and insoluble compounds such as membrane proteins, lipids,
and insoluble molecules [31,105,106]. Furthermore, the OMV-mediated secreted materials
can be delivered and transported at high concentrations, which is often needed for proper
efficacy [31,107], and a specifically targeted delivery of molecules can be obtained via
selective binding between surface bacterial adhesins and the receiver’s receptors and
ligands [31,108]. The selective transportation of OMV cargo to other bacterial cells was
observed both in the same or different species. The targeting abilities of OMVs to specific
cells hold great potential for the targeted delivery of molecules.

OMVs are mimics of their parental bacteria, and thus they have the ability to inhibit the
adhesion of their parental pathogenic bacteria onto the host cell by competitively binding
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to the same target site [15,24]. Bacterial infections are initiated by bacterial cell adhesion to
the targeted cell, and therefore, the anti-adhesion treatment can offer a promising therapy
in comparison to other conventional therapies that might induce antibiotic resistance [109].
In addition, the combination of antibiotic and anti-adhesion therapies shows collaborative
antibacterial efficacy [110]. OMV-derived H. pylori were reported to block H. pylori adhesion
to gastric epithelial cells by developing OMV-coated nanoparticles that preserved the
H. pylori surface antigens [24]. Moreover, these developed OMV nanoparticles reduced
H. pylori attachment in mouse stomach tissues, which indicates OMV potential in the
inhibition of bacterial adhesion to the host tissues. OMV anti-adhesion efficacy can be
further improved through genetic engineering to regulate adhesion expression as well as
by choosing the ideal nanoparticle cores with desired properties [111,112]. In addition,
the use of OMVs as anti-bacterial adhesion tools can promote bacterial clearance, uptake,
and recognition by immune cells [15,113]. Overall, OMVs can be considered an efficient
anti-adhesion intervention to fight bacterial infections (Figure 4H).

In recent years, several reports have investigated the use of OMVs as antibiotic de-
livery carriers or as active antibacterial agents [15,25,26], showing the potential role of
OMVs in antibacterial therapy (Figure 4I). Traditional antibiotic therapy has faced many
challenges due to the emerging antibiotic resistance in bacteria that has resulted in treat-
ment failure and is becoming a serious threat to human health. The earliest observation
of the bactericidal effect of OMVs was reported in 1996, when OMVs from P. aeruginosa
were found to contain peptidoglycan hydrolases (autolysins) [21]. Autolysins are intra-
cellular bacteriolytic peptidoglycan hydrolases that are commonly found in bacteria and
play major roles in various essential functions such as protein transport, cell division, and
peptidoglycan recycling [114]. OMVs have the ability to transport autolysins into other
competitor bacteria (Gram-positive and Gram-negative) and negatively impact them by
causing disintegration through hydrolyzing their peptidoglycan. Moreover, OMVs from
Myxococcus xanthus (M. xanthus) were reported to have many types of enzymes such as
phosphatases, hydrolases, and proteases with bactericidal activity against E. coli [115].
The antibacterial activity of these OMVs against E. coli was improved when the fusogenic
enzyme (glyceraldehyde-3-phosphate dehydrogenase) was present, which facilitated the
fusion-based interaction between M. xanthus OMVs with the targeted cells. Similarly,
OMVs from Lysobacter capsici (L. capsici) were found to have a bactericidal effect due to their
bacteriolytic enzymes [116] and OMVs from P. aeruginosa were found to have significant
antimicrobial activity against Staphylococcus epidermidis (S. epidermidis) due to the presence
of quinolines within the OMVs [23]. In this regard, the interbacterial antagonism between
at least two bacteria can be explored in order to use their OMVs as antibacterial agents.

