
Citation: Pálovics, E.; Madarász, J.;

Pokol, G.; Fogassy, E.; Bánhegyi, D.F.

Economic Separations of Organic

Acidic or Basic Enantiomeric

Mixtures—A Protocol Suggestion.

Int. J. Mol. Sci. 2023, 24, 846. https://

doi.org/10.3390/ijms24010846

Academic Editor: Hai Feng Chen

Received: 12 November 2022

Revised: 13 December 2022

Accepted: 26 December 2022

Published: 3 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

Economic Separations of Organic Acidic or Basic Enantiomeric
Mixtures—A Protocol Suggestion
Emese Pálovics 1, János Madarász 2,*, György Pokol 2, Elemér Fogassy 1 and Dorottya Fruzsina Bánhegyi 1

1 Department of Organic Chemistry and Technology, Budapest University of Technology and Economics,
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Abstract: In this review, we aim to present new concepts for the revisited separation of enantiomers
from racemic compounds and a protocol worth to be followed in designing the preparation of
pure enantiomers. We have taken into account not only the influence of the properties (eutectic
composition) and characteristics of the reactants (racemic compound, resolving agent), but also
the behavior of the resulting diastereomers and the different conditions (e.g., crystallization time,
solvents used, solvate-forming compounds, achiral additives, etc.). The examples discussed are
resolutions developed by our research team, through which we will try to illustrate the impact of all
these considerations, presenting the methodological investigations interpreting recent discoveries
and observations. Some special solid-state analytical and structural investigations assisting us in
the elucidation and invention design of the resolution processes of some active pharmaceutical
ingredients, such as Tetramisole, tofisopam, and Amlodipine, are also shown.

Keywords: designable resolution; thermal analysis; structural analysis; melting binary phase dia-
grams; eutectic composition; behavior of enantiomers; kinetic and thermodynamic control co-crystal;
tandem resolution

1. Introduction

During the research of active pharmaceutical ingredients (API), the enantiomer with
a more favorable physiological effect must be produced. About 80% of the developed
procedures make it necessary to separate the enantiomers of the racemic intermediates.
Racemic compounds are mainly bases or acids. Pasteur [1] realized that the enantiomers of
the racemic acid could be separated by forming diastereomeric salts in a solvent with an
enantiomeric base (resolving agent), from which the less soluble one crystallizes. It contains
one enantiomer of the acid. If the diastereomer thus obtained is reacted with an achiral acid,
the enantiomer of the racemic compound is obtained (general recognition). Later, Pope
and Peachey [2] realized that a good (enantiomeric) diastereomer separation is obtained
even if only half an equivalent amount of resolving agent is added to one mol of racemic
compound. The vast majority of the enantiomeric separations developed since then were
based on the separation of diastereomers (not only salts) obtained by the reaction of the
racemic compound and the resolving agent and on the decomposition of the diastereomers.

Traditionally, the separation, whether of a racemate or a mixture with a composition
other than 1:1, has most often exploited the different solubilities of two diastereoisomers
formed with the selected enantiomer of the appropriate chiral reagent (resolving agent).
In practice, diastereomers are (almost always) held together by non-covalent interactions
(salt formation, formation of coordination complexes, etc.). The diastereomer which is less
soluble in the solvent is first crystallized from the reaction mixture [3].

Previously, the most effective resolving agent and solvent were selected through many
experiments based on existing knowledge to develop the process. It was laborious and
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time-consuming to construct the three-component phase diagram from the large amount
of experimental data. (The task is even more difficult when working with a mixture of
solvents.) This was helped by the realization of Kozma et al. [3], that—for an eutectic
system—there is a correlation between the characteristics of the terner equilibrium solid-
liquid phase diagram and the binary solid-melt phase diagram of potential diastereomeric
salt in the system.

In particular, the enantiomeric ratio at the eutectic points of the terner diagram at
different temperatures is approximately the same as the ratio at the eutectic point of the
two-component diagram (Figure 1 in ref. [3]). Thus, the eutectic point data measured
by the Differential Scanning Calorimetric (DSC) technique are sufficient to describe the
three-component system [3]. The authors [3] described that the resolvability (F) of the
given racemic compound with the given resolving agent can be calculated knowing the
eutectic composition of the melting binary phase diagram of the diastereomeric mixtures.
The results of the corresponding experiments for the resolution of seven racemates have
demonstrated that the method worked well in the design of the selected resolutions (Table 1
in ref. [3]). Of course, we cannot claim that the developed design method can be applied
without exception (e.g., due to secondary weak interactions), but the authors’ experience
shows that it has been generally successful in industrial resolution processes.

Madarász et al. [4] discussed the reliability of the calculation in question, i.e., how
inevitable random error levels and uncertainties of the experimental results of a single ther-
moanalytical (especially Differential Scanning Calorimetric, DSC) measurement actually
affect the merit of estimations, throughout calculations of eutectic composition and sub-
sequent prediction of the efficiency parameter F, ‘Resolvability-F’. Calculation of eutectic
composition, assuming the validity of Schröder–van Laar equation(s) [5] for the description
of liquidus curves of the binary solid-melt phase diagram of pure diastereomers, could
apply the so-called fix-point iteration algorithm to solve the equations, using experimental
values of melting points and enthalpy of fusions measured for pure or 1:1 mixture of
diastereomers by DSC. Uncertainties of calculation of theoretical efficiency parameters
from the obtained eutectic composition can be estimated according to the mathematical
law of error-propagation [4]. The estimated ranges of errors have been found to be close
to those of fluctuations in the corresponding efficiency of resolution experiments, in most
of the studied cases, confirming a kind of reliability of calculation procedures of given
predictions drawn from binary phase diagrams and DSC measurements [4]. Experimental
limitations concerning the formation of amorphous or hydrated or solvated or thermally
unstable diastereomeric salts, see ref. [6]).

