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Abstract: This study investigated the phytochemical content of alcoholic extracts and essential
oil of a new variety of medicinal plants, Agastache foeniculum (Pursh), which Kuntze adapted for
cultivation in Romania, namely “Aromat de Buzău”. The essential oil was investigated by GC-
MS, while the identification and quantification of various compounds from alcoholic extracts were
performed by HPLC-DAD. The total phenol and flavonoid contents of the extracts were evaluated
by using standard phytochemical methods. The antioxidant activities of ethanol, methanol extracts,
and essential oil of the plant were also assessed against 2,2′-diphenyl-1-picrylhydrazyl (DPPH•),
2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS•+), and by ferric reducing power
(FRAP) using spectroscopic methods. Cyclic voltammetry was used to evaluate the antioxidant
capacity of the essential oil. The concentrations of phenolic compounds were higher in methanolic
extract compared to ethanolic extract. A significant correlation was found between total phenol
and total flavonoid contents (r = 0.9087). Significant high correlations were also found between the
total phenolic compounds and the antioxidant activities of the extracts (r ≥ 0.8600, p < 0.05). In
addition, the extracts and essential oil showed good antioxidant and xanthine oxidase inhibitory
activities. Estragole was detected as the major constituent of the essential oil (94.89%). The cytotoxic
activity of the essential oil was evaluated by the MTT assay. At lower concentrations (1 µg/mL)
high cytotoxicity against MCF-7 breast cancer cells was observed but not on the non-tumoral dermal
fibroblasts (HDF) which indicated selectivity for cancer cells and suggests the presence of biologically
active components that contribute to the observed high cytotoxic effect. Findings from the present
study offer new perspectives on the use of A. foeniculum as a potential source of bioactive compounds
and a good candidate for pharmaceutical plant-based products.

Keywords: Agastache foeniculum; xanthine oxidase inhibitors; antioxidants; bioactive compounds

1. Introduction

Several studies have associated many diseases such as cancer or gout with increased
oxidative stress, resulting from an imbalance between reactive oxygen species (ROS) and
antioxidants [1]. Cancer is considered the second cause of death worldwide, after ischemic
heart disease and stroke, according to the world health organization (WHO) statistics
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on global health [2]. Oxidative stress, by inducing gene mutations and activating pro-
oncogenic signaling, can generate carcinogenesis and the progression of cancer cells [3]. In
the treatment of several diseases, the aim is to reduce the accumulation of ROS that occurs
as a result of metabolic disorders [1,4–6]. Inhibition of xanthine oxidase (XO) reduces both
vascular oxidative stress and circulating uric acid levels, which helps reduce the risk of
gout [7]. XO inhibitors (XOIs) work by blocking the biosynthesis of uric acid from purines
in the body and can act either at the purine binding site such as allopurinol or at the
cofactor site like benzimidazole [8,9]. Known XO inhibitors such as allopurinol, oxypurinol,
and febuxostat have been widely used for the treatment of hyperuricemia and gout [7].
However, due to their side effects, the identification of new non-purine selective xanthine
oxidase inhibitors is sought [10].

Over the centuries, empirical knowledge about the benefits of medicinal plants in
alternative medicine has been passed from generation to generation [11,12]. The health
benefits of chemical compounds from natural sources have gained a growing interest
in modern medicine. More and more herbal products are used as sources of bioactive
compounds, such as in herbal teas, food supplements with herbal powders, essential
oils (EOs), extracts obtained in different solvents, purified isolated organic compounds,
and in synergistic drug combinations consisting of classic target synthetic molecules with
compounds from natural sources [13,14]. In the food industry, antioxidants are added
to food, in order to prevent the deterioration of its taste, smell, and color [15]. Previous
studies have reported that the consumption of synthetic antioxidants was related to possible
adverse effects such as skin allergies, gastrointestinal tract problems, and increased risk
of cancer [15]. Therefore, it is necessary to find compounds from natural sources with
therapeutic action to circumvent the severe side effects of synthetic drugs [16]. The use
of compounds from natural sources has many advantages, such as chemical diversity,
targeting multiple host sites through various mechanisms, displaying high biological
specificity, and low side effects [17,18].

Many plants of the Lamiaceae family are used in traditional medicine as herbal products,
but also in the food industry as flavorings [19,20]. The genus Agastache is part of the
Lamiaceae family and includes 22 species of perennial ornamental and medicinal plants [21].
Agastache foeniculum (Pursh) Kuntze with fragrant leaves and purple flowers is widely
used for ornamental purposes, flavoring sweets, and other foods due to its appearance
and pleasant aromas similar to anise [22]. This plant is used to produce herbal teas that
are especially preferred by native Americans for therapeutic purposes such as relieving
various symptoms of colds, fevers, coughs, heart disease, inflammation, and pain [23].
This herbaceous and aromatic perennial plant is native to North America [24] and was
mentioned in other studies as anise hyssop, Lophantus anisatus, blue giant hyssop, flagrant
giant hyssop, or lavender giant hyssop [22,25,26].

So far, in the literature, several studies have represented A. foeniculum phytochemical
content and its pharmacological properties. The phytochemical profile of these plants
includes non-volatile metabolites belonging to several classes such as flavones and flavone-
glycosides (a rare dimeric malonylflavone—agastachin, agastachoside, acacetin, apigenin,
tilianin, myricetin, luteolin) [22,27], phenolic compounds (rosmarinic acid, caffeic acid) [28],
lignans (agastenol, agastinol) [29], terpenoids including triterpenoids (betulin, betulinic
acid, maslinic acid, oleanolic acid, β-amyrin, ursolic acid, corosolic acid, α-amyrin), diter-
penes (agastaquinone, agastol), and sterols [22,30,31]. Volatile metabolites were reported in
their chemical composition such as estragole, pulegone, eugenol, methyleugenol, menthone,
isomenthone, and spathulenol [20,30,32].

