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Abstract: Immunotherapy based on anti-PD1 antibodies has improved the outcome of advanced
melanoma. However, prediction of response to immunotherapy remains an unmet need in the
field. Tumor PD-L1 expression, mutational burden, gene profiles and microbiome profiles have
been proposed as potential markers but are not used in clinical practice. Probabilistic graphical
models and classificatory algorithms were used to classify melanoma tumor samples from a TCGA
cohort. A cohort of patients with advanced melanoma treated with PD-1 inhibitors was also analyzed.
We established that gene expression data can be grouped in two different layers of information:
immune and molecular. In the TCGA, the molecular classification provided information on processes
such as epidermis development and keratinization, melanogenesis, and extracellular space and
membrane. The immune layer classification was able to distinguish between responders and non-
responders to immunotherapy in an independent series of patients with advanced melanoma treated
with PD-1 inhibitors. We established that the immune information is independent than molecular
features of the tumors in melanoma TCGA cohort, and an immune classification of these tumors was
established. This immune classification was capable to determine what patients are going to respond
to immunotherapy in a new cohort of patients with advanced melanoma treated with PD-1 inhibitors
Therefore, this immune signature could be useful to the clinicians to identify those patients who will
respond to immunotherapy.
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1. Introduction

Melanoma is the most lethal cutaneous cancer, with over 7000 estimated deaths in the
United States in 2021 [1]. Early detection allows a curative resection, but once the tumor
disseminated the prognosis is poor [2].

The relationship between melanoma and the immune system is well established
and justifies the use of immunotherapy to treat advanced disease. Interferon alpha and
interleukin-2 produced occasional responses, although at the cost of high toxicity [3]. More
recently, immune therapy with anti-CTLA4 and anti-PD1 antibodies has become standard
of care [4–6]. Some patients obtain long-term benefit with anti-PD1 based therapy, whereas
others with a similar clinical background have an early progression. Prediction of response
to these drugs remains an unmet need in the field. Markers such as PD-L1 expression, tumor
mutational burden and microbiota analysis have been proposed to predict response [7,8].
However, they are not used in clinical practice due to lack of accuracy.

New computational methods for the analysis of genomic information can unravel
molecular features related to response to immunotherapy. For instance, probabilistic
graphical models (PGM) can be used to build functional networks [9,10]. This kind of
networks provide information about relevant processes taking place in the tumor cell.

In this study, RNA-seq data from melanoma samples were analyzed through PGM
and classificatory algorithms to define relevant molecular processes in the tumors and to
search for molecular mechanisms related to resistance and sensitivity to immunotherapy.

2. Results
2.1. TCGA Cohort

TCGA RNA-seq data included 472 samples. One duplicated and one normal tissue
samples were removed. Twenty-five patients had received neoadjuvant treatment so their
corresponding samples were also excluded. The final number of samples used for the
subsequent analyses were 446. Additionally, there were two patients with a paired primary
tumor-metastasis samples, so the final number of patients was 444. Clinical characteristics
were summarized in Supplementary Table S1. 183 samples had a mutation in BRAF,
88 a mutation in NRAS, 24 a mutation in NF1, 54 were triple negative (TN) and 95 had
not information about their biomarker status. The median follow-up was 395 days, and
143 deaths had occurred.

2.2. Functional Characterization of the TCGA Cohort

PGM was built using the 2000 most variable genes. The resulting graph was processed to
seek for functional structure. Overall, we divided the obtained network into seven functional
nodes with an overrepresented biological function (Figure 1, Supplementary Table S2).

2.3. Functional Differences According to Mutational Subtypes in the TCGA Cohort

We explored if the mutational status of the tumors correlated with differences in the
activity of functional nodes (Supplementary Figure S1). There were significant differences
between BRAF positive and TN, and NRAS positive and TN in the activity of the nodes
“membrane”, “melanosome” and “adhesion”.

