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Abstract: The role of lipids is essential in any phase of the atherosclerotic process, which is considered
a chronic lipid-related and inflammatory condition. The traditional lipid profile (including the
evaluation of total cholesterol, triglycerides, high-density lipoprotein, and low-density lipoprotein) is
a well-established tool to assess the risk of atherosclerosis and as such has been widely used as a pillar
of cardiovascular disease prevention and as a target of pharmacological treatments in clinical practice
over the last decades. However, other non-traditional lipids have emerged as possible alternative
predictors of cardiometabolic risk in addition to traditional single or panel lipids, as they better reflect
the overall interaction between lipid/lipoprotein fractions. Therefore, this review deals with the
lipid involvement characterizing the pathophysiology of atherosclerosis, discussing some recently
proposed non-traditional lipid indices and, in the light of available knowledge, their actual potential
as new additive tools to better stratify cardiovascular risk in patients with hyperlipidemia as well as
possible therapeutic targets in the clinical practice.
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1. Introduction

Coronary artery disease (CAD), the main clinical manifestation of atherosclerosis, still
represents the main cause of mortality and morbidity in both sexes all over the world [1].
Nonetheless, in the course of atherosclerosis, not only does ischemic heart disease de-
velop but also cerebrovascular disease and peripheral arterial disease [2]. Moreover, it
is worth noting that endovascular procedures play a very important role in the treat-
ment of atherosclerotic diseases, but the process of restenosis limits their effectiveness and
contributes to the need for re-intervention [3,4].

Long considered a degenerative disease mainly determined by a passive accumulation
of lipids, atherosclerosis has been subsequently demonstrated as an inflammatory disease
characterized by lipid accumulation, chronic low-grade inflammation, and endothelial dys-
function and involving oxidative modified lipoprotein infiltration, immune cell activation,
and extracellular matrix changes, with evidence of lipids as key players and/or regula-
tors of these events [5–8]. In particular, the traditional lipid profile (total cholesterol—TC,
triglycerides—TG, high-density lipoprotein cholesterol—HDL, and low-density lipopro-
tein cholesterol—LDL) has always been considered an essential tool for the assessment
of cardiovascular disease (CVD) prevention and treatment in clinical practice. However,
other non-traditional lipids and indices have been proposed, some of them showing an
even greater predictive role for CVD and ischemic stroke than traditional single lipid
parameters [9,10].

Surely, the role of these non-traditional lipid tools in relation to atherosclerosis and
risk assessment still needs to be further evaluated, in particular, to assess their routine
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applicability in clinical practice and optimal cut-offs and identify patients that would benefit
most from their use. This review briefly describes the lipid involvement in the cellular and
molecular mechanisms characterizing the pathophysiology of all atherosclerosis phases.
Furthermore, the purpose of the present review is to discuss some recently proposed non-
traditional lipid indices simply calculated using the traditional lipid profile; in the light of
available knowledge, the state of the art before their introduction into clinical practice for
the routine management and prevention of atherosclerosis; and what aspects still need to
be further improved in this field.

2. Key Role of Lipids in Atherosclerosis

The two main processes involved in the pathogenesis of atherosclerosis include choles-
terol deposition and chronic inflammation [11]. In particular, according to the lipid theory
of atherosclerosis, lipid peroxidation and the oxidation of LDL trigger initiation and further
progression of atherosclerosis [11,12]. The main transporter of cholesterol to target cells
is LDL, a heterogeneous class of lipoprotein particles consisting of a hydrophobic core
containing TG and cholesterol esters in a hydrophilic surface membrane of phospholipids,
free cholesterol, and apolipoproteins (principally ApoB-100), the latter mediating the bind-
ing of LDL particles to specific cell-surface receptors [13,14]. Modified LDL appear to
be a major causative agent in the atherosclerotic process by stimulating endothelial cells
(EC) to produce inflammatory markers with consequent cytotoxic effects; inhibiting nitric
oxide (NO)-induced vasodilatation; and promoting the recruitment of monocytes to the
vessels, macrophage progression to foam cells, and the migration and proliferation of
vascular smooth muscle cells (VSMC) [15–17] (Table 1). Although oxidized low-density
lipoproteins (ox-LDL) have long been considered the only type of modified LDL crucial for
atherogenesis, at least three modified LDL forms (i.e., small dense, electronegative, and de-
sialylated LDL), have been detected in the bloodstreams of atherosclerosis patients [18,19].
These molecules act as factors able to stimulate LDL aggregation, LDL association with the
extracellular matrix components, and the formation of LDL-containing immune complexes,
and all of them are susceptible to oxidation by resident vascular cells [13,20–22]. In particu-
lar, the small dense subfraction is characterized by an enhanced atherogenicity due to its
increased susceptibility to modifications and its high binding affinity to the proteoglycans
contained in the intima layer of the arterial wall, and desialylated LDL exhibit enhanced
uptake and a low degradation rate once internalized, while electronegative LDL show a
high propensity for self-association [19,23].