Revisiting all this knowledge, we illustrate the new insights with examples of reso-
lutions carried out by our research group, supported by thermoanalytical and structural
studies, pointing the way toward a designable resolution.

2. A protocol Suggestion for the Separation of Enantiomeric Mixtures
2.1. Design of Enantiomeric Separation from Racemic Compounds, and Non-Racemic Mixtures.
Commonly Used Considerations, Protocol
2.1.1. Separation of Racemic Compounds by Diastereomeric Salt Formation

Fogassy et al. [7] realized that the economy of these procedures can be clearly compared
if the enantiomeric enrichment (ee) and yield (Y) of the given enantiomer (Y = menantiomer

(mrac)/2 ·100),
are multiplied and the received result, the resolvability (F) (Equation (1)), can already be
compared.

F(S) = ee·Y·10−4 (1)

0 ≤ F ≤ 1

An important physico-chemical recognition is that the melting binary phase diagrams
of diastereomeric salts and the melting binary phase diagrams of enantiomeric mixtures
can essentially be classified into various groups [5].
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It is also a physico-chemical recognition that, in general, both diastereomeric mixtures
and enantiomeric mixtures can be separated from each other using almost any distribution
between two phases.

Next, the 1:1 ratio (or 1:0.5 ratio) mixture of diastereomers formed by the reaction of
racemic bases or acids and acidic resolving agents or basic resolving agents is crystallized
from a solvent. One diastereomer crystallizes and can be separated by filtration. The other
diastereomer remains in the solution but can also be crystallized. Neither diastereomer will
be enantiomerically pure (Figure 1).
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Figure 1. Schematic figure of diastereomeric salt-forming separation.

Based on the melting binary phase diagram of diastereomeric mixtures, Ács et al. [3]
calculated that, based on the knowledge of the eutectic composition of the binary melting
phase diagram, it is possible to calculate the resolvability (F) of the crystalline precipitating
diastereomer of the given racemic compound with the given resolving agent (Figure 2).
This is a generally applicable method if, after optimization, diastereomeric mixtures have
been obtained, and their melting binary phase diagram can be plotted.

F =
1 − 2 eeEuDia

100
1 − eeEuDia

100
(2)
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Figure 2. Binary melting phase diagram of a diastereomeric mixture of RR* and SR* [3,6] and the
possibility of calculating the achievable F value using the eeDia (Equation (2)).

Fogassy et al. [6] examined 16 conglomerate-forming diastereomer pairs and found
that the diastereomeric salt with a higher melting point crystallizes, and this also applies to
the solvate-forming diastereomeric salts.

We investigated the separation of α-amino acid enantiomers in the same solvent
(water) with related molecular structured resolving agents. Based on these results, we came
to the conclusion that during 29 different resolutions, the crystalline diastereomeric salt
was in most cases quasi-racemic in composition.
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For example, the diastereomeric salt (S)-APG.(R)-PGM crystallizes from an aqueous
solution of racemic N-acetyl-phenylglycine ((R,S)-APG) and (R)-phenylglycine methyl
ester ((R)-PGM). The enantiomeric enrichment (eeDia) of (S)-APG isolated from the diastere-
omer was 85%. The resolution result (F) was 0.55. We knew the eutectic composition of
the melting binary phase diagrams (eeEuRac) of the enantiomeric mixtures of the racemic
compound, 86%, which matched well with the composition of eeDia (Figure 3).
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Figure 3. Resolution of a racemic α-amino acid derivative with one of its enantiomeric derivatives.

Next, we performed 29 derivative-derivative resolutions [8]. We found that the av-
erage of the eeDia values obtained for the resolutions of the given racemic amino acid
derivative, for different amino acid enantiomers, matches well with the average of the
eutectic composition of the binary melting phase diagrams of the mixtures of racemic
amino acid enantiomers. That means eeDia~eeEuRac, if structurally related molecules are
used.

In 45 previously performed resolutions, using structurally unrelated resolving agents
for the separation of racemic compounds, it was observed, that the average of their eutectic
composition (eeEuRacAv) was around 73%, and the average enantiomeric purity (eeDiaAv) of
the precipitated diastereomeric salts was around 78%. Thus, the racemic compound (with
its eutectic composition) can determine the eeDia even when using a structurally unrelated
resolving agent. However, for 29 resolutions, eeEuResAg (from the melting binary phase
diagram of enantiomeric mixtures of the resolving agent) was the determinant of eeDia. In
this case, the average eutectic composition of the resolving agents (eeEuResAgAv) was 78%,
and the average of the crystalline precipitated diastereomeric salts obtained (eeDiaAv) was
80%.

So, in general, the enantiomeric enrichment of the enantiomeric mixture separated
from the precipitated crystalline diastereomeric salt during resolution may match either
the eutectic composition of the racemic compound (eeDia~eeEuRac) or the resolving agent
(eeDia~eeEuResAg).

The average result of these resolutions (F) was between 0.56–0.54, which means that
the average eeEu values were obtained based on successful resolutions.

2.1.2. The Solvent and the Crystallization Time (eeDia~eeEuRac or eeEuResAg)

So, if the eeDia obtained from the diastereomeric salt crystallized from the given solvent
is closer to the eutectic composition of the racemic compound (eeEuRac), then the effect of
the racemic compound prevails.

For example, if the racemic FTHQ (Flumequine intermediate) is resolved with (R,R)-
DPTTA resolving agent in ethyl acetate, (R)-FTHQ will be in excess in the diastereomeric
salt and the eutectic composition of the racemic compound will determine its composition
(eeDia~eeEuRac 40–48%).