2.4. Biological Layer Analysis

We applied a recursive sparse k-means/Consensus cluster algorithm (CCA) workflow,
using the 2000 most variable genes as showed in previous works [11,12]. We defined
seven different layers with diverse molecular functions, such as melanogenesis, immune,
epidermis development, extracellular space, and inflammatory response. All layers were



Int. J. Mol. Sci. 2023, 24, 801 3 of 14

divided into two groups except layers 1 and 3, which were divided into three and four
groups respectively. Results are summarized in Table 1.
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Figure 1. Probabilistic graphical model built using the 2000 most variable genes from TCGA melanoma
cohort. The network was divided into seven functional nodes.

Table 1. Summary of defined biological layers. CCA: Number of groups determined by consensus
cluster algorithm.

Cluster Distribution%

Layer Main Function CCA Genes 1 2 3 4

1 Melanogenesis 3 57 49 37 14 –
2 Immune 2 146 49 51 – –
3 Epidermis development & keratinization 4 63 10.8 57.7 21.9 9.6
4 Extracellular space & membrane 2 86 53 47 – –
5 Extracellular space & extracellular matrix 2 110 66 34 – –
6 Inflammatory response 2 125 49 51 – –
7 Without function 2 11 41 59 – –

2.4.1. Layer 1: Melanogenesis

The layer “melanogenesis” included 57 genes mainly related with the melanogenesis
process, for instance, MLANA, TYR, TYRP1, OCA2, DCT, GPR143, and SLC45A2. The
layer was divided into three clusters including 219 (49%), 164 (36.7%) and 64 (14.3%) patients
respectively. Functional node activity analyses showed a decreased activity of the melanosome
node through clusters, being higher in cluster 1.1 and lower in cluster 1.3. Cluster 1 tumors
also showed lower activity of the nodes “membrane”, “translation”, “adhesion”, “extracellular
matrix”, “immune” and “epidermis development” when compared with clusters 2 and 3.
Clusters 2 tumors showed lower activity in the nodes “translation” and “extracellular space”
when compared with cluster 3 tumors (Supplementary Figure S2).
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2.4.2. Layer 2: Immune Response

The second layer included 146 genes mainly related to the immune response. Cluster
2.1 had 221 patients (49%) and was characterized by a low activity of immune node,
so we called it “Immune-low group”. Cluster 2.2 included 226 patients (51%) and was
characterized by high functional activity of the node, so we renamed it as “Immune-high
group” (Figure 2). Immune genes in this biological layer include mainly cytokines and
chemokines and other relevant immune genes such as FASL, ICOS, IFNG, CD8A, and CD8B.
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Figure 2. Second layer reflecting immune information in TCGA melanoma cohort. (A) Location of the
146 genes defining Layer 2 in the network. (B) Heatmap network of Layer 2 groups. (C) Comparison
of functional node activities between defined groups. ****, p ≤ 0.0001; ***, p ≤ 0.001; **, p ≤ 0.01;
*, p ≤ 0.05.

2.4.3. Layer 3: Epidermis Development & Keratinization

This layer included 63 genes, mainly related to epidermis development and keratiniza-
tion such as keratins (KRT17, KRT15, KRT14, KRT5, KRT6A, and KRT6B) and other relevant
genes such as COL17A1, GRHL3, or DSP. Four groups were established by CCA (Table 1,
Supplementary Figure S3). Cluster 3.2 showed the lowest activity of the node, followed by
3.3, then 3.1 and, finally, 3.4 (highest functional node activity).
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2.4.4. Layer 4: Extracellular Space & Membrane

The fourth layer was based on 86 genes mainly related with extracellular matrix and
adhesion, such as PTN, SERPINA5, LPAR1, PHKA1, or CLDN11. Cluster 4.1 included
236 patients (53%), with lower functional activity of the nodes “extracellular matrix” and
“adhesion”, whereas Layer 4.2 included 211 patients (47%), with higher functional activity
of these nodes (Supplementary Figure S4).

2.4.5. Layers 5, 6 and 7

Layer 5 grouped patients again according to genes related to extracellular matrix and
adhesion, and Layer 6 was associated with inflammation and immune response. Finally,
Layer 7 showed no overrepresented function. Therefore, we decided to stop the layer
analysis at this point, because functional information was already redundant (Table 1).