In the current context, taking into account the worldwide largest number of diseases
that affect humans such as gout, cardiovascular diseases, diabetes or cancer [2,33–35], the
adapted cultivation of various plants from other geographical regions is very important to
properly reduce the costs of cultivating, processing, and transport, and also to make more
plant products with therapeutic applications [36] available. This innovative, economical,
and sustainable approach is also able to promote the impact of natural compounds from
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plants on human health. Based on the antioxidant potential of the main components identi-
fied in the EO and extracts from A. foeniculum, this paper aimed to evaluate the phytochem-
ical characterization of a new Romanian plant variety A. foeniculum (Pursh) Kuntze, namely
“Aromat de Buzau” (AdB) registered in 2018 (https://istis.ro/en/catalog-oficial/, accessed
on 15 September 2022), which has been adapted to the climatic cultivation conditions in
Romania by the Research-Development Station for Vegetable Growing Buzău. Moreover,
this study sought to evaluate the biological properties of the alcoholic extracts and EO from
this plant, such as antioxidant, xanthine oxidase inhibitory, and cytotoxic activities.

2. Results
2.1. Morphological and Structural Characteristics of A. foeniculum AdB Using Confocal Laser
Scanning Microscopy (CLSM)

The present study shows morphological and structural characteristics of the leaves
and stems of a plant adapted to cultivation in Romania by confocal laser scanning mi-
croscopy. The sections through the stems and leaves of the mature plant of the new variety
of A. foeniculum AdB indicated healthy plant tissues, with normal morphological and
structural characteristics, as observed by confocal laser scanning microscopy (Figure 1).
Microscopic images of fresh cross-sectional samples through the A. foeniculum stem showed
cortical parenchyma under the epidermis, with large polygonal cells (58.61–84.78 µm).
The medullary area was rich in vascular elements (T) with a thick secondary wall with
spiral ornaments. The thick secondary cell wall is important in the transport of organic
compounds synthesized in the assimilating parenchyma (Figure 1a,b). The leaf section of
A. foeniculum presents a very compact assimilating tissue with small intercellular spaces,
polygonal cells of approximately 15 ± 2 µm, and thick cell walls (Figure 1c).
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Figure 1. Sections of (a,b) stem and (c) leaves of A. foeniculum AdB observed using CLSM.

2.2. Profiling of Chemical Compounds in A. foeniculum AdB EO by GC-MS

Hydrodistillation of the A. foeniculum AdB plant gave an odorous pale yellow EO
with a yield of 1.86 ± 0.64% (v/w), considering three independent extraction procedures
(n = 3).

The total ion chromatogram recorded by GC–MS of the EO from A. foeniculum, which
contained seven identified compounds, is shown in Figure 2, and the chemical composition
is presented in Table 1.

https://istis.ro/en/catalog-oficial/
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Figure 2. Total ion chromatogram of the EO from A. foeniculum AdB using GC–MS.

Table 1. The chemical composition of the EO from A. foeniculum AdB.

No. Rt (min.) Constituent m/z Molecular Formula &
Molecular Weight Concentration (%)

1 8.16
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136 C10H16(MW: 136.23) 2.91 ± 0.65 b

2 10.82
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Table 1. Cont.

No. Rt (min.) Constituent m/z Molecular Formula &
Molecular Weight Concentration (%)

7 13.57
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The main components detected in A. foeniculum were estragole, limonene, methyl
eugenol, and caryophyllene (Figures S1–S8), together with other volatile compounds
(Table 1). Previous investigations on A. foeniculum revealed different chemical compositions
of the EOs in which the major compounds detected were methylchavicol, β-caryophyllene,
limonene, menthone, linalool, silvestrene, or thymol [22,37]. Therefore, there is diversity in
the chemical composition of Agastache species, which is mainly reflected in the EOs and
biological activities due to several environmental, cultivation, and harvesting factors.

2.3. Total Phenolic and Flavonoid Contents

By ultrasound-assisted extraction, methanolic extracts were obtained with a yield
of 11.062 ± 0.945% and ethanolic extracts with a yield of 7.212 ± 0.686%, considering
three independent extractions. Total phenolic (TPC) and flavonoid (TFC) contents were
determined both for methanolic (MeOH) and ethanolic (EtOH) extracts from the dried stem,
flowers, and leaves of A. foeniculum. Results are summarized in Table 2. The methanolic
extract was characterized by the highest phenolic and flavonoid contents.

Table 2. Total phenolic and flavonoid contents of methanolic and ethanolic extracts of A. foeniculum
AdB; means ± SD.

Samples Extraction Yield (%) TPC
(mg GAE/g DW)

TFC
(mg QE/g DW)

MeOH 11.062 ± 0.945 a 485.084 ± 0.052 a 367.32 ± 0.008 a

EtOH 7.211 ± 0.686 b 403.918 ± 0.057 b 355.94 ± 0.007 b

TPC: total polyphenol content; TFC: total flavonoid content; MeOH: methanolic extract; EtOH: ethanolic extract;
GAE: gallic acid equivalents; DW: dry weight; QE: quercetin equivalents. The values followed by different letters
(a, b) in the same column show statistically significant differences (p > 0.05). Each value is the mean of three
replicates ± SD.
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2.4. Identification of Bioactive Compounds in the Extracts from A. foeniculum AdB through
HPLC-DAD

In this work, the phytochemical profile of alcoholic extracts from A. foeniculum AdB
was investigated by HPLC-DAD analysis (Figure 3). The chromatographic study of the
extracts showed that the methanolic and ethanolic extracts revealed high quantities of
quercetin and genistein. The quantification of each compound in the studied extracts is
presented in Table 3.

In the methanolic extracts, the concentrations of all compounds detected were higher
compared to ethanolic extracts. Genistein and quercetin were found in all samples tested,
while tannic acid was quantifiable only in the sample extracted with methanol. Caffeic acid,
p-coumaric acid, quercetin, hyperoside, and rutin were identified in higher concentrations
in methanolic extracts.
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Table 3. Bioactive compounds contained in ethanolic (EtOH) and methanolic (MeOH) extracts of
A. foeniculum AdB.

Chemical Name Chemical Structure
Content (µg/g dw)

MeOH EtOH

Phenolic Acids

p-Coumaric acid C9H8O3 62.079 ± 0.436 a 8.982 ± 0.093 b

Caffeic acid C9H8O4 59.014 ± 0.103 a 31.320 ± 0.145 b

Tannins

Tannic acid C76H52O46 72.061 ± 0.077 a -

Flavonols

Rutin C27H30O16 76.409 ± 0.100 a 56.701 ± 0.111 b

Quercetin C15H10O7 1073.637 ± 0.130 a 704.148 ± 0.150 b

Hyperoside C21H20O12 98.693 ± 0.190 a 58.892 ± 0.105 b

Flavanones

Naringenin C15H12O5 43.683 ± 0.114 a 30.242 ± 0.121 a

Isoflavones

Genistein C15H10O5 3171.823 ± 0.218 a 2229.999 ± 0.256 b

MeOH: methanolic extract; EtOH: ethanolic extract; dw: dry weight. The values followed by the same letter (a,
b) in the same row show no statistically significant differences (p < 0.05) according to the analysis of variance
(ANOVA). Each value is the mean of three replicates ± SD.

