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Abstract: The repair of severe bone defects is still a formidable clinical challenge, requiring the
implantation of bone grafts or bone substitute materials. The development of three-dimensional
(3D) bioprinting has received considerable attention in bone tissue engineering over the past decade.
However, 3D printing has a limitation. It only takes into account the original form of the printed scaf-
fold, which is inanimate and static, and is not suitable for dynamic organisms. With the emergence of
stimuli-responsive materials, four-dimensional (4D) printing has become the next-generation solution
for biological tissue engineering. It combines the concept of time with three-dimensional printing.
Over time, 4D-printed scaffolds change their appearance or function in response to environmental
stimuli (physical, chemical, and biological). In conclusion, 4D printing is the change of the fourth
dimension (time) in 3D printing, which provides unprecedented potential for bone tissue repair. In
this review, we will discuss the latest research on shape memory materials and 4D printing in bone
tissue repair.
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1. Introduction

Bone defects caused by congenital deformities, trauma, disease, and surgical resection
have become major problem for clinicians [1]. Despite the remarkable self-healing capacity
of bone, large-scale irregular bone defect healing remains challenging, especially in the
absence of medical intervention [2]. Clinically, the gold standard treatment to resolve
such large-scale bone defects consists of filling the defect with an autologous bone graft
or allogeneic bone to restore structure and function. However, donor site morbidity and
limited bone supply largely limit the efficacy of this treatment [3,4]. Tissue engineering
is a promising alternative to bone-deficient or diseased tissue, allowing restoration of
affected bone through engineered materials, cells, and growth factors (GFs) [5]. In the past
two decades, 3D bioprinting technology for bone tissue engineering has made significant
progress, and a large number of studies have combined biomaterials, cells, and bioactive
factors to design bone tissue structures and promote bone regeneration through bionic
structures [6–9]. In previous studies, multifunctional 3D printing (3DP) technologies based
on different working principles have been applied [2,10–13]. However, with the deepening
understanding of the dynamic biological environment and the continuous improvement of
treatment precision requirements, the limitations have prevented traditional 3D printing
from meeting the key requirements [14]. In 3D bioprinting, only the initial state of the
printed object is considered and it and assumes it is inanimate and static [15], but natural
tissue regeneration involves complex 3D structures, microarchitecture, and extracellular
matrix components, as well as the generation of tissues with unique functions through
dynamic changes in tissues [16,17]. Most of these dynamic functional conformational
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changes are caused by built-in mechanisms in response to intrinsic or/and extrinsic stimuli
that cannot be mimicked by 3D bioprinting [18].

In recent years, shape memory material (SMM) has been proven to be a smart material
and has been applied in artificial skin [19], bionic hands [20], bionic flexible joints [21],
muscle tissue [22], and bionic soft tongue [23]. Because materials need to respond to ex-
ternal stimuli, these are also known as stimuli-responsive or “smart” materials. Various
studies have used a variety of stimuli, including physical (e.g., water [24], temperature [25],
light [26], electric and magnetic fields [27]), chemical (e.g., pH [28], and ion concentra-
tion [29]) or biological (e.g., glucose and enzymes [30]) stimulation. They can recover their
original shape from the temporary shape when exposed to appropriate stimuli [31,32]. In
order to further simulate the dynamic in vivo environment, some scholars have found that
4D printing methods can incorporate “time” into current 3D printing by using smart materi-
als [33]. Professor Skylar Tibbits [34] coined the term 4D printing at an MIT conference. He
defines 4D printing as “the use of a 3D printer to create objects that can change their form
while simultaneously removing them from the 3D printer.” In other words, 4D printing is
nothing new but 3D printing with the help of shape memory materials (SMM). This SMM
responds to external stimuli and can change shape over time, with the result that it changes
specific material properties, resulting in a fourth dimension, time [35]. Currently, most
studies are focused on the shape-transforming capabilities of 4D-printed scaffolds, such as
folding, lengthening, twisting, and creasing [36]. Over time, shape and function changes
of printed structures have been the two main strategies for 4D bioprinting [37]. A series
of progressive 4D strategies have been proposed to address current challenges in bone
tissue engineering. For example, various stimuli-responsive shape-recovering polymers
have been extensively studied as scaffolds and injectable hydrogels suitable for bone tissue
engineering [38–40]. Their shape memory behavior allows clinicians to implant the printed
bone defect model into the body through minimally invasive surgery, and restore it to the
ideal initial shape in the body, to achieve minimally invasive surgery in orthopedic treat-
ment [41,42]. The shape-transforming features of 4D-printed bone structures may also meet
the needs of personalized bone regeneration, especially in irregular bone defects [43,44].
Furthermore, the functional maturation of 4D-printed bone structures over time may con-
tribute to establishing a biomimetic microenvironment, thereby affecting the cell behavior
in the post-printing stage and enhancing the differentiation of stem cells [45–47].

However, the application of 4D bioprinting technology and SMM in tissue engineer-
ing is still in its infancy, and its concept and mechanism are not widely understood by
researchers [48]. In this review, we introduced a series of stimulus-response materials
and the application of 4D printing technology in bone tissue engineering, as well as their
shape conversion mechanisms for 4D bioprinting. The classification of 4D printing in this
review is based on relevant printing technology methods, which opens up an innovative
method to manufacture customized implants and personalized accessories, and discusses
the challenges faced by 4D biological printing and possible solutions. It is hoped that this
review will deepen our understanding of 4D bioprinting in bone tissue engineering.