In order to visualize the different classifications defined, a hierarchical cluster (HCL)
was constructed (Supplementary Figure S5).

2.5. Immune Classification

Layers 2 and 6, both related to immune information, supplied overlapping classifica-
tions. So, Layer 2 was considered as the “immune classification” in the TCGA series. This
layer provided prognostic information regarding overall survival (OS) and disease-free
survival (DFS) (Figure 3).
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DFS = disease-free survival.

2.6. Molecular Classification

Layers 1, 3 and 4 contained molecular information about biological functions such as
melanogenesis, cellular adhesion and keratinization. None of these molecular layers had a
significant association with prognosis (Supplementary Figure S6). These layers showed
partial overlapping in the HCL and, therefore, they were grouped into a unique informative
layer renamed “molecular classification”, and three new groups were established using
206 genes obtained from these molecular layers (Figure 4A).
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Molecular 1, which included 70 patients (16%), was characterized by higher activity of
the functional node “epidermis development” and lower activity of the node “membrane”.
Molecular 2, with 154 patients (34%), had the highest activity of the nodes “membrane”,
“transcription” and “adhesion”; and the lower activity of the node “melanosome”. Finally,
Molecular 3 included 223 patients (50%) and was characterized by lower activity of the
node “extracellular matrix” and higher activity of the node “melanosome” (Figure 4B). The
activity of the immune node was residual in the three groups, suggesting that the immune
and molecular classifications are independent.

A Significance Analysis of Microarrays (SAM) among the three molecular groups iden-
tified 170 out of 206 genes defined by layer analysis as differentially expressed (Supplemen-
tary Figure S7). Genes exclusively overexpressed in Molecular 1 included keratins (KRT80,
KRT15, KRT14, KRT6A, KRT5, KRT6B, KRT17) and other genes related to epidermis devel-
opment such as DSP, COL17A1, CDSN, GRHL3, CST6, EVPL, GJB5, ZNF750, or SPRR2D.
Some of the genes overexpressed in Molecular 1 and Molecular 3 included MLANA, TYR,
TYRP1, OCA2, DCT, GPR143, and SLC45A2, all of them involved in melanogenesis. Finally,
Molecular 2 overexpressed genes related to extracellular region were PCSK1, SEMA3D,
CFI, LOXL4, SEMA3E, PTN, FGF2, SORL1, F5, SERPINA5, SFRP1, FLRT3, GPC4, ACPP,
and ANGPTL1. This group also overexpressed genes related to plasma membrane such
as LPAR1, TMEM100, STRA6, KCNIP1, TESC, PHKA1, LIFR, GFRA1, CLDN11, ITGA10,
and CNTN4.

As it was seen in the analysis of molecular layers, none of these molecular groups
correlated with DFS or OS (Supplementary Figure S8).

Interestingly, the distribution between primary tumors and metastases varied between molec-
ular groups, primary tumors being mainly included in Molecular 1 (Supplementary Figure S9).
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2.7. Cohort of Patients Treated with Anti-PD1 Therapy in the Spanish Melanoma Group (GEM)

Fifty-two patients with advanced melanoma receiving anti-PD1 antibodies were
recruited for this study by the Spanish Melanoma Group (GEM). The series included
26 primary tumor samples, 10 lymph nodes, and 16 metastases. Median follow-up was
12.6 months. Eleven patients achieved a complete response, 13 a partial response, 10 stable
disease, and 13 had a progression. Clinical data of this cohort is summarized in Supple-
mentary Table S3.

2.8. Sample Processing and RNA Capture Experiments

Fifty-two paraffin samples were retrieved, although four of them did not yield enough
material to perform RNA extraction. After RNA extraction, eight samples were excluded
due to low RNA quantity yield. Therefore, 40 samples were analyzed by RNA-seq.
2268 genes presented more than 400 lectures across the 40 patients and 2151 genes had less
than 50% of zeroes.