2.5. In Vitro Antioxidant Activities

Free radicals are produced in biological systems and are also found as exogenous
and are known to influence various chronic degenerative diseases such as cardiovascular
disease, inflammatory diseases, aging, carcinogenesis, or arthritis [6,38]. Antioxidant
compounds protect cells against oxidative stress through a mechanism of intervention on
one of the three major stages of the oxidative process mediated by free radicals, namely
initiation, propagation, and termination. These antioxidants are found naturally in many
foods, and the balance between oxidants and antioxidants in the body can have a significant
effect on human health [39].

2.5.1. 2,2′-Diphenyl-1-Picrylhydrazyl (DPPH) Radical Scavenging Activity

Plants with a high content of secondary metabolites show antioxidant activity due to
their redox properties and chemical structures. The MeOH extract, EtOH extract, and EO of
A. foeniculum AdB showed strong antioxidant activity against the investigated free radicals
(Figure 4). The phenolic content could justify the antioxidant activity of the alcoholic
extracts from A. foeniculum AdB. The percentage of inhibition of DPPH radicals by the
extracts did not vary significantly in time (from 15 min up to 1 h), unlike the EO where it
was found that the same concentration of EO increases its DPPH radical inhibition activity
in time (Figure 4c).
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Figure 4. DPPH scavenging activity of (a) methanolic extract, (b) ethanolic extracts from A. foenicu-
lum AdB, (c) EO from A. foeniculum AdB, and (d) gallic acid. Each value is the mean of three
replicates ± SD.

2.5.2. ABTS [2,2′-Azinobis-(3-ethylbenzothiazoline-6-sulfonic Acid)] Scavenging Activity

Powerful antioxidants prevent biomolecules (proteins, sugars, nucleic acids, polyun-
saturated lipids) from suffering oxidative damage through free radical-mediated reactions.
Discoloration of the ABTS solution is determined by the percentage of inhibition of the
ABTS•+ radical cation as a function of sample concentration and time (Figure 5). These
plant extracts and EO were found to have antioxidant effects against ABTS•+ radical cations
that may justify and therefore encourage their use in medicine.

2.5.3. FRAP Scavenging Activity

The assay consists of the reduction of ferric to ferrous ions at low pH, providing
a colored complex. Ferric tripyridyltriazine (TPTZ 2,4,6-Tris(2-pyridyl)-s-triazine) has a
yellow color that, upon reduction to ferrous form by antioxidants, turns to a violet-blue
color. The change in absorbance is proportional to the total ferric-reducing power of the
antioxidants in the sample. The MeOH extract demonstrated higher total ferric-reducing
power (45.721 ± 0.014 µM Fe(II) equivalents/g of extract) when compared to the EtOH
extract (39.483 ± 0.017 µM Fe(II) equivalents/g of extract), which indicates that the MeOH
extract contains a higher amount of antioxidant compounds (Table 4).
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Figure 5. ABTS scavenging activity of (a) MeOH extract; (b) EtOH extract; (c) EO, from A. foeniculum
AdB; and (d) Trolox. Each value is the mean of three replicates ± SD.

Table 4. IC50 values for antioxidant assays.

Sample DPPH
IC50 Value

ABTS
IC50 Value

FRAP
(µM Fe(II)

Equivalents/g of
Extract)

Unit of
Measurement

MeOH 76.368 ± 0.002 b 98.274 ± 0.002 b 45.721 ± 0.014 a µg/mL
EtOH 94.986 ± 0.002 a 244.261 ± 0.003 a 39.483 ± 0.017 a µg/mL

EO 12.943 ± 0.001 c 0.3356 ± 0.002 d µg/mL
Trolox 32.562 ± 0.002 c µM

Gallic acid 15.614 ± 0.012 d µg/mL
The values followed by the same letter (a, b, c, d) in the same column show no statistically significant differences
(p < 0.01). Each value is the mean of three replicates ± SD.

Pearson’s correlation coefficients between the means of phytochemical contents (TPC,
TFC) and antioxidant activities (DPPH•, ABTS•+, FRAP) were computed and reported in
Table 5. A statistically high significant correlation (p < 0.01) coefficient was found between
total flavonoid content and free radical scavenging activity against DPPH• (r = 0.9972)
and ABTS•+ (r = 0.9813). Correlation coefficients were also very high among the three
antioxidant activity values (DPPH•, ABTS•+, FRAP) (r ≥ 0.8600).
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Table 5. Pearson correlation matrix between phytochemical contents and antioxidant activities of A.
foeniculum extracts.

TPC a TFC b DPPH•c ABTS•+ d FRAP e

TPC 1
TFC 0.9087 * 1

DPPH• 0.9373 * 0.9972 ** 1
ABTS•+ 0.9720 ** 0.9813 ** 0.9929 ** 1
FRAP 0.7356 0.9275 * 0.9057 * 0.8600 1

a Total phenolic content, b Total flavonoid content, c IC50 in DPPH assay, d IC50 in ABTS assay, e FRAP assay (µM
Fe(II) equivalents); * Correlation is significant at the 0.05 level; ** Correlation is significant at the 0.01 level.

2.6. Electrochemical Evaluation of Antioxidant Capacity by Cyclic Voltammetry

Fresh samples of 5 µL of EO in 20 mL methanol were prepared and analyzed by open
circuit voltage (OCV), after 24 h and 5 d (samples were kept in the fridge). The evolution
of the potential (E) of the samples registered for 10 min can be observed in Figure 6. The
potential of the sample analyzed after 24 h showed a difference of about +30 mV in the
positive zone compared with the fresh sample. In the next 30 min and further, no noticeable
differences were observed, but an increase in the potential was registered. Results indicate
the availability of electronic exchanges between chemical components from the sample
since they are systems with dynamic evolution that have an increasing value of E to 100 mV
after 30 min.
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Figure 6. (a) The evolution of the potential (E) by OCV registered for 10 min of A. foeniculum
AdB EO with time; (b) Cyclic voltammograms of A. foeniculum AdB EO registered at 24 h and 5 d
(E = ± 2 V/Ag/Ag Clsat, at 100 mVs−1).