If the same resolution is carried out in methanol, (S)-FTHQ will become in the crys-
talline diastereomeric salt, and the value of the eeDia (59%) is determined also by the eeEuRac
(40%), even though eeEuResAg is ~90%. So eeDia is a function of eeEuRac, but due to the solvent
change, the other enantiomer will be in excess in the crystalline diastereomeric salt. At the
same time, the time of crystallization also (can) change the composition of the diastereomer
in the same solvent (Figure 4).
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effect of kinetic or equilibrium thermodynamic control.

Hereinafter, we present an example where the value of eeDia is determined by the
eutectic composition [9] of the resolving agent (eeEuResAg), and the more favorable eeDia
is the result of kinetic control. Racemic mandelic acid (MA) is reacted with pregabalin
enantiomer (PREG) as the resolving agent, and the kinetic control is more favorable for the
value of eeDia (Figure 5).
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The eutectic composition of diastereomeric salts (Figure 2) can be calculated from their
melting binary phase diagram, which approximates the achievable resolvability (F) [3].
Since the stoichiometric composition of diastereomeric salts is determined either by the
eutectic composition of the racemic compound (eeEuRac) or by the eutectic composition
of the resolving agent (eeEuRAg) [10], it is reasonable to assume that there is a correlation
between the eutectic composition of the starting reactants and the achievable resolvability.
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The eutectic composition of the diastereomeric salt can be determined by the eutectic
composition of the racemic compound or the resolving agent, so the separable enantiomeric
purity (eeDia) from the obtained diastereomeric salt can also be determined by these two eu-
tectic compositions (Equations (3) and (4)). Considering these, the theoretically achievable
F value (Equation (5)) may also be derived from either the eeEuRac (Equation (6)) or eeEuResAg
values (knowing the yield) (Equation (7))

eeDia =
1 − eeEuRac·Y
2 − eeEuRac·Y

(3)

or

eeDia =
1 − eeEuResAg·Y
2 − eeEuResAg·Y

(4)

F = eeDia·Y · 10−4 (5)

F =
1 − eeEuRac·Y
2 − eeEuRac·Y

·Y ·10−4 (6)

F =
1 − eeEuResAg·Y
2 − eeEuResAg·Y

·Y ·10−4 (7)

2.1.3. The Value of F Can Be Clearly Determined by the Circumstances of the Process

For the separation of the enantiomers of racemic bases, tartaric acid or tartaric acid
derivatives are used in most cases, with which a very good diastereomer separation can be
achieved under suitable conditions.

An interesting example of the use of thermodynamic control is the separation of a
tamsulosine intermediate ((R,S)-TAM) (Figure 7). We intended to obtain the (S)-TAM.(R,R)-
DBTA diastereomeric salt using 0.5 mol equivalent of (R,R)-DBTA and 0.5 equivalent of
hydrochloric acid. However, after 1 h (kinetic control) the (R,S)-TAM.(R,R)-DBTA salt was
crystallized from a mixture of water and methanol, with a good yield. However, if the
crystalline mixture was left to stand (for 48 h), with the thermodynamic control in effect,
the eeDia will be ~96%, and the value of F will be 0.7 [11].

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 6 of 23 
 

 

 
Figure 6. When racemic AcMA is resolved with (R)-FA resolving agent, the configurations do not 
change; however, the more favorable eeDia is the result of the thermodynamic control. 

The eutectic composition of the diastereomeric salt can be determined by the eutectic 
composition of the racemic compound or the resolving agent, so the separable enantio-
meric purity (eeDia) from the obtained diastereomeric salt can also be determined by these 
two eutectic compositions (Equations (3) and (4)). Considering these, the theoretically 
achievable F value (Equation (5)) may also be derived from either the eeEuRac (Equation (6)) 
or eeEuResAg values (knowing the yield) (Equation (7)) 𝑒𝑒 = 1 − 𝑒𝑒 ∙ 𝑌2 − 𝑒𝑒 ∙ 𝑌  (3)

or 𝑒𝑒 =  1 − 𝑒𝑒 ∙ 𝑌2 − 𝑒𝑒 ∙ 𝑌 (4)

𝐹 = 𝑒𝑒 ∙ 𝑌 ∙  10  (5)

𝐹 =  1 − 𝑒𝑒 ∙ 𝑌2 − 𝑒𝑒 ∙ 𝑌 ∙ 𝑌 ∙ 10  (6)

𝐹 =  1 − 𝑒𝑒 ∙ 𝑌2 − 𝑒𝑒 ∙ 𝑌  ∙ 𝑌 ∙ 10  (7)

2.1.3. The Value of F Can Be Clearly Determined by the Circumstances of the Process 
For the separation of the enantiomers of racemic bases, tartaric acid or tartaric acid 

derivatives are used in most cases, with which a very good diastereomer separation can 
be achieved under suitable conditions. 

An interesting example of the use of thermodynamic control is the separation of a 
tamsulosine intermediate ((R,S)-TAM) (Figure 7.). We intended to obtain the (S)-
TAM.(R,R)-DBTA diastereomeric salt using 0.5 mol equivalent of (R,R)-DBTA and 0.5 
equivalent of hydrochloric acid. However, after 1 h (kinetic control) the (R,S)-TAM.(R,R)-
DBTA salt was crystallized from a mixture of water and methanol, with a good yield. 
However, if the crystalline mixture was left to stand (for 48 h), with the thermodynamic 
control in effect, the eeDia will be ~96%, and the value of F will be 0.7 [11]. 