2. The Mechanism and Design Principle of 4D Printing

The 3D printing process is a 3D computer-aided design (CAD) model created by a
professional 3D scanner or computer. The 3D model is generally saved as a standard tessel-
lation language (STL) file, then divided into 2D graphics by specialized software, and finally
sent to the 3D printer. The printer will print the physical model layer by layer according to
the 2D graphics [49]. The emergence of 3D printing provides a good solution for various
types of skeletal diseases, including preoperative model construction and scaffolding. At
the same time, 3D printing can be used to manufacture scaffolds to solve complex bone
defects, and the materials used in 3D printing include metals, polymers, ceramics, and
clays [50–52]. The printers used for 4D bioprinting are the same as for 3D bioprinting,
namely extrusion-based, inkjet-based, and laser-based technologies. Commonly used 3D
printing technologies for bone tissue engineering include 3D drawing/direct ink writ-
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ing (3DP/DIW), stereolithography (SLA), selective laser sintering/selective laser melting
(SLM/SLS), fused deposition modeling (FDM) [53,54], and powder printing [55]. 3DP/DIW
is based on extruding a viscous material in a syringe to create a 3D shape. The platform
remains stationary while the injection head can move, and the extruded material is joined
together layer by layer [56]. 3DP requires an additional curing reaction. The advantage of
this technique is the flexibility of the resulting material; solutions, slurries, and hydrogels
can be loaded into 3DP printers. However, complex structures can collapse due to the low
stiffness of the original viscous material. The working principle of the FDM technology
is that the thermoplastic filament is fed into the nozzle and heated and melted until it is
extruded in a molten state. After the ejected material is cooled rapidly, it solidifies in the
platform and follows the trajectory generated by the CAD file to print out 3D solid objects
by melting and printing layer by layer [57]. SLS/SLM uses an infrared laser as the energy
source to preheat a powder to a predetermined temperature just below its melting point,
and then the powder is flattened by a flattening rod. The laser beam is selectively sintered
layer by layer according to the layered section information controlled by a computer. After
the product is manufactured, all excess powder is removed to obtain a sintered part [58].
SLA uses a liquid photosensitive resin as a raw material, and an ultraviolet (UV) laser beam
is controlled by a computer to photocure the surface of the resin to obtain a pattern. For
photo-cross-linkable materials, digital light processing (DLP) printers can achieve higher
resolution and complex structure [59] (Table 1).

Table 1. Multiple classifications for 4D printing.

Printing techniques SLS, SLM, SLA, DLP, DIW, FDM, LOM, EBM

Smart behaviors Shape memory, Self-assembly, Self-sensing, Self-healing

Stimulus

Physical (temperature, electrical, magnetic, light)

Chemical (redox, pH, ion, humidity)

Biological (glucose, enzyme)

Smart materials/bioinks
Naturally derived polymers (collagen, alginate, gelation)

Synthetic polymers (PLGA, PLA, PEG, PEO, PVA)

As an extension of 3D printing, 4D printing enables the printed scaffold to change
over time [14,15,60]. Compared with 3D printing, the dynamic bioscaffold created by 4D
printing can better match the complex physiological environment inside a bone defect.
Their unique responsive functionalization and shape transformation capabilities may help
to more accurately mimic the dynamics of native orthopedic tissue [55]. However, the
definition of 4D bioprinting is still under debate and no consensus has yet been reached.
Farhang [60] and Pedro [61] define 4D bioprinting as the use of 3D bioprinting technology to
achieve shape, size, or structure changes through stimuli-responsive materials (for example,
initially flat structures can evolve into self-folding, flower-like, cube-shaped, or other
structures), and biological constructs can be cell-free or cell-lade. Functional transformation
and maturation of printed cell-laden structures over time are also considered 4D bioprinting
(biological behaviors such as cell fusion, and cell assembly), which both offer unprecedented
potential for bone tissue engineering [59].

In 4D bioprinting, the device may be the same as in 3D bioprinting, with the key
difference being the material and external stimuli [62]. Moisture-responsive materials
absorb or release moisture when exposed to the surrounding environment, causing swelling,
twisting, folding, and other deformations [63]. A temperature-responsive material behaves
similar to rubber when heated above its glass transition temperature, and upon application
of an external force, the material is cooled to a lower temperature and behaves as a rigid
solid. The strip bends due to uneven internal thermal stresses within the material. If heated
again, the shape memory material returns to its original flat state as it becomes elastic
again [64]. The fundamental mechanism of photo-responsive materials is based on the
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photothermal effect, where light absorbed by a material causes a temperature change [65].
Magnetic field-responsive materials are usually composites of magnetic nanoparticles [27].
When the pH value changes, the polymer chains stretch from spherical to helical, causing
the structure to expand, shrink, or bend [28]. Shape memory scaffolds are applied in
animals and can restore their desired complex shape when implanted, and can be used in
minimally invasive surgery for the regeneration of large bone defects and have the ability
to adapt to complex shaped bone defects [66].

3. Research Progress of Bone Histology in Various Categories of 3D Printing
3.1. DIW

Direct Ink Writing (DIW) printing technology has relatively mild printing conditions
that are conducive to the addition of biomacromolecules and cells. Previously, Luo et al. [67]
used 3D-printed alginate/PDA scaffolds to undergo folding shape changes through pho-
tothermal effect dehydration under 808 nm laser irradiation. Due to the slow speed of
material shape change, the process is easy to control precisely. The speed and degree of
shape change can be adjusted by adjusting the laser power and irradiation time. Higher
laser powers generate higher temperatures and lead to faster dehydration, resulting in
faster shape changes [67]. Crosstalk between bone marrow mesenchymal stem cells (BM-
SCs) and macrophages plays a crucial role in bone healing. Liu et al. [68] used polyglyceryl
sebacate (PGS) and polycaprolactone (PCL) hybrid polymers to print a porous membrane
by DIW. Porous membranes coated with polydopamine using GBR technology enabled
faster recruitment of M2 macrophages, thereby promoting the recruitment and osteogenic
differentiation of BMSCs. At the same time, the 4D memory deformation of the membrane
facilitates the repair of alveolar defects around implants [68]. Wang et al. [69] fabricated
m-HAp and m-SiO2 into scaffolds with multi-scale pores and multifunctional properties
using a freeze-drying technique and DIW printing technique. The scaffold not only sup-
ported the growth, proliferation, and osteogenic differentiation of mBMSCs, but could also
load and slowly release the antibacterial drug enrofloxacin (ENR), which has a long-term
antibacterial effect on Escherichia coli and Staphylococcus aureus, which is beneficial to the
healing of infected bone tissue [69]. DIW printing technology also has the disadvantage of
relatively low manufacturing process precision. Recently, some scholars have developed
some new materials for printing complex 3D structures. Zhang et al. [70] designed a novel
SMP named poly (glyceryl dodecanoic) acrylate (PGDA) for 4D printing with Ttrans in the
range of room temperature. In addition, the material has excellent rheological properties for
the fabrication of various fine 3D structures such as “triangles”, “stars”, “six-petal flowers”,
“honeycomb”, and “tubular” shapes. Not only can the scaffold structure have a recovery
rate as high as 98% at 37 ◦C, but more importantly, it has a stable cycle performance of up
to 100 cycles and a recovery speed of 0.4 s. Kirillova et al. [71] fabricated hollow self-folding
tubes with an average inner diameter as low as 20 µm by DIW. The self-folding tubes
consisted of alginate and hyaluronic acid and were double-crosslinked by calcium ions and
photocuring. Lai et al. [72] developed deformable hydrogels with swelling anisotropy via
alginate (Alg) and methylcellulose (MC), exhibiting excellent rheological properties, extrud-
ability, and shape fidelity of printed structures. The characteristic of this method was that,
according to the different expansibility of each part, the printed 2D structure could be trans-
formed into various preset complex 3D forms (for example, coiled tube, helix, double helix,
and flower) after being immersed in calcium chloride solution. To improve the mechanical
properties of scaffold materials, ceramic-like materials have been selected as reinforcing
agents. Wang et al. [44] added a photothermal agent to β-tricalcium phosphate/polylactic
acid-trimethylene carbonate (TCP/P(DLLA-TMC)) bioink, printed at low temperature,
and also controlled by near-infrared light NIR light deformation. Zhou et al. [73] com-
posed three functional components of fumed silica (FS), liquid metal (LM), and low-boiling
point liquid (ethanol) into silicone elastomers, which had good printability and thermal
responsiveness. Among them, FS improved the printability of silicone elastomers; LM
fillers significantly improved thermal conductivity; and temperature stimulation caused
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ethanol to evaporate and expand to drive the expansion and deformation of scaffold ma-
terials [73]. There are also some studies using DIW technology to promote the shape of
cartilage. Ding et al. [74] developed a novel micro flake hydrogel (MFH) with anisotropy
for 4D living cell bioprinting ink. MFH’s exhibit desirable shear-thinning, shear-yielding,
and fast self-healing properties, and can achieve high resolution and high fidelity without
support materials. MFH achieves 4D shape changes under pH-shifting conditions and has
been applied to 4D cartilage-like tissue formation (Figure 1).
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Figure 1. Four-dimensional bioscaffolds with water (humidity) responsiveness by DIW printing
technology. Shape memory behavior of printed constructs. (a) Schematic illustration of fabrication
steps of constructs with shape memory capacity. (b) Digital photographs of different construct
designs at dry state (temporary geometry) and in the hydrated state showing their shape recovery
performance upon immersion in aqueous media. Such deformation characteristics create conditions
for minimally invasive implantation of bone grafts. (Reproduced with permission [75]. Copyright
2021, Elsevier).