2.9. Biological Layer Classification in GEM Cohort

With the aim of assessing the robustness of the immune and molecular classifications
previously described in the TCGA series, patients from the GEM cohort were classified by
CCA using the genes defined as most important in each layer classification. The number
of groups was consistent between GEM and TCGA cohorts, with the exception of Layer 3
(Epidermis development and keratinization). In TCGA cohort 4 groups were defined in this
layer whereas in GEM cohort, only two groups were identified (Supplementary Table S4).

2.10. Relation to Survival of Molecular and Immune Classifications in GEM Cohort

With the aim of studying the influence of PD-1 inhibitors in the molecular and immune
characterization of advanced melanoma, survival comparisons were performed between the
defined groups. In this case, the two groups defined in Layer3 (Epidermis development and
keratinization) had significantly different OS (p = 0.03, HR = 3.55) (Supplementary Figure S10).

Again, the molecular classification differentially classified primary tumors and metas-
tases (Supplementary Figure S11).

The immune information defined in the TCGA cohort had significant prognostic value in
the GEM cohort treated with PD-1 inhibitors. The “immune-low” group had a poor outcome
as compared with the “immune-high” group (PFS: p = 0.0001, HR = 6.34; OS: p = 0.0006,
HR = 6.52) (Figure 5).
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Figure 5. Survival curves according immune information previously defined in TCGA cohort in
GEM cohort treated with anti-PD1 inhibitors. Immune 1 is the “immune-low group”, showing lower
expression of immune-related genes, and Immune 2 is the “immune-high group”, presenting higher
expression of immune-related genes. OS = overall survival.
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Of the 146 genes included in this immune layer, 33 had an ontology of “immune
response”, mainly cytokines and chemokines. CCL19, CCL21, CCL5, CCR2, CCR7, CD27,
CD7, CD79A, CD8A, CD8B, CD96, CR2, CXCL10, CXCL11, CXCL13, CXCL9, FASL, GZMA,
ICOS, IFNG, IL2RG, LAX1, LTA, LTB, NCR3, TLR10, and TNFRSF9, all of them showing
higher expression in the “Immune-high” group (Supplementary Figure S12).

A summary about the analysis workflow and the main results obtained in this study
was showed in Supplementary Figure S13.

3. Discussion

In the present study, an approach based on the existence of different informative layers
in gene expression and PGM was used to establish immune and molecular subgroups in
melanoma samples. Two independent datasets -one coming from TCGA and one from
the GEM- were used to test the performance of the method. Genes were classified into
functional nodes with specific functions, establishing subgroups based on molecular and
immune features. Subgroups related to immunity predicted response to anti-PD1 therapy
in the GEM series.

PGM coupled with gene ontology allows studying differences in biological processes,
not relying on the expression of one specific gene, but rather on all grouped genes involved
in the same process [9,10]. We have previously demonstrated the validity of this approach
in breast cancer and bladder cancer [11,12].

Two new classifications of melanoma samples were established by combining PGM,
sparse k-means and CCA. The novelty of this approach is that information provided by
gene expression is treated as if different informative layers existed, segregating immune
and molecular information. TCGA had previously defined melanoma molecular sub-
groups [13], some of which match with our groups. The TCGA keratin group coincides
with our Molecular 1 group, whereas the MITF-low group corresponds to our Molecular
2 group. We identified a new “melanosome high” group (Molecular 3). In a previous
reanalysis of TCGA data, Netanely et al. pointed out the relevance of melanosome-related
genes [14]. The distinction between immune and molecular information, however, has not
been previously described.

Molecular 1 is characterized by high expression of genes related to epidermis devel-
opment and keratinization. COL17A1 was associated with pigmentation and melanocyte
supply to the epidermis [15], and its accumulation in melanocytic tumors has been as-
sociated with malignant transformation, having been proposed as a potential target for
antibody-induced melanoma apoptosis [16]. GRLH3 is a member of the grainyhead family
of transcription factors and a low expression of this protein has been described in non-
melanoma skin tumors [17]. Another relevant gene in Molecular 1 group is ZNF750: its
overexpression decreases proliferation of melanoma cells, whereas its depletion causes
opposite effects [18].Molecular 1 comprised most of primary tumors included in the TCGA
and GEM cohorts. The group showed higher activity of the nodes “epidermis development”
and “keratin”. This observation agrees with that by Netanely et al. [14].