 
Figure 7. Only the effect of the thermodynamic control applies to the crystallization of (S)-
TAM.(R,R)-DBTA. 
Figure 7. Only the effect of the thermodynamic control applies to the crystallization of (S)-TAM.(R,R)-
DBTA.

The following example implies that a better enantiomeric separation can be achieved
with a relatively shorter crystallization time, i.e., the effect of the kinetic control can be
exploited for a better result.

If the racemic 1-phenylpropan-2-amine ((R,S)-A) is reacted with 0.5 mol equivalent of
(S,S)-tartaric acid ((S,S)-TA) and 0.5 mol of hydrochloric acid in isopropyl alcohol, from the
rapidly heated solution immediately crystallizes as a very pure salt of (S)-A.(S,S)-TA [12]
(Figure 8).
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If Tetramisole ((R,S)-TET) is reacted with dibenzoyl-tartaric acid ((R,R)-DBTA) in a
mixture of water and immiscible dichloromethane, which is heated to 40 ◦C, then cooled
to 5 ◦C and filtered, eeDia will be the result of kinetic control. However, if the crystallizing
mixture is irradiated with ultrasound, the thermodynamic control cannot take effect during
this time (therefore, irradiation inhibits the effect of thermodynamic control) [13] (Figure 9).
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Figure 9. The enantiomeric enrichment of the TET enantiomer that can be separated from the
diastereomeric salt is the result of the kinetic control, since the thermodynamic control could not
exert its effect due to the ultrasonic irradiation.

2.1.4. Thermodynamic vs. Kinetic Control

The thermodynamic control results in the best enantiomeric separation after mixing
the aqueous solutions of the hydrochloride of the racemic AD base and the ammonium
salt of the R-acid resolving agent, during a crystallization time of about 10 h. This time can
be shortened to minutes if the water-insoluble solid salt of the resolving agent is added
to the aqueous solution of the racemic compound—kinetic control can be achieved. For
example, to the aqueous solution of Chloramphenicol’s intermediate, (RR,SS)-AD.HCl,
instead of the solution of the ammonium salt of the resolving agent (R-acid), the salt of
(R-acid)2 is added. Ca (in a solid state or even in an aqueous suspension) is added to the
aqueous solution of the hydrochloride of the racemic AD base [14] (Figure 10).

2.1.5. The Role of Solvates

During the separation of diastereomer pairs by fractional crystallization, crystalline
solvates are often obtained. Such was the case with the separation of racemic tofisopam
(TOF) enantiomers (Figure 11). The resolution was carried out with 0.5 mol of (R,R)-
dibenzoyl tartaric acid ((R,R)-DBTA) in a mixture of water and chloroform.
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Figure 11. At the separation of racemic tofisopam (TOF) the formation of the microcrystalline
diastereomer does not occur without a solvate-forming solvent.

The first assumption was that 3 H2O forms the solvate from the water/chloroform
mixture, it was later proven that ca. 0.58 CHCl3 forms the solvate in all cases, even if the
solvent is not two-phase. If the solvent does not contain chloroform, the diastereomeric salt
will not crystallize. Otherwise, the thermodynamic control applies to all solvents, but the
configuration remains unchanged [15].

The separation of the enantiomers of racemic Amlodipine (AML) was solved with
(R,R)-tartaric acid ((R,R)-TA). In all cases, neutral diastereomeric salt is formed, but the
used solvent forms a solvate. Thus, the appropriate solvate of (R)-AML is isolated from
DMSO and DMAA solvents with (R,R)-tartaric acid, while from DMF the appropriate
solvate of (S)-AML is precipitated (Figure 12).
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2.1.6. Tandem Resolution 

Figure 13. Resolution of racemic Amlodipine with (R,R)-tartaric acid in isopropyl alcohol by adding
thiourea. The kinetic control takes place in 2 h.

Thus, the (R)-AML-containing diastereomer crystallizes with a TU co-crystal from
isopropyl alcohol in the presence of thiourea (TU) in 2 h, with the help of the kinetic control.

If the former resolution is carried out, in acetone, the thermodynamic control prevails.
However, in this case, the (R)-AML enantiomer was also recovered from the precipitated
diastereomeric salt (Figure 14).
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2.1.6. Tandem Resolution

Inducing both enantiomers with the same resolving agent to form diastereomeric salts
is called tandem resolution [16,17].

If the resolution of Amlodipine is carried out as above but crystallized only for 2 h,
the resolution efficiency (F) is the highest (0.69) (Figure 15). Then the mother liquor is
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supplemented with an additional 0.25 mol of (R,R)-tartaric acid, then [(S)-AML]2.(R,R)-
TA.TU salt crystallizes likewise with a higher result (F~ 0.58) [18].
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2.2. Separation of Non-Racemic Mixtures
2.2.1. Separation of Non-Racemic Enantiomeric Mixtures by Recrystallization from Solvent
or Melt Phase

After the separation and decomposition of the diastereomers, enantiomeric mixtures
of different enantiomeric enrichment are obtained. During their purification [19], we use
thermoanalytical methods for planning the process.

The phenomenon of chirality can be observed not only at a molecular but also at a
supramolecular level. Chiral systems can also form new supramolecular chiral associates,
in the form of molecular associates (held together by secondary binding forces) with
mirror-image M and P helicity, which can also be observed macroscopically [20,21]. Due
to symmetry breaking, achiral systems can also exhibit supramolecular chirality through
the self-assembly of their components [22–24]. Molecular self-assembly plays an important
role in sensitive biological systems, beyond the transfer of the genetic code to the storage of
information in nucleic acids and the expression of proteins.