The cyclic voltammograms of the standard compound eugenol, a natural compound
with known antioxidant properties, and A. foeniculum EO are shown in Figure 7. In both
samples, at ca. 0.5 V/Ag/AgClsat, the cyclic voltammograms showed biocompounds that
improve the potential intensity. In the sample with the EO from A. foeniculum AdB, a
maximum anodic current of 20–22 µA was registered at the potential between 1.5 till 1.9 V.
The half-wave potential (E 1

2
) of eugenol was registered around 1.85 V/Ag/AgClsat.
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Figure 7. Cyclic voltammograms of A. foeniculum AdB EO (blue) and standard compound eugenol
(black), E = ±2 V/Ag/Ag Clsat, at 100 mVs−1.

2.7. Xanthine Oxidase (Xo) Inhibitory Activity of the EO and Alcoholic Extracts from
A. foeniculum

Xanthine oxidase is involved in purine degradation in humans by forming xanthine
from hypoxanthine and is ultimately converted to uric acid by an enzymatic reaction cat-
alyzed by xanthine oxidase. Uric acid is eliminated in the urine, but excessive uric acid for-
mation can consequently lead to hyperuricemia and gout [8,10]. The EO from A. foeniculum
AdB demonstrated a high inhibition of xanthine oxidase activity in vitro (84.077 ± 0.031%)
at a concentration of 20 µg/mL, which is comparable with that of 30 µg/mL allopurinol, a
well-known XO inhibitor [8]. The EO and the alcoholic extracts demonstrated significant
inhibitory activities at concentrations higher than 2.5 µg/mL (p < 0.001) and higher than
0.25 mg/mL (p < 0.001), respectively (Figure 8).
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Figure 8. Xanthine oxidase (XO) inhibitory activity of allopurinol, extracts, and EO from A. foeniculum
AdB evaluated at varying concentrations. Results are mean ± SD of three replicates per condition.
* Significantly different (Dunnett t-tests, 2-sided) from the control (without inhibitor) conditions
(p < 0.001).

2.8. Cytotoxic Activity of the EO from A. foeniculum

In the search for new medicines for treating cancer, the compounds isolated from plants
could be better alternatives to the current chemotherapeutics that present poor selectivity
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and high toxicity, hoping to get lesser side effects and to spare healthy cells and tissues [2].
Certain components of medicinal plants have proved to be alternative approaches in the
fight against cancer, either administered alone or combined with chemotherapeutic drugs to
improve the treatment efficacy. As an interesting example, the cytotoxic activity of estragole
from the EO from A. foeniculum AdB was tested against MCF-7 breast cancer cell lines [23].
As shown, estragole exhibited a dose-dependent cytotoxic effect in the MCF-7 cells showing
IC50 values of 74 µg/mL [23]. Our studies with the EO from the Romanian A. foeniculum
AdB and the MCF-7 cell lines indicated a higher cytotoxic effect against MCF-7 breast
cancer cell lines at lower concentrations (1 µg/mL) which suggested the presence of other
biologically active components that contributed to the high cytotoxic effect observed. In
addition, using the normal cells, the human dermal fibroblasts, the cytotoxic effect seemed
to indicate improved selectivity for the breast cancer cells, at concentrations higher than
0.2 µg/mL (Figure 9). The EO demonstrated statistically significant cytotoxic activities
against MCF-7 cells at concentrations higher than 0.2 µg/mL (p < 0.001). Further studies
will be carried out to evaluate the cytotoxicity of the alcoholic extracts.
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Figure 9. Cytotoxic activity of A. foeniculum EO against MCF-7 and HDF cell lines. The IC50 values
found using the GraphPad Prism software (vs. 5.0) were MCF-7, 0.24 ± 0.09 µg/mL, and HDF,
0.47 ± 0.1 µg/mL. Control = cells without treatment. Data are mean ± SD of two independent
experiments with at least four replicates per condition. * Significantly different (Dunnett t-tests,
2-sided) from the basal conditions (p < 0.001).

3. Discussion

Human diseases are becoming more aggressive and resistant to classical drugs, there-
fore the demand for new treatments is increasingly aiming to explore new sources of natural
multi-target drugs [40]. Plants are an increasingly explored sources in the search for new
drugs. According to previous studies, the efficacy of natural compounds with antioxidant
activity for therapeutic purposes was demonstrated, and future studies may expand their
applications in clinical therapies [4].

This study investigated the chemical composition and biological properties of two
alcoholic extracts, and EO from the A. foeniculum AdB variety. The sections through the
stems and leaves from the mature plant adapted to cultivation in Romania observed by
CLSM indicated healthy plant tissues, with normal morphological and structural charac-
teristics. The yield of EO from A. foeniculum AdB is similar to other results reported in
the literature [22]. The main component detected in the EO from A. foeniculum AdB was
estragole (1-allyl-4-methoxybenzene), an allylbenzene analog, a colorless liquid with an
odor of anise and sweet taste. In this study, we found a slightly different chemical composi-
tion of the EO compared to other studies, but also some common chemical components.
Variations in the phytochemical composition occur due to the geo-climatic conditions of
their growth, maturity at the time of collection, or species variation [36]. Charles et al. [41]
reported the analysis of 19 varieties of Agastache species for EO content and 26 compounds
were identified. The main constituents of the oil from A. foeniculum included methylchavi-
col, spathulenol, bornyl acetate, γ-catenin, β-caryophyllene, α-limonene, and α-cadinol.
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The GC-MS analysis of the EO of 14 different A. foeniculum species from Canada prairies
detected over 50 compounds, and methylchavicol was the major constituent (96 ± 2%) [42].
Skakovskii et al. [43] reported the composition rich in limonene, isomenthone, pulegone,
menthone methylchavicol, and methyleugenol of the EO from A. rugosa (Fish. et Mey)
O. Kuntze, which was determined by using 1H and 13C NMR analysis. Ivanov et al. [22]
identified by GC-MS in the EO of A. foeniculum eight main components: estragole, eugenol,
methyl isoeugenol, sylvestrene, 1-octen-3-ol acetate, β-caryophyllene, spathulenol, and
caryophyllene oxide. In another study, a total of 37 components of the EO obtained from
aerial parts of A. rugosa were determined by GC-FID and GC-MS, and the main identified
compounds were methyleugenol, estragole, eugenol, thymol, pulegone, limonene, and
caryophyllene [37].