3.2. FDM

PCL and PLA materials are often used as scaffold materials for bone tissue engineer-
ing because of their good biocompatibility and degradability. Langford et al. [76] used
PLA filaments as raw materials to print bionic bone channels with their herringbone and
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hydroelastic mosaic origami structures. This design greatly improved the plasticity of the
temporary shape and recovered up to 96%. Yue et al. [77] used FDM to print a magnet-
ically responsive Fe3O4/CNF/PHB/PCL composite scaffold. PLA/CS porous scaffolds
printed by Pandey’s method [78] have shown remarkable shape recovery properties and
are used as self-healing implants for acute bone defects. Singh et al. [79] used FDM to print
temperature-responsive polylactide-graystone. Low-temperature fused filament deposi-
tion manufacturing (LFDM) technology does not require high temperatures and can add
bioactive macromolecules. Wang et al. [80] added SPIO NPs to PU to improve crystallinity,
increase the shape fixation effect, and also to contain polyethylene oxide (PEO) or gelatin to
improve printability. The brackets were printed by LFDM and restores their original shape
in 50 ◦C air or 37 ◦C water. It was observed that the shape memory performance in water
was better than in air. The release of SPIO from PU-based scaffolds promoted the secretion
and deposition of collagen and calcium from hMSCs in the scaffolds. It is expected to be
applied in minimally invasive surgery for bone tissue regeneration [80]. The interaction
between neural stem cells and MSCs is beneficial to the functional recovery of bone tissue.
For the first time, Miao et al. [81] used complex topographically transformed smart 4D
media to enhance the growth and differentiation of neural stem cells in a time-dependent
manner. This mimicked the physiological characteristics of NSC neural differentiation and
serves as a new culture platform to provide an ideal extracellular microenvironment [81].

3.3. SLM

Metals commonly used in bone tissue engineering (e.g., Ni, Ti, AL, Mg.) are difficult
to process through conventional 3D printing due to their high melting points. SLM can
use high-power lasers to melt metal powders to print metal materials. Among them, bone
synthetic materials made of NiTi are often used in minimally invasive surgery of oral and
maxillofacial surgery. Moreover, NiTi implants are ideal for advancing minimally invasive
and endoscopic procedures. For example, in orbital floor reconstruction, a prefabricated
mesh can be rolled or folded for minimally invasive insertion and then self-expand at the
target site. Naujokat et al. [82] used the SLM process to print a NiTi scaffold and implanted
it in the frontal nasal bone of a pig to verify the biocompatibility of the implant in the bone
and subperiosteal. Saedi et al. [83] fabricated a porous NiTi alloy by SLM and achieved an
elastic modulus similar to that of cancellous bone by changing different porosity.

3.4. DLP

Direct Light Printing (DLP) is a localized photopolymerization technique that is mostly
used to print porous or hollow structures. Based on DLP technology, Le Fer et al. [66]
used absorbable poly (propylene fumarate) for 3D printing. Cylindrical scaffolds with
four different spiral structures with different diameter sizes (140, 200, 240, and 280 µm)
and pore sizes (489, 699, 838, and 978 µm) were printed using CAD files. A photocurable
silk fibroin (Sil-MA) hydrogel loaded with chondrocytes was printed into an artificial
trachea and placed into a rabbit tracheal site with a 210◦ partial defect [84]. You et al. [85]
fabricated a double-layer membrane composed of a hydrogel layer and an SMP layer by
DLP printing technology. Due to its flat geometry, the fabricated bilayer membrane can
be delivered in vivo by non-invasive means. Once in place, the hydrogel swells and the
membrane deforms over time into a predesigned 3D figure in a CAD file. This design can
fully wrap geometrically complex bone defects, and has been applied in mouse bone defect
models [85].