In enantiomeric mixtures, the enantiomers form supramolecular, helical associates.
In a simplified way, this means that even in the case of dimers, we have to expect

mixtures of S,S and R,R racemic mixtures, or mixtures of S,S and S,R or R,R and S,R diastere-
omers in a non-1:1 ratio [25,26]. This means that the distribution of diastereomers between
the two phases will not be the same. For example, if the racemic fraction crystallizes, the
enantiomeric excess remains in the solution.

The distribution of enantiomeric mixtures between two phases during the recrystal-
lization processes (ee0-ee diagram) is not linear and follows the composition-melting point
of their binary melting point phase diagrams and initial-distribution composition curves of
the distribution between two phases [27] (Figure 16).

The figures show that if the enantiomeric enrichment of the enantiomeric mixture is
above the eutectic composition, a purer enantiomeric mixture is found in the crystalline
phase (ee0 > eeEu eecryst > ee0) and if it is below it, the composition of the crystalline phase is
closer to the racemic one.

The eutectic composition of the given enantiomeric mixture changes in the case of
their achiral derivatives. For example: Ibuprofen eeEu: 86%, Ibuprofen. Na eeEu: 24%. This
means that the sodium salt can be purified economically by recrystallization [28].

Hereupon, it is self-evident that during the separation of enantiomeric mixtures,
starting from the separation of the melt-crystalline phases, the crystal solution, solution,
partial precipitation, and usually any enantiomeric mixture distribution between two
phases can be used for the separation of pure enantiomers.
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The separation can be understood as the separation of the mixture of the raceme and
the enantiomeric excess (diastereomeric mixture).

RnSm > (R,S)m + (n − m)R

n > m

2.2.2. Melt Crystallization of the Enantiomeric Mixture

The enantiomeric mixture of the common intermediate of many prostaglandins (PGL)
crystallizes from a melt between 0–5 ◦C and can be separated by filtration (Figure 17).
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purer fraction always ends up in the crystalline phase.

Flumequine’s intermediate (FTHQ) crystallizes from melt of the enantiomeric mixture
at a temperature between 0–10 ◦C (Figure 18).
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2.2.3. Recrystallization of the Enantiomeric Mixture from Solvent

This is the most commonly used method for enantiomer purification. The final product
Diltiazem (DIL) is obtained by crystallization from ethyl acetate in enantiomerically pure
crystals (Figure 19).
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Flumequine’s intermediate hydrochloride (FTHQ.HCl) can be purified from water as
a racemate by crystallization (Figure 20).
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The intermediate of Chloramphenicol also forms a racemate as a hydrochloride mono-
hidrate (AD·HCl·H2O) [29] recrystallized from water (Figure 21).
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purer fraction remains in solution until reaching a relatively high enantiomeric enrichment,
and then the fraction with an enantiomeric enrichment of around 90% enters the solid
phase during further crystallization [30] (Figure 22).
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Figure 22. Recrystallization of racemate-forming tofisopam.

Upon recrystallization of a mixture with 60% enantiomeric enrichment of Citalopram
(CTP) in heptane, a mixture with near-eutectic enantiomeric enrichment can be obtained
from the solution (Figure 23). The further crystallization results in a pure enantiomer.
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Another large group of separation of enantiomeric mixtures is fractional precipitation.
The (S)-enantiomer of Tisercin (TIS) is obtained by releasing the hydrochloride remain-

ing after evaporation of the resolution’s mother liquor with sodium hydroxide solution
(Figure 24).
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Figure 24. During the release of the base, the enantiomeric excess of the mixture enters the solid
phase and the almost racemic fraction remains in the mother liquor.

According to another example, by liberating the sodium salt of the enantiomeric
mixture with hydrochloric acid, the mixture behaves as a racemate, because an almost
racemic composition precipitates from the 77.7% composition, which is around the eutectic
composition.

From the sodium salt of the (R)-fluoro-N-acetyl-phenylglycine (FAFG) enantiomeric
mixture under the influence of hydrochloric acid (Figure 25), a composition with a lower
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enantiomeric enrichment than the ee0 is isolated, and in the case of higher enantiomeric
enrichment, the almost racemic fraction is separated.
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From the aqueous solution of the hydrochloric acid salt of the Tetramisole (TET)
enantiomeric mixture, upon addition of sodium hydroxide equivalent to the fraction
of the enantiomeric raceme, the largest part is separated (filtered out), cooled, and the
enantiomeric excess is obtained by further alkalizing the mother liquor (Figure 26).
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3. Three Examples of Possible Role of Solid State Analytical and Structural
Investigations in Exploration and Invention Design of Resolution Processes

A more in-depth solid state analytical study of diastereomeric salts allows a better
understanding of the complex system of the resolution, thus avoiding experimental out-
comes that are less favorable. In addition, knowing the structure and composition of
diastereomeric salts can also aid in optimization processes. Furthermore, determining the
eutectic composition of the diastereomeric salts allows for a good approximation of the
achievable resolvability.

3.1. Example No. 1

The first example is about exploration of diastereomeric salts potentionally occurring
in the resolution system by powder X-ray diffraction (XRD), FT-IR spectroscopy, and
DSC, demonstrated in case of resolution of racemic Tetramisole (CAS No. 5036-02-2) with
O,O’-dibenzoyl-(R,R)-tartaric acid (DBTA) [12].