In addition to their natural antibacterial activity, OMVs can be also used as antibiotic
delivery carriers due to their efficient targeting capacity, drug loading, cargo protection,
prolonged circulation time, etc. [107,117]. It is reported that the targeting capacity, pharma-
cokinetics properties, and chemical stability of antibiotics can be enhanced when loaded
inside the OMVs [25]. Gentamicin-loaded OMVs were found to have a strong bactericidal
effect against the gentamicin-resistant P. aeruginosa [21]. Similarly, the gentamicin-loaded
OMVs from Buttiauxella agrestis (B. agrestis) exhibited a strong bactericidal effect against
their parental cells as well as against E. coli and P. aeruginosa [118]. Interestingly, the bacteri-
cidal effect of gentamicin-loaded OMVs was stronger against B. agrestis (parental cell) and
other bacterial species of Buttiauxella spp. than those of E. coli and P. aeruginosa, suggesting
a bacterial species specificity. Despite the multiple advantages that OMVs can offer as
antibiotic delivery vesicles, only a few reports have been published so far, indicating the
need for further investigation.

3. Helicobacter pylori (H. pylori)

H. pylori is a widespread gastric Gram-negative bacterium infecting half of people
worldwide, and in some countries, over 70% of the population [119–121]. Its transmission
occurs via fecal–oral, gastric–oral, or oral–oral routes [122–124], and it can also be linked
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to routine esophagogastroduodenoscopies as a consequence of ineffective disinfecting
procedures [125–128].

Although the infection could be asymptomatic in some patients, it may progress into
severe gastric diseases and disorders [129]. Indeed, H. pylori infection is often associated
with several gastrointestinal diseases such as peptic ulcer, gastritis, gastric lymphoma, and
gastric carcinoma, and is linked with extragastric diseases including vitamin B12 deficiency,
idiopathic thrombocytopenic purpura, and idiopathic iron deficiency anemia, as well as
metabolic, cardiovascular, colorectal, and neurological disorders [130–132]. In addition,
H. pylori infection has been associated with gastric cancer, which is reported to be the third
most common related type of cancer and the second resulting factor for cancer-related
death [133,134].

H. pylori infection and its associated diseases remain persistent and difficult to treat,
reaching alarming levels globally. This could be attributed to H. pylori resistance against
antibiotics such as levofloxacin, clarithromycin, and metronidazole often used to treat the
infection [135]. In addition, the commonly used proton pump inhibitor (PPI)-based triple
therapy that includes a PPI plus two antibiotics showed limited success, and therefore,
it is unacceptable for H. pylori therapy (Table 1). A number of treatment regimens were
proposed, including triple therapy, quadruple therapy, sequential therapy, and probiotics
therapy, but the treatment choice is highly dependent on the availability of susceptibility
testing as well as the effectiveness of local empiric therapy (Table 1) [136]. Therefore, it
is essential to find other more effective measures to overcome H. pylori infection and its
associated diseases.

Table 1. Commonly used methods to treat Helicobacter pylori (H. pylori) infection.

Method Limitations Refs.

Antibiotic treatment
- Antibiotic resistance is the main factor for the

eradication treatment failure. [135–138]

Triple therapy: Treatment with proton-pump
inhibitor (PPI), amoxicillin, and a third drug

(e.g., levofloxacin or clarithromycin).

- Antibiotic resistance.
- The treatment efficacy has decreased

continuously over the years.
- Affected by the colonization density of the

bacterium in the gastric mucosa.
- Affected by host factors such as excess secretion

of gastric acid, diabetes, gastroduodenal
diseases, obesity, etc.

[138,139]

Quadruple therapy: Treatment with PPI,
bismuth, tetracycline, and metronidazole.

- Antibiotic resistance.
- Side effects.
- Low eradication rate (lower than 80%).

[138,140]

Sequential therapy: Two treatment regimens
are applied; the first one (consisting of PPI

and amoxicillin) will be used in the first half
of the treatment duration, and another

regimen (consisting of PPI, clarithromycin,
and one of the nitroimidazole family

antibiotics) will be used for the second half of
treatment duration.