3.5. Electrospinning

Electrospinning has been recognized to produce microfibers/nanofibers with high
porosity and specificity and a suitable surface area for various biomedical applications such
as tissue engineering, controlled drug delivery, sensing, separation, filtration, and catal-
ysis. Manufactured by double electrospinning, PCL and Pellethane 5863-80A were spun
separately and simultaneously to form hybrid fibers. A roller was used for collection, and
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mouse fibroblasts were used to verify their cytocompatibility [30]. Wang et al. [86] added
(3-hydroxybutyrate-co-3-hydroxy valerate) (PHBV) to poly-l-lactide (PLLA) and formed
ultrafine composite fibers (PLLA-PHBV) by electrospinning. The composite fibers have
>98% shape fixation and >96% shape recovery. In addition, mouse-BMSCs also differenti-
ated toward osteogenesis. Dexamethasone (DEX) is a synthetic glucocorticoid compound
and one of the ideal bone formation accelerators with good stability. Lv et al. [87] made
microfibers by mixing HA into shape memory polyurethane (SMPU) for electrospinning.
Composite fibers can ensure sustained long-term drug release of DEX. The composite
fibers were elongated after incubation at 45 ◦C for 5 min. Samples were then fixed by
standing at −20 ◦C for 30 min. Finally, the temporary shape was placed at 37 ◦C (close to
the physiological temperature of the human body), and the SMPU/3%HA composite fiber
could achieve a recovery rate of 93.6% [87].

3.6. Others

For the first time, Miao et al. [88] used a novel soybean oil epoxidized acrylate as
a material to construct a tissue engineering scaffold using SLA, which is temperature-
responsive. The adhesion ability of hMSC on the novel soybean oil epoxidized acrylate
sample was significantly higher than that of PEGDA, and similar to that of PLA and
PCL [88]. Constante et al. [89] made a complex 4D printing process. The lower layer
was 3D printed by a methacrylated alginate gel (AA-MA) hydrogel layer, and the upper
layer was the PCL layer of melt electrowetting (MEW). A change in the concentration
of Ca 2+ was used as a stimulus for the shape transition, resulting in the formation of a
bilayer self-folding tube structure. The tubular structure can also be restored by adding
ethylenediaminetetraacetic acid (EDTA) to competitively bind calcium ions [89].

4. Research Progress of Shape Memory Materials in Bone Histology

Shape memory material with shape memory effect is considered a smart material
that can automatically change size, shape, physical strength, or structure [90]. Usually, the
recovery of SMM from a temporary shape to its original shape under external stimuli is the
most commonly used method. Its deformation behavior mainly includes folding, unfolding,
bending, twisting, surface curling, linear or nonlinear expansion, and contraction [91].
An ideal programmable SMM should have a fast response, reliable recovery rate, ease of
fabrication, and high repeatability. In bone tissue engineering, researchers have put forward
higher requirements for biomimetic performance, especially reasonable physical strength,
heterogeneous structural distribution, and targeted homeostatic regulation in the bone
microenvironment [92,93]. Biodegradable SMMs have been widely used in medicine due to
their non-toxicity and ability to achieve minimally invasive procedures [94]. Shape memory
materials in bone tissue engineering, in addition to enabling minimally invasive surgical
implantation, may also offer the possibility of applying in situ mechanical stimulation
to enhance the efficacy of bone repair and regeneration. In addition, the application of
SMM in tissue engineering has been extended to the induction of related cells, through the
regulation of ECM and GFs to promote cell proliferation, directional differentiation and
alignment to achieve the goal of promoting tissue repair [95]. Shape memory materials
can be classified into shape memory alloys (SMA), shape memory ceramics (SMC), shape
memory polymers (SMP), and shape memory hydrogels (SMH) [93] (Table 2). Thus far,
shape memory polymers and shape memory hydrogels are the most commonly applied
materials for 4D bioprinting because of their good biodegradability and easily tunable
mechanical strength [96]. However, in recent years, ceramics and metal compounds have
been increasingly used in bone and cartilage tissue engineering because of their inherent
advantages in mechanical strength [97]. The performance of a single material is difficult to
meet the structural properties of complex bone tissue, and more and more hybrid SMMs
with excellent performance have become the first choice [44,98].
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Table 2. Different classification of shape memory materials in bone tissue engineering.

Classification Material Load Stimulate Biological Evaluation Reference

SMP PCLDA PD Temperature In vitro: hMSCs
In vivo: rabbit femoral defect [99]

In vivo: rabbit skull defect [100]
PU Temperature In vitro: osteoblasts [101]

PGDA Temperature In vivo: mouse aorta [70]
PBF BMP-2 Water In vitro: osteoblasts [102]

Pellethane Lipase In vitro: fibroblasts [30]
SMH Gel BMP-2 Water In vitro: rabbit BMSCs

In vivo:rabbit maxillary sinus [103]
GelMA Temperature In vitro: hMSCs

In vivo:subcutaneous injection [104]
Col Water In vitro: rabbit chondrocytes

In vivo: rabbit knee joint [105]
Alginate PD Ca2+ In vitro: mouse BMSCs [71]

SMA Ni-Ti Temperature In vivo: adolescent scoliosis [106]
In vivo: scaphoid nonunion [107]

In vivo: vertebral model [108]
In vivo: subperiosteum [109]

Ni-Ti PRP Temperature In vivo: scaphoid nonunion [110]
Ni-Ti Magnetic In vivo: rabbit scoliosis [111]

Ni-TiH2 Urea Temperature In vivo: palatine bone model [112]
Mg-Sc Temperature In vitro: MC3T3-E1

In vivo: rat femoral defect [113]

4.1. Shape Memory Polymer

Shape memory polymers are characterized by their lightweight, reliable shape memory,
easy stimulation conditions, biodegradability, low biotoxicity, or even non-toxicity, making
them superior to other smart materials [31].

PCL: PCL is an inexpensive FDA-approved polymer and flexible biologic. Despite
its biodegradability and biocompatibility, after a large number of long-term experiments
researchers found that pure PCL materials degrade slowly and have poor mechanical
properties [31]. Erndt-Marino et al. [99] developed a photopolymerizable novel shape
memory polymer foam based on poly(ε-caprolactone) diacrylate (PCLDA). These PCLDA
foams can be pre-softened with warm saline and implanted in irregular bone defects,
and when coated with polydopamine, can induce hydroxyapatite deposition. PD-PCLDA
scaffold-loaded human mesenchymal stem cells (h-MSCs) expressed the same levels of
Runx2, alkaline phosphatase, and osteopontin when cultured without osteogenic medium
supplements in the presence of similar, and inhibited hMSCs to adipose tissue differentia-
tion [99]. R. Pfau et al. [100] used heat-responsive poly (ε-caprolactone)—diacrylate for the
treatment of craniomaxillofacial bone defects. Shelby L. Buffington et al. [30] designed a
new type of SMP, which had a shape-fixed component PCL that was susceptible to lipase
degradation and a shape memory component, Pellethane 5863-80A, that was not suscepti-
ble to lipase degradation. Stretching the PCL when the material was heated above the Tm,
and then cooling, achieved a temporary shape in which the PCL was in compression and
the Pellethane was in tension. Lipase was then added to hydrolyze the ester bond—the
PCL was degraded by the enzyme, causing the Pellethane to shrink back to its original
shape. One-way and one-shot shape recovery was achieved, leaving the material in its final
state [30].