In the present study, the phenolic acids and flavonoids compounds from the alcoholic
plant extracts were evaluated by HPLC-DAD analysis. Phenolic compounds accumulate in
various plant tissues and cells during ontogenesis and, respectively, under the influence of
various environmental stimuli, being involved in many interactions of plants with their bi-
otic and abiotic environment [44]. The chromatographic analysis of the extracts showed that
the methanolic and ethanolic extracts revealed high quantities of quercetin and genistein.
In the MeOH extract, the concentration of all compounds detected was higher compared
to EtOH extracts, these results being similar to others from the literature [45]. Genistein
and quercetin were found in high concentrations in both extracts, while tannic acid was
quantifiable only in the MeOH extract. Caffeic acid, p-coumaric acid, quercetin, hyperoside,
and rutin were identified in both extracts. Overall, the results of all analyzes confirmed
that the methanolic extract presented a richer chemical composition and better biological
activities than the ethanolic extract. The main compounds in the chemical composition of
the aqueous and organic extracts of various Agastache species presented in other several
studies were flavonoids (hesperitin, quercetin, tilianin), flavones (acacetin, 7-O-glucosyl
acacetin, diosmetin 7-O-β-D-(6”-O-malonyl)-glucoside, luteolin 7-O-β-D-glucoside), ter-
penes (limonene, linalool, eugenol, ursolic acid, oleanolic acid, estragole, β-amirin), organic
acids (malic acid, butanoic acid, hexadecanoic acid), esters (butanoic acid-hexane-dioctyl
ester, hexanedioc-dioctyl ester, 6-octen-1-ol-3,7-dimethyl propionate, ethyl palmitate) [46].
At the flowering stage of Agastache species, two glucosylflavones, namely isoagastachoside
and agastachin, were detected in the chemical composition of their methanolic extract [30].
Strilbytska et al. [26] detected in A. foeniculum leaf water extracts by HPLC-MS analysis the
presence of 24 compounds with various previously described biological properties such
as antioxidant, neuroprotective, antidiabetic, antineoplastic, or cardioprotective. Among
these compounds, genistein and caffeic acid were also identified in our present study.

Our results showed a significant correlation between the total polyphenol and flavonoid
contents (r = 0.90, p < 0.05) and the ability to inhibit the DPPH• (r ≥ 0.93, p < 0.05) and
ABTS•+ (r ≥ 0.97, p < 0.01) free radicals, while the power to reduce Fe3+ to Fe2+ demon-
strated a good correlation with the total flavonoid contents (r = 0.93, p < 0.05) and DPPH•

radical inhibition activity (r = 0.90, p < 0.05). The correlations are similar to others from the
literature [47,48]. The increased activity of reducing free radicals by natural compounds
also justifies the results of this study in which extracts from A. foeniculum AdB with a high
total content of flavonoids showed high antioxidant activities. The cyclic voltammetry
studies demonstrate that the electrochemical oxidation of the A. foeniculum AdB samples is
strongly related to the structure of the electroactive chemical compounds. The observed
electrochemical process supports the good antioxidant activity of the EO from A. foeniculum
AdB. Several studies have demonstrated a relationship between the high concentration
of flavonoids and modulating cellular redox homeostasis processes such as ROS scaveng-
ing [6,49]. The plant extracts and EO from this study demonstrated antioxidant effects that
may justify and encourage some of their uses for several disease prevention and further
clinical studies.

The potential biological activities of Agastache species differ between subspecies, as
each has a varied chemical profile. The variation in the composition of EOs and extracts
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of Agastache medicinal plants occurs due to their genetic variations, the stages of plant
growth, geo-climatic conditions, nitrogen fertilizers, irrigation regimes, and maturity stage
at the time of collection [36]. Due to their bioactive components, Agastache species could
be promising therapeutic agents for human health with antioxidant, anti-inflammatory,
analgesic, antimicrobial, antihypertensive, vasorelaxant, antiviral, nutraceutical, anticancer,
and anti-diabetic properties [22,23,46].

In the search for new XOIs, it was shown in the current study that the extracts and
EO from A. foeniculum, at low concentrations, exerted XO inhibition efficacy similar to
allopurinol, a well-known XO inhibitor [10]. The main compound from alcoholic extracts
that demonstrated XO inhibitory activities in other studies was quercetin. Flavonoids,
phenols, and their glycosides have been presented in other studies to show inhibitory
effects on XO [7,50,51]. These types of chemical constituents can also have an active role in
the XO inhibitory effects of plant extracts in vivo due to their multiple-targets properties.

The cytotoxic activity of the EO from A. foeniculum AdB was evaluated in the MCF-7
breast cancer cells and the normal fibroblasts, HDF. The EO consists of multiple compounds
and each compound potentially enhances or modifies the effects of others [52]. This study
used the EO with all its constituents, a complex phytochemical mixture, to maximize the
potential anticancer effect and to properly assess the potential risks to healthy cells and
tissues. Our studies with the EO from the Romanian A. foeniculum AdB on MCF-7 breast
cancer cell lines indicated a high cytotoxic effect at low concentrations (<0.5 µg/mL) which
means that a plethora of biologically active components contributed to the high cytotoxic
effect observed. With the HDF cells only at concentrations > 0.5 µg/mL, loss of viability
was observed, but not as extensively as that observed for the cancer cells. Other studies
reported that agastinol and agastenol, lignans detected in Agastache species whole plant
extract, inhibited etoposide-induced apoptosis in U937 leukemia cells [29]. Estragole, the
main component of the EO, has demonstrated muscle relaxant, anticonvulsant, anesthetic,
bradycardic, vasoactive, anti-inflammatory, antioxidant, anticancer, and antimicrobial
properties [53]. In humans, estragole usually enters the body as a component of herbal
teas or as a food that has been seasoned with herbs that contain many other substances,
such as flavonoids or anethole, that have a protective roles and thus reduce the possible
harmful effects of pure estragole. The European Union has established maximum levels
for estragole, as well as other naturally occurring compounds in plants such as methyl
eugenol and safrole, in finished foods that have been flavored with flavors and/or food
ingredients in which these constituents naturally occur [54]. According to the FEMA
(Flavor and Extract Manufacturers Association) expert panel, these flavors continue to
meet the criteria for FEMA GRAS (“generally recognized as safe”) [55]. Experimentally,
estragole showed no toxicity in mice that consumed food containing this compound in
low doses but possibly hepatocarcinogenic in animal experiments at high doses when
given as a pure compound [56,57]. This perspective also increases when recent studies are
taken into account, showing that long-term bone administration of 100 mg/kg estragole
had no toxic effects in mice, probably because at low exposures they are preferentially
detoxicated by biotransformation of ring substituents [53,56]. Anise hyssop EO showed a
strong antioxidant capacity and also antimicrobial activity against Staphylococcus aureus,
Curtobacterium flaccumfaciens, Listeria monocytogenes, Bacillus subtilis, Salmonella species.,
Escherichia coli, and Pneumonia vulicans [21]. The EO from A. foeniculum, rich in methyl
chavicol, 1,8-cineole, 1-octen-3-ol, 3-octanone, and germacrene D, showed toxicity against
two important coleopteran pests (Oryzaephilus surinamensis L. and Lasioderma serricorne F.)
of stored-food products [58].