Molecular 1 and 3 overexpressed genes related to melanogenesis. MLANA and
tyrosinase have been proposed as biomarkers for melanoma detection [19,20]. Tyrosinase
related protein 1 (TYRP1) has been associated with prognosis and survival [21,22]. Other
relevant genes in these groups were the OCA2-melanosomal transmembrane protein
(OCA2) [23] and dopachrome tautomerase (DCT) [24].

Molecular 2 overexpressed genes related to adhesion and extracellular matrix. Pleiotrophin
(PTN) is a heparin-binding growth factor of the family of midkine, a tumor promoting fac-
tor [25,26]. FGF2 plays an important role in melanoma progression and antibodies blocking
FGF2 have been proposed as a therapy in metastatic melanoma [27]. LPAR1 is critical in resis-
tance acquisition to BRAF inhibitors [28]. LIFR is associated with unfavorable prognosis [29].

Several molecular groups in melanoma have been defined, even immune clusters have
been established [30]. Despite this, they have no clinical utility or relation to prognosis
However, our immune classification provides information about response to immunother-
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apy treatment and prognosis. In the last years, literature has been centered in the study
of single genes or in a combination of well-known immune genes to predict response to
immunotherapy, but these studies have had a moderate impact in clinical practice [31–33].
Our approach offers an integrative vision of many genes related to the immune response
and has the extra advantage that is a non-directed analysis, without a priori information,
which makes its capable to suggest new hypothesis and relevant biomarkers. In this case,
an immune signature was defined based only in the expression data measured in our
series, without the need of any a priori knowledge, meaning that these genes were blindly
included into the immune classification. This immune signature had a good predictive
value and in the future, it could be possible to study the role of the genes that composed this
immune signature in response to immunotherapy and also their role in immune response.

The increasing use of immunotherapy in melanoma has highlighted the relevance
of the immune status in the outcome of neoplastic diseases. Our immune classification
identified an “immune-high” group of patients who responded to anti-PD1 therapy, and
an “immune-low” group showing poor response. Our immune signature was mainly
formed by cytokines and chemokines, such as CXCL9, CXCR5, CXCL13, CCL5, CCR2
and CCR7 among others, and other immune related genes such as ICOS, CD96, TNFRSF9,
IFNG, CD8A, and CD8B. All these genes had higher expression in the “immune-high”
group. Some of these genes (CXCL9, CXCL13, CCL5, CD96, TNFRSF9, IFNG, CD8A,
and CD8B) have been previously reported by a previous work by Gide et al. where the
authors established immune biomarkers related to response to PD1 monotherapy and to the
combination of PD1 and CTLA-4 immunotherapy [34]. ICOS (inducible T cell costimulator)
belongs to the CTLA-4 protein family. Engagement of ICOS pathway significantly enhances
the efficacy of CTLA-4 blockade [35]. Interestingly, Gide et al. identified this immune
biomarker both in PD-1 positive and PD-1 negative tumors, proposing it as an alternative
immune target [34]. However, in our cohort we found an overexpression of ICOS in the
“Immune high” responder group. CCR2 is another chemokine included in our immune
signature. It has been described that CCR2 antagonists in combination with anti-PD1
therapy leads to sensitization to anti-PD1 monotherapy in bladder carcinoma murine
models [33]. This drug combination should be further explored in melanoma as well.

Cytokines and chemokines have a pro-inflammatory role. Cytokines send intracellular
signals by binding to specific surface receptors and they could be involved in cell activation,
apoptosis, division or movement [36]. Chemokines are members of the cytokine family
and have a key role in leukocyte migration [37]. IFNG (interferon gamma), also included
in our immune signature, is only produced by immune cells and activates macrophage
and neutrophil intracellular killing, stimulates natural killer cell function and enhances
antigen presentation through increasing MHC class II expression on antigen presenting
cells [36]. These data suggest that an activation of innate immune response is taking place
in the “immune-high” group that favors response to immunotherapy.