PLA: PLA is a biodegradable polymer composed of lactic acid, made from starch from
renewable plants such as sugar cane and corn [114]. Some studies [115] have shown that
long-chain branched polylactic acid (LCB-PLA) prepared by solid die drawing technology
has multiple memory behaviors and a high recovery rate of 78.8%. However, PLA can only
restore a single memory and the recovery rate is lower than 21.5%. After the shape recovery,
the mechanical properties of LCB-PLA decreases linearly with the recovery temperature,
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and as a bone fixation material, it can simultaneously achieve the effect of self-reinforcement
and self-fastening [115]. Almost all bones have a section of dense bone, and inside, spongy
bones. A tubular structure of PLA was designed, and its surface replaced dense bone with
origami herringbone and water bomb mosaic designs. As memory deformation occurred,
the cavity in the middle grew, simulating cancellous bone. This design resulted in a large
volume difference between the temporary shape and the initial shape, which well mimicked
the gap between the trabeculae [76].

PU: Biodegradable shape memory polyurethane has microphase separation and shape
memory effect. The resulting ability to promote bone calcification and minimally invasive
implantation makes it a promising material for bone repair. Li et al. [116] used PCDL, MDI,
and different chain extenders to synthesize biodegradable body temperature-responsive
shape memory polyurethane with a self-healing function. By adjusting the chain extender,
the transition temperature was close to the body temperature for biomedicine. However,
weak mechanical properties hinder its application in bone tissue. To obtain SMPU with
higher mechanical properties, Yang et al. [101] first designed and synthesized two extended-
chain diisocyanates composed of hexamethylene diisocyanate and isosorbide (ISO), and
then used them as coupling. A new type of linear SMPU (ISO-PUs) was synthesized using
poly DL-lactic acid (PDLLA)-based macrodiol as the soft segment and ISO as the chain
extender, thereby greatly improving the mechanical properties of SMPU and effectively
promoting the proliferation of osteoblasts.

PGDA: Poly (glyceryl dodecanoate) acrylate (PGDA) is a new type of SMP that
synthesizes PGD from glycerol and dodecanedioic acid and introduces acrylate groups to
modify PGD into photocurable PGD, named PGDA. In a mouse aortic graft model, PDGA
was successfully used as a material to fabricate vascular grafts to achieve blood circulation,
which is expected to be used to improve vascularization in bone tissue [70].

PBF: Guo et al. [102] designed a humidity-responsive SMP poly(butylene fumarate)
(PBF) that supports osteoblast attachment, proliferation, and enhanced alkaline phos-
phatase activity. In addition, PBF can be easily functionalized and loaded with BMP2 via
pendant hydroxyl groups for sustained release.

PPF: Poly (propylene fumarate) material synthesized by stepwise polycondensation
of diethyl fumarate and propylene glycol exhibits thermal stimulus responsiveness [66].

There are three main fatty acid residues in the novel soybean oil epoxidized acrylates:
stearic acid, oleic acid, and linoleic acid, which have pendant alkane groups. At −18 ◦C,
these groups are frozen, which facilitates shape fixation; at 37 ◦C, the oscillation of these
groups facilitates shape recovery and 4D functionality [89].

4.2. Shape Memory Hydrogel

Shape memory hydrogels, a class of naturally biodegradable polymers with high
biocompatibility, have become common active materials in 4D printing because of their
ability to change their volume dramatically in response to stimuli. The disadvantage is
that they are weak in mechanical strength, which some studies have improved by material
modification or changing the conditions of scaffold synthesis [117].

GelMA: Yuan et al. [104] fabricated porous shape memory cryogel microspheres (CMS)
from methacrylated gelatin (GelMA) by combining the emulsion technique with gradient
cooling cryogels. The pore size of the CMS was adjusted by a gradient cooling procedure,
and an optimal pore size (15.5 ± 6.0 µm) was obtained at 30 min gradient cooling (CMS-
30). Loading hBMSCs and HUVECs in CMS-30 at a ratio of 1:1 and then subcutaneously
injecting them into nude mice successfully promoted the regeneration of vascularized bone
tissue.

Gelatin: The nanofibrous gelatin scaffold prepared by Ying et al. [103] through heat-
induced phase separation and porogen leaching technology. The scaffold is chemically
modified from gelatin with heparin. Heparin can specifically interact with bone morpho-
genetic protein-2 and make Its stable release. To form injectable, shape memory, highly
porous scaffolds, gelatin scaffolds can be injected for bone regeneration of sinus enlargement
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in rabbits using an external maxillary sinus lift [103]. The gelatin designed by Diba [75]
uses UV and humidity to regulate the morphology of 3D-printed scaffolds.

Collagen: Jiang et al. [105] made Col scaffolds by using type I collagen. Col scaffolds
can be fixed into a temporary shape after freeze-drying, followed by shape recovery with
moisture. The Col scaffold has the advantage of native collagen, which can enhance
chondrocyte adhesion, proliferation, and redifferentiation in the New Zealand white rabbit
cartilage defect model.

Alginate: An alginate/polydopamine based bioink was used for cell-loaded print-
ing [67]. In addition, the AA-MA and HA-MA memory deformable hydrogels are cross-
linked by calcium ions and alginate, and the microtubules undergo self-folding. When
EDTA is added to compete with the calcium ions in the alginate, elongation of the self-
folding tubes occurs to restore their original shape, and by loading with mouse bone
marrow stromal cells they can differentiate into a variety of cell types, including osteoblasts,
chondrocytes, and adipocytes [71]. Hydrogels synthesized from alginate (Alg) and methyl-
cellulose (MC) can also be deformed by calcium ions [72].

4.3. Shape Memory Alloys

Shape memory alloy (SMA) belongs to the metal alloy system. Due to the high me-
chanical strength requirements of bone substitutes, scaffolds composed of metal materials
are usually used clinically as functional substitutes for natural bone [2]. Cheung et al. [106]
conducted the first randomized double-blind clinical trial to investigate the efficacy and
safety of a novel superelastic nickel-titanium (NiTi) spinal rod in the treatment of scoliosis
in adolescents. Zhou et al. [118] treated scaphoid nonunion with NiTi shape memory alloy
connectors combined with autologous iliac bone grafting, providing a new method with
less trauma, convenient operation, and satisfactory curative effect for the treatment of
scaphoid nonunion (Figure 2). Platelet-rich plasma gel and shape memory nails were used
in the treatment of scaphoid nonunion [110]. Roger et al. [107] used NiTi memory alloy
combined with autologous bone grafting to treat old nonunion of navicular bone.