These results suggest that the extracts and EO from A. foeniculum may have several
biological activities due to their chemical composition. This study intends to provide new
contributions to the pharmacologically relevant effects of the alcoholic extracts and EO
from A. foeniculum such as antioxidant and xanthine oxidase inhibitory activities, as well as
the cytotoxic properties of the EO on cancer cells, which can be considered as evidence of
the effectiveness of this medicinal plant.
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4. Materials and Methods
4.1. General

All reagents were purchased from Merck (Merck KGaA, Darmstadt, Germany). The
reference standards were purchased from Merck (Merck KGaA, Darmstadt, Germany), and
Fluka (Honeywell Fluka™, Fluka, Germany).

Plant material. Agastache foeniculum (Pursh) Kuntze “Aromat de Buzău” (also known
as Lophantus anisatus) was obtained from the Vegetable Research and Development Station
in Buzău, Romania. Dr. Costel Vînătoru (Plant Genetic Resources Bank for Vegetables,
Floriculture, Aromatic and Medicinal Plants, Buzău, Romania) proposed the acclimatiza-
tion of A. foeniculum and purchased seeds belonging to this species from several sources,
the main companies being Agrosemens (Z.A. du Verdalaï, 105 rue du chemin de fer, 13790
ROUSSET, Peynier, France) and Rühlemann (Rühlemann’s Kräuter & Duftpflanzen, Auf
dem Berg 2, 27367, Horstedt, Germany). From a large number of assessed genotypes,
after the evaluation, one of these proved great adaptability and was genetically stabilized
after breeding. The selected source of seed procurement, from an original genotype of
North-American origin, was Rühlemann (https://www.kraeuter-und-duftpflanzen.de/
pdf/Ruehlemanns-Kraeuterkatalog-2022.pdf, accessed on 20 December 2022). After com-
pleting the acclimatization and breeding, the research was completed with the obtaining
of the A.foeniculum “Aromat de Buzau” variety. At the same time, the cultivation of the
other varieties was stopped, knowing that this one is entomophilous and can easily lose its
authenticity. This new plant variety was adapted to the climatic conditions in Romania and
successfully passed the testing stage for homologation and patenting in the Official Catalog
of cultivated plant varieties in Romania from 2018 with plant variety ISTIS (State Institute
for Testing and Registration of Varieties) patent no. 00536 by the Vegetable Research and
Development Station in Buzău, Romania (https://istis.ro/en/catalog-oficial/, accessed on
15 September 2022).

For this study, the plants (stems, leaves, flowers) were harvested at the flowering stage
in August 2020 and were further used for this research (Figure 10). A voucher specimen
(ISTIS no. 00536) was deposited at the Vegetable Research and Development Station in
Buzău, Romania.
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Figure 10. A. foeniculum AdB plant used in the present study.

Confocal laser scanning microscopy was used in this study to characterize plant
cells and tissues. This analysis was performed with the Zeiss A system LSM 710 (Carl
Zeiss Microscopy GmbH, 07740 Jena, Germany) equipped with a diode laser (405 nm),
Ar-laser (458, 488, 514 nm), DPSS laser (diode pumped solid state e 561 nm), and HeNe-
laser (633 nm). Glass microscopic slides with A. foeniculum AdB stem and leaf sections
were observed using a Zeiss AxioObserver Z1 inverted microscope equipped with 40×
apochromatic objective (1.4 aperture) and FS38, FS15, and FS49 filters. The image acquisition
was made with the following parameters: in-line scan mode, average method, average
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number 4, speed 6, and 12-bit depth. The images of A. foeniculum plant cells were analyzed
with ZEN 2012 SP1 software (Black Edition).

4.2. General Experimental Procedures
4.2.1. Essential Oil Extraction

The air-dried stem, leaves, and flowers were ground to a fine powder with a grinder
(Heinner, Grinder Optim150, 150 W, 50/60 Hz, Shenzhen, China). Powdered plant material
(50 g) was subjected to hydrodistillation with Clevenger-type apparatus for 180 min. The
distillate was extracted with diethyl ether and dried over anhydrous sodium sulfate. The
EO was then stored in sealed brown vials at −20 ◦C before chemical analysis. The results
were presented by considering three independent extraction procedures (n = 3).

4.2.2. Gas Chromatography-Mass Spectrometry (GC-MS)

The separation and identification of volatile organic compounds (VOCs), from the
analyzed oil samples, were performed by using a Trace GC Ultra Gas Chromatograph
from Thermo Scientific (Thermo Fisher Scientific Inc., Bremen, Germany) coupled with
Thermo Electron Polaris Q Mass Spectrometer, equipped with an electron ionization source
operating at 70 eV. For the chromatographic separation of the target compounds, a DB-
5MS (30 m × 0.25 mm ID, 0.25 µm film thickness) capillary column (5% diphenyl, 95%
dimethylpolysiloxane) was used. The injection volume of each diluted oil sample was
2 µL. The oven temperature program was 40 ◦C for 3 min, which was then increased from
40 to 300 ◦C with 10 ◦C min−1, and kept at 300 ◦C for 10 min. The injector and transfer
line were 250 ◦C and 300 ◦C, respectively. The carrier gas was helium with a flow rate of
1.5 mL min−1. The constituents of the samples were identified and confirmed based on
two different approaches: linear retention indices (LRIs) determined relative to a series
of n-alkanes (C8–C20) and by comparison of the mass spectra with those available in the
commercial libraries (NIST 2011) [59].