- Antibiotic resistance.
- The complexity of the regimen.
- Adverse effects.
- Difficulty to design a suitable second-line

treatment if this regimen failed.

[138,141]
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Table 1. Cont.

Method Limitations Refs.

Probiotics therapy: The use of bacteria that
produce lactic acid such as Lactobacillus spp.,

etc., to eradicate H. pylori infection.

- The effect of probiotics to treat H. pylori is still
controversial (different outcomes reported from
different studies).

- Only a few probiotic strains have shown
significant effects, which emphasizes the
importance of using the right probiotics and
their proper quantity.

- Not recommended as a single treatment strategy
to eradicate H. pylori.

[142–144]

H. pylori Components and Their Potential in Immune Modulation

H. pylori infection induces complex immune responses in the host that include in-
nate and adaptive mechanisms (Table 2) [145–147]. Gastric epithelial cells are a critical
component of the innate immune response against H. pylori, interfacing with it before the
establishment of the infection [148,149]. Once H. pylori come in contact with the gastric
epithelial cells, pathogen-associated molecular patterns (PAMPs) will be activated, includ-
ing toll-like receptors (TLRs) and nucleotide oligomerization domain 1 (NOD1). Gastric
epithelial cells express TLRs (e.g., TLR1, TLR4, and TLR5), which interact with different
H. pylori components such as neutrophil-activating protein (Nap), flagellin, lipopolysaccha-
ride (LPS), lipoproteins, and lipoteichoic acid [150–152]. The TLRs are critical in inducing
the expression of antibacterial and proinflammatory factors [150].

When H. pylori infection occurs, neutrophil cells could be observed, and their presence
could also be detected in chronic infections of H. pylori during adulthood. Their presence
is attributed to cytokines induced by H. pylori, which result in neutrophils activation and
regulation of their movement (e.g., growth-related oncogene (GRO)-α and IL-8) [153].

The specific immune responses toward H. pylori that are associated with its bacterial
cell components have been discussed in in vivo and in vitro studies, and are summarized
in Table 2.

Table 2. Various H. pylori components with some of their immunogenic activities.

H. pylori Immunogenic Component Immune Response Refs.

Vacuolating cytotoxin A
(VacA)

- Monocytes U937, colon epithelial cells DLD-1, and
gastrointestinal epithelial cells MKN1: IL-8 release.

- T cells: inhibition of IL-2 production.
- Regulates T cell activation.
- Inhibits primary T cell proliferation.
- Interferes with B lymphocyte antigen presentation.
- Invokes the secretion of circulating VacA antibodies.
- Bone-marrow-derived mast cells: produce

proinflammatory cytokines, IL-13, IL-10, IL-6, IL-1β,
macrophage-inflammatory protein-1α, and TNF-α.

[154–159]

Cytotoxin-associated gene A (CagA)

- Stimulates IL-12, IL-1β, COX-2, and IL-8 release.
- Promotes Treg cell differentiation.
- Gastric epithelial cells: regulate autophagy

pathways.
[160–165]
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Table 2. Cont.

H. pylori Immunogenic Component Immune Response Refs.

Urease
- Gastric epithelial cells: stimulate IL-6, TNF-α, and

IL-8 secretion.
- Induces Th2 cell response.

[166–169]

Flagellum - Induces antibody responses. [170–172]

Catalase - Elicits inflammatory response. [173]

Superoxidase dismutase (Sod)
- Inhibits pro-inflammatory cytokine production.
- Induces macrophage activation. [174]

Lipopolysaccharide
(LPS)

- Interferes with innate and adaptive immune
cell activities.

- Increases TNF-α and IL-10, IFN-γ, IL-2, and IgG2a
serum levels.