This immune signature, defined in TCGA cohort and based on intrinsic immune fea-
tures, identified patients who responded to immunotherapy in the GEM cohort treated with
PD-1 inhibitors. Prediction of response to immunotherapy remains an unmet need in the
field of advanced melanoma. The expression of PD-L1 in the tumor has a poor correlation
with response, so better markers are urgently needed. Mutational burden, gene profiles
and microbiome profiles have been proposed but are not used in clinical practice [7,8].
Molecular signatures are already trying to apply to improve patient management. The
so-called interferon-gamma signature has recently been proposed to select immunotherapy
in the neoadjuvant setting: tumors with a high baseline signature seem to have a good
response to anti-PD1 therapy alone, whereas tumors with a low signature would require
combination therapy [38].

The identification of patients with advanced melanoma who will not respond to
immunotherapy would have a major impact in their management. Likewise, a predictive
tool could also be used in the adjuvant setting, where patients do not derive benefit if they
have tumors with primary resistance to immunotherapy. Our immune signature allows
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determining those patients that will respond to anti-PD1 therapy in an adjuvant context,
being able to help to decide which melanoma patients should receive adjuvant anti-PD1
immunotherapy. An accurate marker would allow to spare the side effects and the cost of
anti-PD1 antibodies and also opens the possibility to identify patients that will not respond
to anti-PD1 therapy and redirected them to a clinical trial in early stages.

Our immune classification had a prognostic value in melanoma TCGA cohort, with
the immune-high group showing a trend for a better survival (OS p = 0.003, HR = 1.6).
Interestingly, in the GEM cohort treated with immunotherapy, the difference in OS between
the “immune low” and “immune high” was more striking, (p = 0.0006, HR = 6.52), which
suggest that the immune signature provides rather predictive information.

Our study has some limitations. First, the TCGA cohort is heterogenous and does not
include patients treated with anti-PD1 therapy. This was addressed in our second cohort.
However, this clinical cohort was small and also comprised samples from primary tumors
as well as metastases. Additionally, no patient received combination immunotherapy with
anti-PD1 and anti-CTLA4 antibodies, which is one of the current standard therapies. For
this reason, the results should be validated in a larger contemporaneous series.

4. Materials and Methods

Two data sets were used, the first coming from The Cancer Genome Atlas (TCGA).
These samples come from patients treated before the era of anti-PD1 therapy. The second
set came from patients receiving anti-PD1 therapy in a recent clinical series.

4.1. Preprocessing of TCGA Melanoma Data

Gene expression data from 472 melanoma tumor samples included in TCGA were obtained
by RNA-seq [13]. Genes with an official symbol were selected among a total of 20,500 genes.
Data was log2 transformed, then genes with at least 75% of valid values were selected, and
missing values were imputed according to a normal distribution in Perseus software using
default settings [39]. Finally, genes were ranked according to their standard deviation (SD), and
the 2000 genes showing the highest DE were selected for subsequent analyses.

4.2. GEM Cohort of Advanced Melanoma Patients Treated with Anti-PD1 Inhibitors

Fifty-two formalin-fixed, paraffin-embedded (FFPE) samples from 52 patients with
advanced melanoma and treated with anti-PD1 inhibitors were recruited by the Spanish
Group of Melanoma (GEM) for this study.

4.3. RNA Isolation

Five to ten 10–15 µm FFPE sections were obtained for each sample. Total RNA
was isolated using miRNeasy FFPE Kit (Qiagen) following manufacturer’s instructions.
Purified nucleic acid quality control for quantity and purity was assessed using an ND-1000
NanoDrop spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA).