4.2.3. Ultrasound-Assisted Extraction with Solvents (Methanol, Ethanol)

The air-dried stem, leaves, and flowers were ground to a fine powder with a grinder
(Heinner, Grinder Optim150, 150 W, 50/60 Hz, Shenzhen, China). For the extraction of
phytochemical compounds, methanol and ethanol were used as solvents, and to obtain a
maximum yield, ultrasound-assisted extraction was used. The powdered plant material
(10 g) was extracted in alcoholic solvents (100 mL) for 120 min in a temperature-controlled
ultrasonic bath (40–50 ◦C, Bandelin Sonorex Ultrasonic, Bandelin, Berlin, Germany, oper-
ating frequency 35 kHz, with digital timer and temperature control). The extracts were
filtered through Whatman No. 4 filter paper, evaporated under a vacuum to dryness by
using a rotary evaporator (RE100-Pro, DLAB Scientific Inc., Riverside, CA 92501, USA),
and stored at 4 ◦C until analyzed. The extraction yields were determined as below [60]:

Extraction yield (%) = weight of extract (g)/weight of plant material (g) × 100 (1)

4.2.4. Total Phenolic Content

Total phenolic content was determined according to the literature with Folin–Ciocalteu
reagent [61]. Gallic acid was used as a reference standard, and the results were ex-
pressed as milligram gallic acid equivalents per g dry weight of extract (mg GAE/g
DW). All experiments were performed in triplicate. All data are expressed as the mean
± standard deviation.

4.2.5. Total Flavonoid Content

Total phenolic content was determined according to the literature with 10% AlCl3 [61,62].
Quercetin was used as a reference standard, and the results were expressed as milligram
quercetin equivalents per g dry weight of extract (mg QE/g DW). All experiments were
performed in triplicate. All data are expressed as the mean ± standard deviation.
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4.2.6. Profiling of Bioactive Compounds by HPLC-DAD

High-performance liquid chromatography coupled with a diode array detector (HPLC-
DAD) analysis was performed using an L-3000 high-performance liquid chromatography
system (Rigol Technologies, INC, Beijing, China). In the chromatographic analysis, the
Kinetex EVO C18 column (150 × 4.6 mm, 5 µm particle size) with an injection volume of
10 µL was used.

The extracts were analyzed after solubilizing 10 mg of each dry extract in methanol/
water (80:20, v/v) and the phenolic compounds were separated on an EVO C18 column
(150 × 4.6 mm, 5 µm particle size), at a temperature of 30 ◦C at 1 mL/min, with a linear gra-
dient consisting of water-trifluoroacetic acid (99.9:0.1, v/v) and acetonitrile/trifluoroacetic
acid (99.9:0.1, v/v) [63]. The standards used for HPLC-DAD: p-coumaric acid CAS No:
501-98-4, caffeic acid CAS No: 331-39-5, rutin CAS No.: 153-18-4, quercetin CAS No.:
849061-97-8, hyperoside CAS No.: 482-36-0, tannic acid CAS No.: 1401-55-4, genistein CAS
No.: 446-72-0, and naringenin CAS No.: 67604-48-2, were purchased from Sigma-Aldrich
(Merck KGaA, Darmstadt, Germany), dissolved in methanol/water, and used in HPLC
analysis according to previous works [62,64,65]. The phenolic compounds were identified
by combining the following information: elution order, retention time in the C18 column,
comparison with standard solutions analyzed under the same conditions, and quantified by
using analytical curves of the analyzed compounds [62,64]. The compound contents were
expressed as mg/g of dried weight, considering three independent extraction procedures
(n = 3).

4.3. Antioxidant Assays
4.3.1. In Vitro-Antioxidant Assays

In the present study, four methods were used to evaluate the antioxidant activity of
the alcoholic extracts and EO from A. foeniculum AdB. For each assay, standard compounds
were used as positive controls. All details of the antioxidant assays were published in
previous studies [61,64,66]. All the analyses were performed in triplicate, and the results
were reported as mean ± SD.

The antioxidant activity of the extract was determined by the DPPH assay, as previ-
ously described [61]. Briefly, 100 µL of each extract (2–1000 µg/mL) was mixed with 100 µL
DPPH solution and incubated in the dark at room temperature for 1 h. The absorbance of
the mixture was measured at 517 nm with a microplate reader with 96-well plates (Tecan
Pro 200, Tecan Trading AG, Männedorf, Switzerland). Gallic acid is known for its antioxi-
dant potential and was used as a positive control [67]. The ability of the sample to scavenge
DPPH radical was determined with the following equation:

DPPH scavenging effect = (ODControl − ODSample)/ODControl × 100 (2)

where ODControl represents the absorbance of the control, and ODSample represents the
absorbance of the sample.

The scavenging activity of each sample against 2,2′-azinobis-3-ethylbenzothiazoline-6-
sulfonic acid radical was carried out according to the Busuioc et al. method [64]. Trolox
was used as a positive antioxidant reference control [65]. The ABTS radical cation was
produced by the reaction between ABTS solution (7 mM) and K2S2O8 aqueous solution
(15 mM) for 12 h, in dark conditions at room temperature. Then, the ABTS radical cation
solution was diluted with deionized water to obtain an absorbance of 0.70 ± 0.02 at 734 nm.
The ABTS radical cation solution (100 µL) was added to 100 µL extract solution of various
concentrations (0.25, 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 mg/mL). After each 15 min of incubation
in dark conditions, the absorbance at 734 nm was determined with a microplate reader with
96-well plates (Tecan Pro 200, Tecan Trading AG, Männedorf, Switzerland). The scavenging
activity of the samples against radical ABTS was evaluated by the following Equation (3):

ABTS scavenging activity = (ODControl − ODSample)/ODControl × 100 (3)
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where ODControl represents the absorbance of the control, and ODSample represents the
absorbance of the sample.

The IC50 values were determined from the relationship curve of radical scavenging
activity versus concentrations of the respective sample curve. A lower IC50 value means
higher antioxidant activity. The IC50 value is a parameter commonly used to measure the
antioxidant activity of various samples. It is evaluated as the concentration of antioxidants
necessary to decrease the initial DPPH concentration by 50% [68].