- Promotes a Th1-type immune response.
- Affects adaptive T lymphocyte response.
- Promotes chronic inflammation.
- Activates neutrophils.
- Stimulates monocyte transendothelial migration and

monocyte inflammatory responses.
- Human monocytes: induce the release of IL-8,

monocyte chemotactic protein 1 (MCP-1), and
epithelial neutrophil-activating peptide 78 (ENA-78).

- Heparinized human peripheral whole blood
(HPWB) cells: promote IL-18 and IL-12 production.

[175–184]

Blood group antigen-binding adhesin
(BabA)

- Stimulates IL-33 expression.
- Stimulates granulocyte infiltration.
- Promotes IL-8 release.
- Enhances gastric inflammation.

[185,186]

Sialic acid-binding adhesin (SabA) - Stimulates neutrophil infiltration and activation. [187]

Outer inflammatory protein A (OipA)

- Induces inflammation.
- Promotes neutrophil infiltration.
- Gastric cancer cells: stimulate interferon

regulatory factors 1.
- Induces the proinflammatory cytokines production

such as IL-17, IL-11, IL-8, IL-6, IL-1, TNF-α, CC
chemokine ligand 5, and matrix metalloproteinase-1.

- Inhibits the dendritic cells’ maturation.

[188–192]

Duodenal ulcer promoting gene A
(DupA)

- Enhances neutrophil infiltration.
- Stimulates IL-8 and IL-12 production (IL12-p70

and IL-12p40).
[193–196]

Adherence-associated lipoprotein A and
B (AlpA/AlpB)

- Gastric epithelial cells: regulate cytokines and
pro-inflammatory factor release such as IL-6
and IL-8.

[197]

Induced by contact with epithelium gene
A (IceA)

- Promotes the production of the proinflammatory
cytokines IL-8, IL-1, and IL-6.

- Induces lymphocytic and granulocytic infiltration.
[198–200]
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Table 2. Cont.

H. pylori Immunogenic Component Immune Response Refs.

Cholesteryl α-glucosyltransferase (αCgT)

- Regulates responses from the IFN-γ and
IL-4 pathways.

- CD4+ T cell response regulation.
- Stimulates IL-8 production.
- Inhibits IL-22 and IL-6 signaling pathways.
- Macrophages: modulate autophagy.
- Arrests macrophages’ phagosome maturation.

[201–205]

γ-glutamyl-transpeptidase (Ggt)

- Induces IL-8, IFN-γ, IL-6, and inducible nitric oxide
synthase production.

- Induces immune tolerance by inhibiting dendritic
cell differentiation and T cell-mediated immunity.

- Infiltrates CD8+ cells into the gastric mucosa.

[206–208]

Neutrophil-activating protein (Nap)

- Stimulates infiltration of polymorphonuclear
granulocytes and monocytes.

- Stimulates the release of IL-8, IL-12, IL-23, IFN-γ,
and IL-6.

- Induces activation of neutrophils, mast cells,
and monocytes.

- Facilitates Th1 immune responses and at the same
time inhibits Th2 responses

[209–217]

Heat shock protein 60 (Hsp60)
- Gastric epithelial cells: TLR activation.
- Promotes the upregulations of cytokines such as

TGF-β, TNF-α, IFN-γ, IL-10, IL-8, and IL-1a.
[218–220]