Tartaric acids, like O,O’-dibenzoyl-(R,R)-tartaric acid, can behave as both mono- and
dibasic acids forming either so-called bitartrate (hydrogen tartrate) or regular tartrate salts
with a given base, what is the case for tetramisole base, where a whole ternary phase
diagram (Figure 27) with four salts (I-IV) of different stoichiometry and composition were
observed. The formation of ‘racemic double salts’, such as ‘Salt No. 3 (III)’ is theoretically
disadvantageous for resolution purposes.
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gram has been assembled from ternary sub diagrams of the observed crystalline phase-associations 
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tions [4]. The bottom binary phase diagram of (R)- and (S)-Tetramisole corresponds to that given in 
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The identity and actual stoichiometry of the main crystalline component of the dia-
stereomeric sample, precipitated as an intermediate in the resolution process, has been 
established with help of comparisons of its powder XRD profile with those of separately 
synthesized reference salts prepared from its pure constituents (salts Nos. 1-4, Figure 27). 
The intermediate’s profile was quite similar to the pattern of Salt No. 1 (I), consisting of 
(S)-Tetramisole and (R,R)-DBTA in 2:1 molar ratio (see XRD profiles d and e of Figure 8 
in ref [13]). It confirms the original indication mentioned by Fogassy et al. [32]. The op-
portunity for the formation of ‘racemic double’ salt, Salt No. 3 (III, see in the middle po-
sition of the corresponding ternary phase diagram (Figure 27)), might be detrimental dur-
ing the resolution procedure if the resolving agent (R,R)-DBTA is added in high excess.  

Figure 27. The overall ternary and some of the binary phase diagrams of (S)-Tetramisole (Levamisole)–
(R)-Tetramisole–O,O’-dibenzoyl-(R,R)-tartaric acid (DBTA) ternary system. Subternary systems are
also defined by triplets of components, including the following solid crystalline compounds as
racemic Tetramisole and four supramolecular salts (Salt Nos. 1–4, I—Salt No. 1, II—Salt No. 2, III—
Salt No. 3, IV—Salt No. 4), which are the co-crystallized compounds of the enantiomeric Tetramisoles
and O,O’-dibenzoyl-(R,R)-tartaric acid. The overall three-component T–x phase diagram has been
assembled from ternary sub diagrams of the observed crystalline phase-associations assuming eutectic
behavior among the crystalline solids and validity of Schröder–van Laar equations [4]. The bottom
binary phase diagram of (R)- and (S)-Tetramisole corresponds to that given in Ref. [31]. (Figure
recompiled/adapted from Ref. [13]. Copyright 2016, Elsevier B.V.).

The identity and actual stoichiometry of the main crystalline component of the di-
astereomeric sample, precipitated as an intermediate in the resolution process, has been
established with help of comparisons of its powder XRD profile with those of separately
synthesized reference salts prepared from its pure constituents (salts Nos. 1–4, Figure 27).
The intermediate’s profile was quite similar to the pattern of Salt No. 1 (I), consisting of
(S)-Tetramisole and (R,R)-DBTA in 2:1 molar ratio (see XRD profiles d and e of Figure 8
in ref. [13]). It confirms the original indication mentioned by Fogassy et al. [32]. The
opportunity for the formation of ‘racemic double’ salt, Salt No. 3 (III, see in the middle
position of the corresponding ternary phase diagram (Figure 27)), might be detrimental
during the resolution procedure if the resolving agent (R,R)-DBTA is added in high excess.
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3.2. Example No. 2

The second example is about exploration of non-stoichiometric solvate formation by
evolved gas analytical methods coupled online with thermogravimetric balance (TG-EGA-
FTIR, TG-EGA-MS), shown in case of resolution of racemic tofisopam (CAS No. 22345-47-7)
with O,O’-dibenzoyl-(R,R)-tartaric acid (DBTA) [14].

Despite the fact, that both enantiomers and even their two types of stereo-conformers
of racemic tofisopam (TOF, an 2,3-benzodiazepine type anxiolytic, almost without detri-
mental side effects, usually indicated for the treatment of anxiety and alcohol withdrawal,
commercialized, e.g., as Grandaxin) can successfully be separated in high resolution with
the help of special chiral chromatography [33,34], the preparation of pure (S-) and (R-)
enantiomers on an industrial scale can only be carried out by the resolution methodology
established by Fogassy and co-workers [35,36]. Their procedure of successful resolution
applies a half-equivalent amount of O,O’-dibenzoyl-d-tartaric acid as resolution agent,
two-phase chloroform/water media, and stirring the solid at 5 ◦C, furthermore, the pre-
cipitation obtained as induced by scraping. Their original patent application describes the
yellowish diastereomeric solid intermediate sample gained in 87% yield (Figure 28), which
has an (+) optical rotation measured in chloroform, as a hydrated salt with 3 molecules of
water of crystallization, which melts at about 130 ◦C and seems to be stable for a long time
of storage in an almost fully filled vessel. The dextrorotatory (+)-enantiomer of tofizopam
can be released from the solid with appropriate chemical handling [35,36].
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very detailed and extended experimental plans—have been unsuccessful, i.e., any 

Figure 28. Powder XRD profiles of a precipitated tofizopam-(R,R)-DBTA-CHCl3 diastereomeric salt
solvate sample, showing the open-air drying process starting from its ‘wet’ pasty microcrystalline
state during keeping it at open-air for various times, as long as 5 min, half an hour, and 3 months
(Figure based on Ref. [15]).

The various renewed experimental trials by Bosits et al. [15], carried out to improve
and optimize further the earlier established procedure of resolution—even according to very
detailed and extended experimental plans—have been unsuccessful, i.e., any significant
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changes in the conditions failed to provide a better result in the efficiency of resolution
than earlier. Nevertheless, during the checking for the amount of water of crystallization, it
was figured out that the yellow intermediate sample precipitated with high diastereomeric
excess, and which is drying quickly with a formation of a hard crust on its surface, is
basically not a hydrated sample, rather a chloroform solvate, which contains a significant
amount of chloroform held strongly, indicated by its 6.6–7.7% (m/m) chlorine content
measured even in the air-dried state (Figure 29). Its chloroform content was first discovered
and observed by an FT-IR spectroscopic gas cell used for evolved gas analysis (EGA)
of volatiles (Figure 30) coming from a thermogravimetric balance (TG), then it was also
identified by a quadrupole mass spectrometer (TG-EGA-MS) [15].
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Figure 29. Thermogravimetric (TG) and derivative thermogravimetric (DTG) curves of weight loss
and weight loss rate curves, respectively, of the air dried diastereomeric salt, during a TG-EGA-FTIR
spectroscopic evolved gas measurement at heating rate of 10 ◦C/min. (Figure based on Ref. [15]).