However, the mechanical strength mismatch between metal grafts and natural bone
can lead to bone resorption and treatment failure, and some scholars have optimized the
physical properties of alloys. The Young’s modulus of NiTi alloy can also be controlled by
adjusting the porosity size, which can then be matched with bone tissue [83]. Mixed Ti6Al4V
and NiTi have been used to make superelastic shape memory alloy bone implants [119].
The Young’s modulus of Ti49.4-Ni50.6 (55.632 GPa) is much lower than that of Ti at
105 GPa and is suitable for orthopedic implants [120]. The β-phase Mg-30 wt%Sc alloy
exhibits a shape memory effect and has excellent mechanical properties with an ultimate
compressive strength of 603 ± 39 MPa and a compressive strain of 31 ± 3%. Satisfactory
osseointegration was observed in animals [113]. New self-expanding shape memory
screws were implanted in vertebrae to improve the stability of conventional screws [108].
Hou et al. [111] heat-treated shape memory alloy NiTi rods by an alternating magnetic field
to achieve a transformation temperature between 34 and 47 ◦C and a C-shaped austenite
phase. Magnetic induction was used to treat scoliosis in rabbits.

Some memory alloys with special shapes have been designed for use in different
parts of the body or for detection. Akbarinia et al. [112] has produced bone-shaped shape
memory implants with root fixation capabilities. At −30 ◦C, the implants are flexible closed-
leg cylinders that fit into bone sockets. Once the implant is in contact with the bone cavity,
it warms to body temperature and returns to its original bifurcated shape with sufficient
stress–strain immobilized to prevent rotational movement. The good primary stability
allows shortening of the traditional unloaded bone healing time. Zakaria et al. [109] is
implanted under the periosteum of the skull through a device composed of a silicone
sheet and a shape memory NiTi alloy strip. Using the principle of periosteal distraction
osteogenesis (PDO), a bone is created by lifting the periosteum and soft tissue covered
by the shape memory NiTi alloy strip. Growth space, increased vertical bone height, and
the invasion of surrounding soft tissue was prevented by the guided bone regeneration
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(GBR) technique. Srivastava et al. [121] applied shape memory NiTi alloy to fabricate a non-
bonding piezoelectric sensor (NBPS) as a good substitute for direct bonded piezoelectric
sensor DBPS, and successfully monitored bone injury and healing by using SMA to achieve
autonomous operation of the clamping mechanism.
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Figure 2. Nitinol dome memory alloy connector used to treat navicular nonunion. (a) Puncture the
position with a 5ml syringe needle under the fluoroscopy of the c-arm. (b,c) Cut through skin and
muscle tissue (purple) to expose the scaphoid nonunion. (d) Determine the appropriate implantation
position at the proximal and distal ends of the bone. (e) Remove fibrous scar tissue and hardened
calluses through electric drilling. (f) Repair the cancellous bone graft with attachment cortex. (g,h)
Select a suitable NiTi alloy and insert it, then spray warm (35–40 ◦C) salt water to gradually tighten
the extended arm until it almost reaches its original shape. (Reproduced with permission [118].
Copyright 2019, Springer Nature).
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4.4. Composite Shape Memory Material
4.4.1. Polymer Plus Polymer

PCL-PLA: PCL and PLA belong to the two most commonly used materials in syn-
thetic polymers, and the viscoelastic transition of PLA/PCL blends occurs at a temperature
of about 46 ◦C, which is nearly 10 ◦C lower than that of pure PLA. Studies of their bio-
compatibility make them candidates for use in implantology. By lowering the activation
temperature of these PLAs, it is safest to use the material as a precursor for implants.
PLA composites containing 10% poly(ε-caprolactone) (PCL) have been used to reduce the
activation onset temperature and SME activation energy [122].

PCL-PLLA: Arabiyat et al. [123] designed poly(ε-caprolactone)-diacrylate (PCL-DA)
and poly-L-lactic acid (PLLA) hybrid materials. In the absence of osteogenic inducers, the
scaffold material can make the expression of osteogenic markers osterix, bone morpho-
genetic protein-4 (BMP-4); and collagen 1α1 (COL1A1) was increased in h-MSCs.

PU-AT: Self-healing conductive polyurethane scaffolds (PU-AT scaffolds) based on
aniline trimer (AT) exhibit excellent shape fixation and shape recovery rates of >98% and
>97%, respectively. Notably, the PU-AT scaffold was reported to exhibit excellent self-
healing (nearly 95%) at temperatures close to body temperature (40 ◦C). Furthermore,
in terms of cellular behavior for bone tissue engineering, AT-based scaffolds exhibited
excellent hASC cell adhesion, proliferation, differentiation, and bone mineralization. At
the same time, the expression levels of genes such as RUNX2, COL1, OCN, and ALP
were significantly enhanced, consistent with increased extracellular matrix maturation and
osteocalcin deposition [124].

PGS-PPS: Xuan et al. [125] designed a temperature-responsive polymer material mixed
with poly (glyceryl sebacate) (PGS) and poly (1,3-propylene sebacic acid) (PPS), where the
covalent network of PGS is determined in its permanent state, PPS can provide a temporary
state with a shape memory function that promotes chondrogenic differentiation while
inhibiting osteogenic differentiation of BMSCs in mice.

PGS-PCL: Liu et al. [68] designed a hybrid polymer of PGS and PCL with temperature
responsiveness.

4.4.2. Polymer Plus Hydrogel

PLA-Chitosan: Chitosan was added to PLA scaffolds to reduce acidic byproducts, and
the porous PLA-TMC/chitosan microspheres prepared by Hu et al. [126] surface and high
specific surface area. The addition of chitosan significantly reduced the degradation rate of
the microspheres, improved the adhesion and proliferation of MC3T3-E1 cells, and could
also enhance ALP activity.