Determination of antioxidant activity by FRAP assay was carried out according to
the procedure previously described in the literature [65], by monitoring the reduction of
Fe3+-tripyridyl triazine (TPTZ) to blue-colored Fe2+-TPTZ measured at 593 nm. The FRAP
reagent was freshly prepared by adding a 10:1:1 (v/v/v) ratio of 0.3 M acetate buffer (pH 3.6),
10 mM TPTZ in 40 mM HCl, and 20 mM FeCl3. The assay was performed by mixing 50 µL
of sample in a 96-well microplate and then adding 200 µL of FRAP reagent. After 15 min
of incubation and shaking at 37 ◦C, the absorbance was read at 593 nm with a microplate
reader with 96-well plates (Tecan Pro 200, Tecan Trading AG, Männedorf, Switzerland).
FRAP was expressed as µM FeSO4 equivalents/g of extract. All samples were analyzed
in triplicate.

4.3.2. Electrochemical Evaluation of Antioxidant Capacity by Cyclic Voltammetry

The EO from A. foeniculum AdB was electrochemically evaluated for its antioxi-
dant potential by using SP-150 Biologic potentiostat/galvanostat (Bio-Logic SAS, Claix,
France). The experiments were conducted at room temperature with an electrochemi-
cal cell equipped with three electrodes: platinum wire (counter electrode), Ag/AgClsat
(E = 0.194 V/NHE) (reference electrode), and glass carbon electrode (working electrode).
For this assay, the applied potential was E = ±2 V vs. Ag/AgClsat and the scan rate was set
at 100 mVs−1. The working electrode was polished with alumina and diamond slurries
(BASi® polishing kit), followed by cleaning with ethanol after each measurement. All
measurements were conducted in triplicate.

4.4. Xanthine Oxidase Inhibitory Activity Assays

This assay was established as previously described [9], with a few modifications, and
adapted to the microplate. This method is based on monitoring uric acid formation in
the xanthine oxidase system [9]. Freshly prepared substrate (0.6 mM xanthine dissolved
in 0.1 N NaOH), and enzymatic (0.25 XO units/mL in 0.1 M phosphate buffer, pH 7.5)
solutions were used in this assay. The EO from A. foeniculum AdB of various concentrations
was dissolved in 1% DMSO in phosphate buffer (pH 7.5). The extracts were dissolved in
phosphate buffer at various concentrations. The assay mixture consisted of 40 µL of test
solution, with 40 µL phosphate buffer (pH 7.5), 20 µL of enzyme solution (0.25 U/mL),
and xanthine solution (100 µL). The reaction was initiated by adding the enzyme with or
without inhibitors. Allopurinol was used as a positive control because it is a well-known
XO inhibitor [10]. Changes in the absorbance of the mixtures were spectrophotometrically
determined at 295 nm with a microplate spectrophotometer (Tecan Pro 200, Tecan Trading
AG, Männedorf, Switzerland), at 30 s intervals for 3 min, and 25 ◦C. Determination of the
inhibition activity (I) was made by the following Equation (4):

% inhibition = (ODControl − ODSample)/ODControl × 100 (4)

where ODControl represents the absorbance of the control sample without inhibitor, and
ODSample represents the absorbance of the sample.

The results were statistically analyzed by comparing the xanthine oxidase inhibition
values obtained at baseline (control) with those obtained in different treatments by analysis
of variance (ANOVA) followed by the Dunnett test (multiple comparisons with one control)
with p < 0.05.



Int. J. Mol. Sci. 2023, 24, 828 19 of 22

4.5. Cytotoxic Activities

The effect of the EO from A. foeniculum AdB on the cellular viability of MCF-7 (ATCC)
and HDF (Sigma-Aldrich) cell lines was measured using the MTT assay, as previously
reported [38]. Cells were grown in DMEM + Glutamax I medium (MCF-7) supplemented
with 10% FBS and 1% antibiotics or fibroblast growth medium (HDF) without supplements.
For the assays, cells were seeded in 96-well plates and left for 24 h to adhere in a 5% CO2
incubator at 37 ◦C. After the media was removed and 200 µL of complete media with
serial dilutions of the A. foeniculum EO were applied to each well. After 24 h of incubation,
the supernatant was removed, MTT (0.5 mg/mL PBS) was added, and the plates were
incubated for 3 h at 37 ◦C. The purple formazan formed was dissolved in 200 µL DMSO.
Optical density was measured at 570 nm using a microplate reader (Power Wave Xs, Bio-
Tek, Winooski, VT, USA). The results were statistically analyzed by comparing the HDF
and MCF-7 values obtained at baseline (control) with those obtained in different treatments
by analysis of variance (ANOVA) followed by the Dunnett test (multiple comparisons with
one control) with p < 0.05.

4.6. Statistical Analysis

The experiments were performed in triplicate, and the data presented represent the
average of the three determinations ± standard deviation (SD). The IC50 values were found
using the GraphPad Prism software (vs. 5.0). The data were statistically analyzed using IBM
SPSS Statistics software (version 29, IBM Corp., New York, NY, USA). Statistical evaluation
of the obtained data was assessed by one-way analysis of variance (ANOVA) followed
by the Duncan multiple range test to find out significant differences (p ≤ 0.05). Pearson’s
correlation coefficients were computed to identify the relationship between antioxidant
activities, total polyphenols, and flavonoid contents, and a statistical correlation was
considered significant at the 0.05 level (p < 0.05). The results from the biological assays
were statistically analyzed by analysis of variance (ANOVA) followed by the Dunnett test
(multiple comparisons with one control) to find out significant differences (p ≤ 0.05) among
the obtained data.

5. Conclusions

This study is the first to investigate the phytochemical profiling and in vitro biological
properties of the EO and alcoholic extracts from the A. foeniculum “Aromat de Buzau”
variety. The EO and alcoholic extracts showed good antioxidant properties and inhibitory
potential against xanthine oxidase, a critical enzyme involved in pathologies like gout. The
EO also revealed selective cytotoxic activity against breast cancer MCF-7 cells compared
to normal HDF fibroblasts; however, further in vivo and clinical studies are needed. This
plant is a source of bioactive compounds that could be good candidates in therapeutic
applications to treat human diseases and may find use as raw material for the nutraceutical,
food, pharmaceutical, and cosmetic industries, and may be synergistically used with other
antioxidants and chemotherapeutic agents.
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