Table 1. Summary of the critical molecules and events characterizing the main phases in the onset
and development of the atherosclerotic plaques.

Endothelial Dysfunction Fatty Streak Fibrous Plaque Vulnerable Plaque Plaque Erosion, Rupture,
Thrombosis

- Endothelial activation
- Upregulation of adhesion
molecules
- Increased vascular
permeability
- Monocyte and other cell
recruitment and infiltration
- Impaired vasodilation
(reduced NO)
- ROS and inflammatory
mediators
- LDL intake/accumulation in
the arterial intima

- VSMC proliferation
- Lipid accumulation
- Foam cell development
- T lymphocyte infiltration
- Platelet aggregation
- Macrophage activation
- Inflammation

- Deposition of extracellular
connective tissue matrix
- Fibrous cap formation
- Lipid-laden foam cell core
containing lipid necrotic
debris and calcium
- Vascular remodeling
- Luminal narrowing
- Flow abnormalities
- Reduced oxygen supply
inflammatory mediated

- Proteolytic enzymes
(MMPs)
- Intraplaque hemorrhage
- Thinning of the fibrous cap
- Microcalcification
- Necrotic-rich lipid core
(apoptosis and necrosis)
- Inflammatory mediators

- Platelet aggregation
- Fibrin polymerization
- Inflammatory coagulation
and proteolysis mediators
- Thrombosis
- Acute coronary syndrome

Calcific plaque
Dense calcification deposition

Abbreviations: LDL—low-density lipoprotein; MMPs—metalloproteinases; NO—nitric oxide; ROS—reactive
oxygen species; VSMC—vascular smooth muscle cells.

In the initiation of the atherosclerotic process, modified lipoproteins accumulated in the
intima activate the endothelium [20]. Furthermore, the reduced expression of endothelial
NO synthase and superoxide dismutase, which are responsible for maintaining an effective
barrier and reducing oxidative stress, respectively, affects endothelial barrier integrity and
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determines the retention of atherogenic LDL. Transcriptional activation of nuclear factor
kappa B promotes the production of cytokines (e.g., tumor necrosis factor-alpha—TNF-
α; interleukin–IL-1, IL-4, IL-6; interferon gamma—IFN-γ), which, in turn, induces the
expression of monocytes and leukocyte adhesion molecules (such as vascular cell adhesion
molecule-1, intercellular adhesion molecule-1, and E-selectin on the endothelial surface) and
leads to the migration of monocytes and lymphocytes into the inner arterial wall [11,24,25].
Monocytes differentiate into macrophages [25] that internalize excess lipids derived from
modified LDL, resulting in the intracellular accumulation of cholesterol esters, generation
of foam cells (the hallmark of atherosclerotic lesion), and the aggregation of foam cells to
form fatty streaks, the earliest grossly recognizable atherosclerotic lesions [11,22] (Table 1).

Although macrophages represent the major infiltrating cells, adaptive immunity,
which is modulated by T and B cells, and some effector cells such as mast cells and
eosinophils play a central role in the advancement and expansion of atherosclerosis through
the secretion of cytokines (IL-6, IFN-γ) and high-affinity IgA, IgE, and IgG antibodies [26].
Monocytes are also capable of differentiating into dendritic cells, a type of leukocyte that
contain an elevated content of LDL-receptor 1 (LOX-1) and significantly contribute to
ox-LDL uptake [27,28]. VSMC are also implicated in the development of the atheroscle-
rotic plaque and in the transition from a fatty streak to a fibrous fatty lesion [22,29]. Af-
ter their migration from the medial to the intima vascular layers, they proliferate in re-
sponse to platelet-derived growth factor and basic fibroblast growth factor secreted by
EC and macrophages, respectively, and produce extracellular matrix molecules such as
collagen and elastin, which form the atherosclerotic plaque cap (Table 1) [22,29,30]. The
ox-LDL–LOX-1 interaction, in addition to supporting the migration and proliferation of
VSMC, may also promote their apoptosis and the release of matrix-degrading enzymes (i.e.,
metalloproteinases—MMPs 1 and 9) [22,27]. VSMC migration leads to the generation of
the atheromatous fibrous caps that enclose a lipid-rich necrotic core, and their thickness,
cellularity, matrix composition, and collagen content determine the characteristics and
vulnerability of the atherosclerotic plaque (Table 1) [31]. Instead, calcification may occur
in advanced plaque progression lesions, more frequently found in elderly subjects, where
microcalcifications characterize a phase of the unstable plaque, while strong, dense calci-
fication generally reflects a more stable plaque (Table 1) [31,32]. During the progression
of plaque development, macrophages and T lymphocytes produce proteolytic enzymes,
which may induce cup rupture, a coagulation process, and blood clot and lead to clinical
events (Table 1) [33,34].