Poly(ε-caprolactone)-diacrylate (PCLDA) and hydrogel bilayer films were used for
osteogenesis studies. The MSCs cultured on the film were significantly transferred from
the cytoplasm to the nucleus due to the change of mechanical signals, and the nuclear
sensitive protein (Lamin A/C) became highly expressed at the nuclear deformation site.
All of these enhanced the expression of osteogenic genes in MSCs and then differentiated
towards osteogenesis. A higher proportion and more uniform distribution of CD34, RUNX2,
and OSX-positive cells were observed in vivo, indicating active angiogenesis and bone
healing [85].

PU-gelatin: Superparamagnetic iron oxide nanoparticles (SPIO NPs) have been re-
ported to promote osteogenic induction in h-MSCs. Wang et al. [80] added SPIO to
PU/gelatin and PU/PEO scaffolds and seeded hMSCs to evaluate bone regeneration.
The SPIO sustained-release effect of the gelatin-polymer hybrid stent was significantly
better than that of the polymer-polymer hybrid stent. RUNX2, OCN, and COL I gene
markers in hMSCs were also significantly upregulated after 7 and 14 days of induction.

Poly (ethylene glycol) (PEG), alginate, and gelatin derivatives: Hydrogels made with
eight-armed PEG-acrylate (PEGA8), and oxidized-and-methacrylated alginate (OMA) by
Ding et al. [127] form a double-layer scaffold with GelMA, and the manufacturing parame-
ters such as polymer concentration, UV absorber concentration, UV irradiation time, and
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hydrogel thickness can be adjusted by adding a photoinitiator to achieve hydraulic coagu-
lation and controllability of glue shape. Simultaneously, multiple cell types (i.e., fibroblasts,
stem cells, and cancer cells) wereable to be encapsulated into the bilayer hydrogel scaffolds.

Chitosan biguanide/PANI: The chitosan biguanide/PANI self-healing scaffold ma-
terial synthesized by Alireza et al. [128] can up-regulate hADSC differentiation, ECM
mineralization and maturation, and increase the expression of osteogenic genes RUNX2,
COL1 OCN, and ALP.

PU/Gelatin/GelMA: Wu et al. [129] employed PU dispersion, gelatin, and GelMA to
fabricate self-healing PUGG hydrogels. The self-healing properties of hydrogels come from
the formation of reversible ionic bonds between COO- groups and NH3+. Neural stem cells
and MSCs have demonstrated cellular crosstalk in DIW-printed PUGG hydrogels.

HA-MA/PCL: Constante et al. [90] fabricated hydrogel and PCL into an ion-responsive
double-layer self-folding tube using complex 3D printing techniques.

PLA/CS: Pandey et al. [78] studied the effect of weight percentage of chitosan in PLA,
packing density, and stimulation temperature on the recovery rate of the material.

4.4.3. Polymer Plus Ceramics

As the main components of the mineral composition in bone, hydroxyapatite (HA)
nanocrystals and calcium phosphate have been widely used as bone fillers and implants for
many years due to their excellent bioactivity, biocompatibility, and osteoconductivity [130].

PCL/HA: An PCL/HA scaffold implanted in the mandible of rabbits significantly
promoted bone formation around the subperiosteal implant and increased the stability
of a titanium implant. Compared with other stents, PCL/HA stents are pre-designed
and compressed according to the implanted area, and can be implanted by minimally
invasive surgery, return to the original shape after exposure to body temperature, spread
to a larger implanted area, and finally, improve the base bone-mass scaffolds [131]. Liu
et al. [132] mixed PCL and hydroxyapatite and coated a surface with a layer of calcium
alginate and BMP-2 as a material to promote bone repair of mandibular defects in rab-
bits. Wang et al. [133] synthesized a biomimetic composite scaffold with controllable
microporous structure based on poly(ε-caprolactone) (PCL), polytetrahydrofuran (PTMG),
and hydroxyapatite, and the obtained scaffold had a variety of pore structures, high con-
nectivity, tunable mechanical properties, and excellent shape-memory properties. The
micro-morphology and void structure of the composite scaffolds were controlled by adjust-
ing the HA content for the study of minimally invasive bone repair.

SMPU/HA: Xie et al. [134] studied the preparation of polyurethane/hydroxyapatite
sponge (foam) using a gas foaming method for the treatment of load-bearing bone de-
fects. A rabbit femoral defect model proved that SMP foam expands and deforms through
thermal stimulation after implantation to fill bone defects and promote bone growth and
neovascularization. Yu et al. [135] used polyurethane/nano-hydroxyapatite (SMPU/nHAP)
composite scaffolds for minimally invasive surgery and bone repair. This porous com-
posite scaffold can significantly shorten operation time and promote bone cell growth.
Modified SMPU with arginyl-glycyl-aspartate (RGD peptide) and rGO was used to form a
cell-adhesive SMPU/HA/rGO/RGD nanocomposite for minimally invasive bone repair
by Zhang et al. [136]. The modified nanocomposite showed an approximately 200% in-
crease in Young’s modulus and an over 300% increase in tensile strength over SMPU. The
adhesion of rabbit MSCs on composite scaffolds was significantly enhanced. The research
group also proposed a robust shape-memory polymer screw made of SMPU/HA/(RGD),
HA is osteoinductive and osteoconductive. It has efficient healing and bracing capabil-
ities and is used to address the limitations of conventional screws in terms of stiffness,
bioactivity, and internal fixation capabilities [137] (Figure 3). Poly(ε-caprolactone) (PCL)-
based polyurethane (PU) microfibers containing hydroxyapatite (HA) exhibit excellent
mechanical properties in terms of tensile and modulus values. The test of shape-memory
performance found that SMPU and HA composite microfibers exhibited different shape
memory transition temperature (Ttrans) values with the addition of HA. After the addition
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of 3 wt% HA, the fibrous scaffold exhibited excellent shape recovery (>97%) and extremely
short recovery time (about 6 s) [88].
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Figure 3. Robust shape memory polymer composite screws made of
SMPU/HA/arginylglycylaspartate (RGD) are temperature-responsive to address the stiff-
ness, bioactivity, and internal fixation capabilities of conventional screws limitations. The working
schematic diagram of a SMPC screw: (A) size (1) and prototype (2) of the bone screw; (B) components
in the SMPC screw; (C) working principle of a memory screw: (1) the screw was compressed at high
temperature and then fixed at low temperature; (2) the programmed screw was implanted into the
bone defect site by minimally invasive surgery; due to SME, the screw recovered to its original state
and offered a supporting effect to the surrounding tissues; blue arrow: recovery force. The scale bars
are 5 mm. (3) Representation of a single-slice micro–computed tomography (micro-CT) image after
12 weeks of implantation; blue imaginary line area indicates the SMPC screw. (Reproduced with
permission [137]. Copyright 2020, Elsevier).