Carrying out powder X-ray diffraction measurements on the intermediate resolution
samples freshly formed in the microcrystalline state (Figure 28), it has been confirmed, that
a quick drying in open air results in a hard and airtight crust on all the outer surfaces of
every fine mass and particles of samples, which prevent any further losses of chloroform,
i.e., further loss of incorporated solvent could only be initiated by gradual heating in a ther-
mogravimeter with constant heating rate. During heating at a 10 ◦C/min rate, the showed
crystalline profile deteriorated gradually, while at around 130 ◦C, the sample became com-
pletely amorphous, without providing any signal of significant melting endothermic heat
effect, i.e., no fusion could have happened, meanwhile, the gradual weight loss and release
of chloroform could be followed by both TG-EGA-FTIR and TG-EGA-MS measurement
systems. On further heating, above 130 ◦C, in a new step, the sample started a thermal
decomposition (probably decarboxylation, middle and bottom curve of Figure 30), and also
exhibited again a significant evolution and escape of chloroform (top curve Figure 30) from
the decomposing residue. Nevertheless, none of the two release steps of chloroform could
be considered stoichiometric ones [15].

Nonlinear regression calculation based on the microanalysis results for C, H, N, and Cl
contents of various batches of samples with high diastereomeric excess, indicated that the
air-dried samples exhibit in general approximately a TOF:DBTA:CHCl3 = 1:1:0.58 molar
ratio, confirming a non-stoichiometric chloroform solvate content of obtained samples [to
be published].
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3.3. Example No. 3

The third example is about exploration of stoichiometric solvate or co-crystalline
adduct formation by evolved gas analytical (EGA) methods, and furthermore their struc-
tural relations by other analytical tools (XRD, DASH, FTIR, DSC), demonstrated in case of
resolution of racemic Amlodipine (CAS No. 88150-42-9) with tartaric acid (TA) [18].

Having prepared three different resolution-intermediate Amlodipine (AML)-tartrate
(TA) salt samples of high diastereomeric excess, in form of its dimethyl formamide (DMF),
dimethyl sulfoxide (DMSO) or dimethyl acetamide (DMAA) solvate, respectively, obtain-
able during successful resolutions described already in corresponding patent applications
(summarized in ref. [18]), which applied enantiomeric tartaric acids as resolution agents
and taking into account their C, H, N, and Cl content measured by microanalysis, it was
firmly confirmed that all the three different tartrate salt solvate samples have the common
stoichiometric formula close to ((AML)2TA·2(solvent)). That is, they all seem to corre-
spond to an almost enantiomeric Amlodipine-hemitartrate monosolvate. This obtained
stoichiometric formula definitely implies that the samples are salts in which Amlodipine
behaves as a monoacidic protonated base in the form of primary ammonium cations, while
the dibasic achiral tartaric acid behaves as fully deprotonated tartrate anions with two
negative charges. These anions and cations are present in a 2:1 molar ratio, together with
solvent molecules in a proportional ratio, building solid crystalline phases and so-called
co-crystallized solvate salts [18].

Based on the observed similar stoichiometry of these salt solvates, neglecting the actual
optical rotation signal of the incorporated Amlodipine enantiomers, rather than taking into
account the ‘structural similarity’ of the incorporated solvent molecules, an open question
arises of whether the crystal structure of the first precipitating solid salt solvates of high
diastereomeric excess show any closer relation, e.g., isomorphism, isostructurality or very
similar secondary binding forces? In trying to answer this question, due to the lack of
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pure single crystals of the corresponding diastereomers to be structurally solved, only
powder samples could be studied by powder X-ray diffraction (XRD), FT-IR spectroscopy,
or thermoanalytical (DSC, TG-EGA-MS, TG-EGA-FTIR) methods by Bánhegyi et al. [18].

A comparative study of the hydrogen bonding system in the FT-IR spectra of samples
(Figure 21 in ref. [18]) seems to confirm the presence of primary ammonium cations by
observing weakened νNH stretching vibration bands in the range of 2100–2300 cm−1

so a much closer similarity of the secondary binding force system cannot definitely be
concluded. These differences imply that the likelihood of crystalline isomorphism or
crystalline isostructurality is very low. In trials on indexing the powder X-ray diffraction
pattern of these salt solvate samples, searching for suitable unit cell parameters using the
unit cell indexing algorithms (e.g., DicVol06 [37]) build in the DASH program package [38],
Bánhegyi et al. [18] were able to find a potential common space group for all the three
samples (Table 5 in ref. [18]), suggesting quite similar crystalline lattice organizing forces,
resulting in similar or same symmetry operation sets (space group). Unfortunately, applying
the molecular torsional modelling ability of the DASH program package equipped with
a simulated annealing algorithm, we were not able to achieve a consolidated structural
solution in any cases, because of the large number of molecules in the formula unit of their
torsional rotational degree of freedom and the usage of laboratory X-ray tube wavelength
resolution instead of synchrotron radiation [18].