H. pylori contributes to activate both cellular and humoral immune cells (e.g., dendritic
cells, B and T cells) and activates both local and systemic immunological reactions, favoring
the secretion of IgG, IgM, and IgA [221,222]. Moreover, inflammatory reactions resulting
from immunity caused by polymorphonuclear monocytes and leukocytes produce several
cytokines, such as IL-6, IL-1β, IL-8, and TNF-α. Importantly, the secretion of IL-12 from
dendritic cells and macrophages leads to Th1 cell activation and then results in cytokines
production (e.g., IFN-γ). When H. pylori causes macrophage stimulation, it induces the
production of the pro-inflammatory molecule nitric oxide by nitric oxide synthase 2 (NOS2)
and inducible nitric oxide synthase (iNOS). T cells are considered the most important
components of the immunological reaction during H. pylori infection [223]. It is well
established that cytokines such as IFN-γ and/or IL-10 are produced with the activation
of Th1 and Th2 cells by H. pylori infection, respectively. Initially, all T cells are in a resting
state known as Th0, which appear in a non-polarized phenotype; however, they are
able to differentiate into effective T helper cells [224], and this can produce predominant
cytokines (e.g., Type 1 or Type 2). Nevertheless, polarized Th cells show an important
role in overcoming H. pylori infections, which leads to the production of H. pylori-specific
antibodies. Thus, T helper cell responses were demonstrated as more significant for
H. pylori attenuation [225,226]. In the microenvironment, pathogen components, as well as
the genetic factors of the host, fluctuate the differentiation of Th1 or Th2 through leader
cytokines’ promotion. For type Th1 development, IL-8, IL-12, and IFNs are powerful
stimuli, while IL-4 promotes type Th2 immune response. In this regard, the type of T helper
cell response against H. pylori is highly dependent and might vary according to the H. pylori
components involved [227]. For instance, LPS was found to induce Th1 immune response,
while urease subunit B (UreB) induced Th2 cell response [169,228]. In vivo and in vitro
studies are summarized in Table 2.
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4. OMVs as Immune-Modulating Agents against H. pylori Infections

Immune modulation in biomedical applications represents an attractive therapy that
uses the patient’s immune system to ensure disease suppression, remission, and elimi-
nation [229], which might be an effective strategy to fight diseases. As described above,
H. pylori contain various components, with a role in maintaining bacterial cell function
or/and pathogenicity, that could act as immune-modulating candidates [230], and their
deep investigation will likely allow the development of innovative vaccines and therapeutic
targets [231,232]. In this scenario, OMVs contain various components from the parental
cell, and thus are able to induce the same immune response of the bacterial cell, and may
represent promising tools [78]. Although OMVs from H. pylori have been explored to this
aim both in vitro and in vivo (Table 3), to the best of our knowledge, no promising clinical
trial outcomes have been reported so far. Indeed, many factors should be considered
in order to fully explore OMVs as immune-modulating agents, such as their potential
cytotoxicity or lack of efficacy in immune regulation.

Table 3. Proposed strategies for OMVs’ use, modification, and bioengineering in immune modulation
to treat H. pylori infections.

Strategies Refs.

Using OMVs isolated from standard or manipulated growth
conditions or from a specific growth stage [17,18,233–235]

Using OMVs from bacterial strains that contain nontoxigenic virulence factor
genotypes (e.g., CagA, VacA, DupA) or that lack certain virulence factors

(e.g., CagA-negative H. pylori strains, DupA-negative H. pylori strains)
[155,157,194,196,236–239]

Using OMVs from probiotic or commensal bacteria as
antigen carriers for the antigens of interest [15]

4.1. Using OMVs Isolated from Standard or Manipulated Growth Conditions or from a Specific
Growth Stage

Previous reports have indicated that Th2 immune reaction is necessary for immunological
protection against H. pylori infections. Thus, a viable H. pylori immune-modulating agent neces-
sitates a qualitative shift in the T cell response balanced to the Th2 response [18,225,226,240–242].
Liu et al. [18] observed that the oral administration of OMVs from the gerbil-adapted
H. pylori strain 7.13 elicited Th2 immune response, whereas the groups treated with the
whole-cell antigens as well as the whole-cell antigens plus Cholera toxin had distinct
outcomes, with a balance of Th1 and Th2 responses.

Four distinct populations of OMVs were isolated from H. pylori SS1, induced by
different growth additives. The biological properties and contents of all four OMVs were
different [233], but they all elicited a Th2 immune response and released anti-inflammatory
cytokines. OMV populations may differ in terms of the composition obtained from their
parental cell based on the change in external factors (e.g., temperature, growth media) or
based on the change in the bacterial strain.