PET/HA: Imoto et al. [138] used a polyethylene terephthalate (PET) film as a material
to promote bone regeneration and implanted it between the periosteum and bone of the
rabbit skull, and the inner side of the film was coated with hydroxyapatite.
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TCP/P(DLLA-TMC): Wang et al. [44] added a photothermal agent (BP nanosheets)
and an osteoinductive agent (osteogenic peptide) to β-tricalcium phosphate/polylactic
acid-trimethylene carbonate) (TCP /P(DLLA-TMC)) bioink for use with low temperature
printing by DIW. Through the illumination of near-infrared light (NIR), a composite scaffold
with a heat-responsive shape can form shape memory, and can be easily implanted into
irregular defects through minimally invasive surgery. Moreover, the release of osteogenic
peptide can be controlled by the photothermal effect of NIR to promote the formation of
new bone.

Fe3O4/CNF/PHB/PCL: Yue et al. [77] added Fe3O4 and cellulose nanofibers (CNF)
into polyhydroxybutyrate/poly(ε-caprolactone) (PHB/PCL) mixtures as functional parti-
cles. The addition of iron ions endowed the polymer with magnetically responsive shape
memory characteristics (Table 3).

Table 3. Different hybrid shape memory materials in bone tissue engineering.

Classification Material Load Stimulate Biological Evaluation Reference

SMP + SMP PCL-PLLA PD Temperature In vitro: hMSC [123]
PU-AT Temperature In vitro: hASC

In vivo: rat skull [124]
PGS-PPS Temperature In vitro: rat BMSC

In vivo: rat knee cartilage [125]
PGS-PCL PD Temperature In vitro:BMSC, macrophages

In vivo: rat skull, [68]
SMP + SMH PLA-CS Temperature In vitro: MC3T3-E1 [126]

PCLDA- Gel Temperature In vitro: MSC
In vivo: rat femur [85]

PU-Gel SPIO Temperature In vitro: hMSCs [80]
PANI-CS CP Temperature In vitro: hADSCs [128]

SMP + SMC PCL-HA Temperature In vitro: rabbit BMSCs
In vivo: subperiosteal [131]

BMP-2 Temperature In vitro: rabbit BMSCs
In vivo: rabbit mandible [132]

PU-HA Temperature In vitro: MC3T3-E1
In vivo: rabbit femur [134]

RGD Temperature In vitro: rabbit MSC [136,137]
PCL/PTMG-

HA Temperature In vitro: MSC

PET-Gel-HA Temperature In vivo: subperiosteal [138]
PDLLA -TCP OP NIR In vitro: rat BMSC

In vivo: rat skull [44]

5. Discussion and Outlook

Four-dimensional bioprinting, which regards “time” as the fourth dimension in 3D
bioprinting, is expected to create complex structures with dynamically controllable shape
and function, and is considered to be a next-generation tissue engineering technology. In the
human body, bone tissue has strong plasticity and has the unique function of adapting to the
dynamic changes of the outside world. Traditional 3D-printed scaffolds may have a certain
shape or structure but are static throughout. The ultimate goal of 4D bioprinting is to mimic
biological functions in vivo as much as possible, and the stimulus conditions that cause
changes should be safe and easy to control in vivo. The shape and function transformation
features of 4D bioprinting can be used to design and control printed structures with special
shape, size, function, or location to meet the requirements of bone tissue engineering
and clinical applications. These 4D bioprinting technologies can offer great potential for
personalized therapy and minimally invasive medicine.

However, 4D bioprinting is still in the proof-of-concept research stage, and there is
still a long way to go to realize the clinical application of bone defects. To date, reliable
computational models capable of accurately predicting the deformation of 4D-bioprinted
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structures are still lacking. Therefore, structural design mainly relies on experimental works
and empirical data. It would be more efficient to calculate the dynamic rotation based
on the initial structure and external stimuli. According to the mechanical properties, the
materials used in 4D bioprinting can be divided into soft materials and hard materials. For
soft materials such as hydrogels, biocompatibility is good but mechanical properties are
poor. For hard materials, the mechanical properties are good, but the biocompatibility is
not satisfactory. Ideal materials for 4D bioprinting should have appropriate stiffness and
good biocompatibility. Another requirement for shape memory materials is to respond to
complex and diverse stimuli in vivo. However, so far most materials respond to only one
stimulus, and most stimulus conditions are not suitable for use in living organisms. Second,
existing 4D-printed structures can only undergo simple deformations, such as folding or
assembly, which cannot meet the complex needs of clinical bone tissue applications. More
efforts should be made in the future to increase the complexity of shape transformation
and the precise control of resolution. Repeated folding/unfolding has resulted in signif-
icant degradation of the mechanical properties of printed structures. Furthermore, the
mechanical strength of printed structures is often not sufficient to withstand high pressures.
Therefore, the development of deformable materials that can be repeated multiple times
is also a challenge for the future. Issues specific to bone tissue to be considered include
optimal internal pore geometry and structure for osteoinductive 4D-printed implants, op-
timal degradation rate for bone graft substitutes, whether mechanical properties of bone
graft substitutes need to mimic native tissue, and how to achieve the vascularization of
bone tissue. However, it is believed that with the advancement of material science, printing
technology, software, and numerical modeling, 4D bioprinting will take a big step forward
in its practical application.
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Abbreviations

ASC adipose-derived mesenchymal stem cell
BMP-2 bone morphogenetic protein-2
BMSC bone marrow mesenchymal stem cells
CS Chitosan
DIW direct ink writing
DLP Direct Light Printing
FDM fused deposition modeling
Gel gelatin
GelMA gelatin methacrylate
HAp hydroxyapatite particles
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PANI Polyaniline
PCL/PCLDA poly(ε-caprolactone)/poly(ε-caprolactone)-diacrylates
PD polydopamine
PGS poly (glycerol sebacate)
PLA/PLLA/PDLLA Poly(lactic acid)/poly-L-lactic acid/poly(DL-lactic acid)
PPS poly (1,3-propylene sebacate)
PU polyurethane
RGD arginyl-glycyl-aspartic acid
SLA stereolithography
SLM/SLS selective laser melting/ selective laser sintering
SMA/SMC/SMH/ shape memory alloy ceramics/hydrogel/material/polymer
SMM/SMP
SPIO superparamagnetic iron oxide
Ttrans shape memory transition temperature
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