Among thermal analytical examinations, Differential Scanning Calorimetric (DSC)
measurements should be carried out in hermetically closed Al-crucibles to gain/reproduce
the melting points published in patented examples, while in open crucibles of thermogravi-
metric (TG) studies coupled with evolved gas analytical (EGA) studies (TG-EGA-FTIR
and TG/DTA-EGA-MS) show some weight loss below the ‘expected, reported’ melting
temperatures because of preliminary partial loss of solvate contents. Unfortunately, the
loss of solvent is not stoichiometric, they reach a ‘mass plateau’ for a while, but further
increasing temperature results in not only thermal decomposition (decarboxylation and
desamination) processes, but also some more release of solvate molecules still escaping
from the residual melt. In the case of the diastereomeric tartrate samples containing urea or
thiourea additives, characteristic thermal decomposition products of urea or thiourea occur,
which can be followed by evolved gas analytical methods mentioned previously, were also
found [18].

Using values of melting point and molar enthalpy of fusion measured on pure racemic
and successfully resolved pure Amlodipine samples and the application of the simplified
Schröder–van Laar equation in combination with Prigogine–Defay equation to describe
liquidus curves [4,39], the approximate binary melting phase diagram of the Amlodipine
system has been constructed [18].

Instead of the fore mentioned solvate molecule, urea (based on a patent application)
or thiourea (suggested by Bánhegyi et al. [18]) could also be incorporated into the solid
intermediates of resolution, applying these achiral urea type supplements results in precip-
itated samples of high diastereomer excess with a new general stoichiometric formula of
co-crystals, as, Amlodipine hemitartrate hemi(tio)urea [AML2TA·TU], and a new hydrogen
bonding system and space groupings occurs, which is different from those of previously
mentioned solvate. There seems to be some similarity between diastereomers with urea
and thiourea, but this could not be definitely confirmed nor rejected because of the low
crystallinity of thiourea co-crystals, so this requires further trials and study [18].

4. Conclusions

In order to economically separate the enantiomers of racemic bases and acids, we rec-
ommend following a protocol (Figure 31) that takes into account the following observations,
and statements.
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Figure 31. Schematic flow chart of a resolution, including the suggested protocol to be considered.

I. The separations exploit the different compositional distributions of mixtures of di-
astereoisomers and mixtures of enantiomers between two phases. A dynamic equilib-
rium exists between the two phases until separation.

II. Diastereoisomers are salts of the racemic compound and the resolving agent (1:1 or
1:0.5).

III. Enantiomeric mixtures are a mixture of the diastereomeric associates of the enan-
tiomeric excess and the racemic moiety.

IV. Mixtures of diastereoisomers and enantiomers are characterized by their melting
binary phase diagrams and their eutectic compositions.

V. Knowing the eutectic composition (eeDia) of the melting binary phase diagrams of the
diastereomeric mixtures, the achievable result (Foptimum) of a given resolution can be
calculated.

VI. Either the racemic compound with its eutectic composition (eeEuRac) or the resolving
agent with the eutectic composition of its enantiomeric mixtures (eeEuResAg) can be the
determinant, thus encoding, depending on the circumstances, the enantiomeric en-
richment of the enantiomeric mixtures, obtained from the crystallized diastereomeric
salt (eeDia~eeEuRac or eeDia~eeEuResAg).

VII. The composition and yield (Y) of eeDia obtained from crystalline separated diastere-
omers is a function of solvent and crystallization time.

VIII. The optimal enantiomeric separation (F) is expected to be under the influence of
kinetic or thermodynamic control. If the effect of the favorable kinetic control is
rapidly reduced, it can be stabilized by ultrasonic irradiation (or other kind of energy
transmission is required).
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IX. If the interaction of the solvent and the resolving agent produces a mixture of resolving
agents, the result of the resolution may be greater than calculated based on the melting
binary phase diagram of the diastereomer with the original resolving agent.

X. If the diastereomer crystallizes only as a solvate, but the result (F) is low, it is preferable
to use a solvent that also contains the solvent which forms the solvate.

XI. If the given diastereomer forms only solvates but the solvate-forming solvents are not
favorable, it can be successfully crystallized from a conventional solvent with a solid
compound with a ‘related structure’ containing the common structural part of the
solvent.

XII. Non-racemic enantiomeric mixtures are mixtures of diastereomerically related asso-
ciates.

XIII. From the enantiomeric mixture forming the conglomerate, a fraction of higher enan-
tiomeric enrichment than the initial one is always crystallized.

XIV. From a conglomerate-forming enantiomeric mixture, a fraction with higher enan-
tiomeric enrichment than the initial one will crystallize.

XV. The derivative with an achiral reagent of a conglomerate-forming enantiomeric mix-
ture may also behave as a racemate and vice versa (racemate-forming enantiomeric
mixture may also behave as a conglomerate).

XVI. From conglomerate or racemate forming enantiomeric mixtures, a purer fraction of
the starting mixtures with an enantiomeric enrichment above the eutectic composition
is always introduced into the crystalline phase.

XVII.The phase that crystallizes from a melt enantiomeric mixture and the composition of
the melt can be different

XVIII.In the case of fractional precipitation from a solution of achiral derivatives of enan-
tiomeric mixtures, either the enantiomeric excess or the racemic fraction crystallizes
into the solid phase in relation to the composition of the initial enantiomeric enrich-
ment and the binary phase diagram of the mixture.

Based on these observations, considering the structure and eutectic composition
(code) of the racemic compound, it is straightforward (with fewer experiments) to select
the adequate resolving agent (putting its eutectic composition and structural similarity
to the fore) in the applied solvent. The advantages of the crystallization time (effect of
thermodynamic and kinetic control) and the use of solvate-forming reagents should not
be overlooked either, thus, a designable, predictable, and improvable resolution could
be achieved supported by thermoanalytical and structural insights based on preparative
experiments.
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