Growing bacteria under different conditions that mimic the conditions of the hu-
man gastrointestinal tract were found to produce OMVs with different cytotoxic activity
compared to the bacteria that were grown under standard laboratory conditions [234].
Furthermore, these gastrointestinal-tract-mimicking conditions were found to upregulate
the production of OMVs. In addition, the manipulation of growth conditions might be a
good strategy to find suitable OMVs for immune modulation [233]. The growth stage was
also reported to affect OMV properties. OMVs obtained from the pre-stationary phase were
suggested to be better suited for vaccine research studies [235]. Thus, a change in OMV
composition could lead to a different biological activity.
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4.2. Using OMVs from Bacterial Strains That Contain Nontoxigenic Virulence Factor Genotypes
(e.g., CagA, VacA, DupA) or That Lack Certain Virulence Factors (e.g., CagA-Negative H. pylori
Strains, DupA-Negative H. pylori Strains)

Various concerns have been raised about OMV safety and potential to modulate im-
mune responses. It is important to select the OMV population that elicits an immunological
response while having no cytotoxic effect on the cells and the host [17,233]. The immuno-
genicity of any OMV population will be determined based on its contents, which might
include several immunogenic components that can induce immune responses. However,
some of these immunogenic contents are virulence factors that affect the host cells nega-
tively. For instance, VacA was found to stimulate immune responses; however, its cytotoxic
effect limits its use in vaccine development [243,244]. All H. pylori strains have VacA,
which is a critical virulence factor that is involved in bacterial survival and colonization
in gastric epithelial cells. However, VacA can be present in various isoforms in different
H. pylori strains that are linked to different degrees of gastrointestinal disease severity as
well as differential cell toxicity [157,245]. Thus, only some H. pylori strains produce the
pathogenic and toxigenic VacA [157,236,237]. For instance, H. pylori containing VacA type
s1/m1 showed high cytotoxic activity compared to type s1/m2-expressing strains, while
none of the type s2/m2 showed cytotoxic activity. These observations could be beneficial
in biomedical applications allowing the use of VacA with no cytotoxic activity. For instance,
type s2/m2 and type s1/m1 VacA toxins are identical in about 75% of amino acid sequences,
which could be beneficial in the area of developing safe VacA-based immunomodulating
agents. Thus, the OMVs derived from these H. pylori strains (e.g., s2/m2) could be useful
and good candidates for immune-modulating applications.

Similar approaches could be attempted with other H. pylori virulence factors/proapoptotic
factors, which include LPS, CagA, Urease, γ-glutamyl transpeptidase, and FasL [176,246–250].
For instance, H. pylori CagA is highly immunogenic, causing a Th1-polarized immune
response [251]. Nevertheless, similar to VacA, it can be present in different isoforms, some
of which lack cytotoxic effects. Similarly, OMVs derived from these strains can be beneficial
for immune modulation.

Duodenal ulcer promoter A (DupA) protein is one of the virulence factors of H. pylori [189].
DupA-positive H. pylori strains cause high-level gastric inflammation [194] and the devel-
opment of duodenal ulcers [252]. However, in Western populations, the presence of DupA
in H. pylori strains was not associated with duodenal ulceration [253,254]. Indeed, some
DupA isoforms lacking a negative impact on health were identified, supporting the use of
DupA as a potential immunogen for H. pylori treatment [196,254]. OMVs derived from H.
pylori strains that contain DupA isoforms with no negative effect can be good candidates
for further investigation.

Of note, the positive/negative H. pylori strains of any cellular component (e.g., CagA-
positive H. pylori strains, CagA-negative H. pylori strains, DupA-negative H. pylori strains,
etc.) [155,157,238,245,253,255] could also provide a valuable understanding of how to
design immunogenic agents for immune modulation to treat H. pylori infections. Thus, their
derived OMVs can provide a good strategy to optimize their use in immune modulation.