4.4. RNA Capture and Sequencing

100 ng of RNA from each sample were used for library preparation with the KAPA
RNA Hyperprep kit (Roche Nimblegen Inc., Pleasanton, CA, USA) following manufac-
turer’s instructions. Library fragments distribution was confirmed by electrophoresis and
concentration was determined using the KAPA library Quantification kit (Roche Nimblegen
Inc.). A seven MB SeqCap EZ probe pool (Roche), including genes previously defined,
was designed using the NimbleDesign online tool. An equal mass of eight cDNA libraries
was pooled and hybridized with the SeqCap EZ probe pool following manufacturers’
specifications. Samples were sequenced in two groups using pair end 2 × 100 NextSeq
50/550 high Output Cartridge v2, 75 cycles. Mapping with TopHat and FPKM calculation
using CuffLinks was performed using the G-Pro Suite [40].
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4.5. Preprocessing of RNA Capture Data

First, ensembl gene notation was translated to official gene symbol using ensembl
Biomart tool [41]. Seven gene symbols were duplicated, so the normalized counts of these
genes were added to each other. Those genes with at least 400 counts in the 40 analyzed
samples were selected. Data was log2 transformed and those genes with more than 50% of
zeroes were removed. Finally, missing values imputation according to a normal distribution
was performed using Perseus.

4.6. Network Construction and Functional Node Activities

Functional networks were built using probabilistic graphical models (PGM) and ex-
pression data without other a priori information, as previously described [9,10], using
grapHD [42] and R environment. PGMs with high-dimensionality that minimize Bayesian
Information Criterion (BIC) were used. These PGMs are based on two sequential steps:
first, the spanning tree with the maximum likelihood is established, and, second, a for-
ward search for adding edges that minimizes BIC and preserve graph decomposability is
done [43]. With the aim of establish a functional structure, the networks obtained from
PGMs were split into several branches and gene ontology analyses were made in order
to determine the main function of each branch. Gene ontology analyses were performed
with DAVID webtool using “Homo sapiens” as background and GOTERM-FAT, KEGG and
Biocarta categories.

To perform this analysis, 2000 more variable genes according to their standard devia-
tion (SD) from TCGA cohort were used. Then, functional node activities were calculated by
the mean expression of genes/proteins of each node related with its main function.

4.7. Biological Informative Layer Analyses

In order to characterize groups in TCGA melanoma tumors, sparse k-means and
Consensus Cluster algorithm (CCA) were used as previously shown [11,12]. Briefly, sparse
K-means was used to select and weight variables based on their relevance in sample
classification [44], followed by a Consensus Clustering algorithm (CCA) analysis, that
provides an optimum number of clusters for each classification [45]. First, sparse k-means
identified a set of genes that are relevant to classify the tumors, and, then, CCA established
the optimum number of groups in which the population should be divided.

To explore the existence of different informative layers, sparse k-means and CCA were
performed successive times. After establishing relevant genes for one classification, these
genes were removed from the dataset and a sparse k-means and CCA were done again
using the remaining genes. The method allows to identify different layers of information
and establish different classifications based on various features. Gene ontology analyses
were used to establish the type of information provided by each layer.

Hierarchical cluster (HCL) was used to evaluate differences in these classifications.
In the case of immune layers, established classifications seemed to be equivalent to each
other. On the contrary, layers containing molecular information showed non overlapping
clusters, providing complementary information. So, we considered separately the immune
information and the other molecular layers. A CCA including all genes for molecular layers
was performed, resulting in a definitive classification based on molecular information.

Samples from the GEM melanoma cohort were evaluated for each classification de-
fined in the TCGA cohort, using the genes selected by sparse k-means and a new CCA for
each classification.

4.8. Statistical Analyses

Statistical analyses were performed in GraphPad Prism v6. Differences in functional
node activities between groups were evaluated using Mann-Whitney and Kruskal-Wallis
test. Survival analyses were done using a Kaplan Meier test. Cytoscape software was used
for network visualization Hierarchical clusters and Significance Analysis of Microarrays
(SAM) was done using MeV. SAM identified those genes differentially expressed between
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predefined groups by a t test corrected by the number of samples [46]. All p-values were
two sided and p < 0.05 was considered statistically significant.

5. Conclusions

In conclusion, we established that the immune information was independent from
tumor molecular features in melanomas included in the TCGA cohort. An immune and a
molecular classification (based on melanogenesis, adhesion and epidermis development)
of these tumors was established. Remarkably, the immune classification predicted response
to immunotherapy in a cohort of patients with advanced melanoma treated with PD-1
inhibitors. This immune signature could be used by the clinicians to identify patients who
will respond to immunotherapy.
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