4.3. Using OMVs from Probiotic or Commensal Bacteria as Antigen Carriers for the Antigens
of Interest

Probiotic or commensal bacteria can be genetically engineered to express immunogenic
components (e.g., VacA from H. pylori type s2/m2 strains) inside the OMVs or on OMV
surfaces. Commensal bacterial strains are part of the human gut microbiota and their
derived OMVs are considered key players in biological processes inside the intestinal
mucosa [256]. Moreover, probiotic bacteria have been widely recognized to have a vital
role in regulating intestinal health [257,258]. OMVs produced by probiotic or commensal
bacteria have been linked to various beneficial effects on the host, such as maintaining
intestinal homeostasis and signaling processes [256,259]. Therefore, they are safe and can
be considered good antigen carriers for the antigen of interest. This modification can
be applied by loading the desired antigen (e.g., VacA) directly inside the OMV lumen,
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by linking the desired antigen on the OMV surfaces, or by genetically engineering the
commensal/probiotic bacteria to express the desired antigen in their produced OMVs [15].
The use of probiotics during the H. pylori treatment process has been reported to increase
the eradication rate as well as to reduce treatment side effects [144]. However, probiotic
treatment was not recommended as a single strategy against H. pylori. Probiotics can
assist in H. pylori eradication through various mechanisms such as producing antibacterial
substances, competing with H. pylori for adhesion receptors, and stabilizing gut mucosal
barriers [142]. Thus, can be beneficial to include them in therapy. Engineering probiotic
bacteria to contain H. pylori components can facilitate their use as immune-modulating
agents for H. pylori infections. On the other hand, these engineered probiotic bacteria can
be employed to produce OMVs that can be further used in immune modulation.

A non-toxigenic strain of Vibrio cholerae (V. cholerae) was engineered to express H. pylori
adhesin A (HpaA). The oral immunization of mice using the inactivated V. cholerae express-
ing HpaA showed high anti-HpaA responses in the serum [260]. This demonstrates that
non-toxigenic bacterial strains can be genetically engineered to allow the surface expression
of H. pylori components, and therefore, these recombinant non-toxigenic bacterial strains
can be considered as oral inactivated H. pylori vaccines. Moreover, OMVs from these re-
combinant non-toxigenic bacterial strains can be investigated further to test their potential
as immune modulatory agents.

5. Conclusions

OMVs have gained recognition as viable candidates for a wide range of biomedical
applications. They play important roles in different bacterial biological processes such as
bacterial virulence and cellular crosstalk. Moreover, they have desirable properties such as
their ability to induce immune responses. H. pylori causes several serious gastrointestinal
burdens. Due to the persistence of H. pylori infections, antibiotic resistance, and low treat-
ment success, as well as low effectiveness of the current treatment/prevention regimens, it
is important to explore other strategies to fight H. pylori infections and their associated gas-
trointestinal diseases, and OMV-based immune modulation can be an attractive approach.
OMVs have several abilities that enable them to be good candidates in immune modulation,
such as their resemblance to the parental cell as well as their ability to induce immune
responses; therefore, they can act as effective immunomodulating agents. Overcoming
the possible limitations of using OMVs, such as their possible toxicity, can be explored
to enhance their safety and avoid any possible adverse effects. In this regard, different
strategies have been and could be considered in the future, such as using the wild-type
OMVs from specific H. pylori strains, or engineering OMVs to achieve certain desirable
characteristics such as reducing OMV toxicity or enhancing their immunomodulatory
effect. Moreover, enhancing the current OMV isolation and loading techniques as well as
improving their yield can be a good strategy to facilitate obtaining the optimum measures
for accelerating using OMVs in various medical fields. Overall, the acquired knowledge
and ongoing advances in this research field can allow us to broaden our understanding
of how to fully harness OMVs to be used as immunomodulating agents to fight several
pathogens that cause serious diseases.
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