As endothelial dysfunction takes part as a critical step in atherosclerosis onset and
development, it is worth mentioning that flow-mediated dilation is the most important
method for endothelial dysfunction assessment in the literature as well as in clinical
practice, although not without limitations (e.g., poor standardization and requirement of
well-trained, experienced operators, aspects which limit reproducibility) [35,36].

Among biomarkers, in view of the pivotal role of lipids in the pathogenesis and pro-
gression of the atheromatous plaque, the traditional lipid panel (including TC, TG, HDL,
and LDL) has long been identified as useful for assessing the risk factor of atherosclerosis
and has been widely used as a pillar for cardiovascular (CV) disease prevention and treat-
ment in clinical practice over the last decades [8,37–39]. However, other non-traditional
lipids have emerged as possible alternative predictors of cardiometabolic risk in addi-
tion to traditional single or panel lipids, better reflecting the overall interaction between
lipid/lipoprotein fractions [40–42].

3. Oxidized LDL in Assessing CV Risk and Non-Invasive Lipid Indices

Atherogenic dyslipidemia is characterized by high serum TG, low concentrations of
HDL, and high concentrations of small dense LDL. In particular, the relationship between
higher serum levels of LDL and an increased risk of CV disease is the basis for the manage-
ment of dyslipidemia in the current guidelines, which recommended LDL as the primary
target of CV risk prevention [43]. However, although CV risk is substantially reduced in



Int. J. Mol. Sci. 2023, 24, 75 4 of 18

patients by the LDL-lowering effects of statins, these individuals still have a residual CV
risk, as some subjects who reach their LDL target may be subject to the adverse effects of
other biomarkers of the lipoprotein-lipid profile [44]. Accordingly, the reduction of CV risk
could be enhanced by combination therapy that aims to decrease elevated LDL and other
lipids (for now, mainly TG).

For this reason, other non-traditional lipid indices have been proposed and evaluated
and could be used as possible additive or alternative predictors of cardiometabolic risk in
addition to the traditional single or panel of traditional lipids in the routine management
of dyslipidemia and for the prevention of atherosclerosis and its complications in clinical
practice (in order to further stratify patients and better identify those at high risk). Among
these biomarkers, one interesting parameter because of its key role in atherosclerosis
onset and development is ox-LDL. The generation of these atherogenic particles derived
through lipoprotein oxidation under oxidative stress is one of the earliest events in the
pathogenesis of atherosclerosis. Ox-LDL promote a number of adverse events that mediate
endothelium damage and mark the course of the atherosclerotic plaque up to its rupture
and acute clinical events, including the following: (1) adherence and accumulation of
monocytes and adhesion and aggregation of platelets; (2) release of chemokines and growth
factors; (3) oxidative stress and reactive oxygen species production; (4) impairment of NO
release and function; (5) endoplasmic reticulum stress; (6) apoptosis; and (7) thrombus
rupture [45–47].

In addition to the large amount of basic research evidencing the key role of ox-LDL
in the pathogenesis of atherosclerosis, a number of studies and a relatively recent meta-
analysis (including three nested case-control studies, one case-cohort study, five hospital-
based cohort studies, and three community-based cohort studies) indicated that increased
levels of ox-LDL are associated with CV events in studies, while another meta-analysis
documented the beneficial effects of statin on circulating ox-LDL levels [48–50]. Ox-LDL
was found to have higher discriminatory power to predict cardiometabolic risk than
LDL [51–53].

The evaluation of antibodies to ox-LDL may also represent an additive tool to improve
CV risk stratification and the reclassification of patients within risk categories, and a consis-
tent amount of data on the clinical correlates of anti-ox-LDL antibodies is available [54].

Nonetheless, as ox-LDL is a mixture of heterogeneously modified particles, several
ELISA assays are available, the differential use of which may introduce high levels of
heterogeneity between the obtained results, making the comparison of data difficult. More-
over, the oxidation of LDL can be affected by a number of different factors (e.g., obesity,
triglycerides, systemic inflammation, LDL particle size, diet, exercise, smoking habit, and
pharmacological therapy), which could be considered in the future prior to the introduc-
tion of ox-LDL in routine patient assessments [50]. On the other hand, performing any
adjunctive test requires qualified staff and additive time and costs.

Interestingly, nitrated lipoproteins, produced by the nitration of the tyrosyl residues of
apolipoproteins by myeloperoxidase, are emerging as a potential lipid biomarker associated
with cardiovascular risk, with more available data on nitrated HDL than on nitrated LDL
particles at present [55]. In this context, the nitration of HDL particles appears related to a
decrease in the activity of caspase-3, paraoxonase-1, and cholesterol transport via ABCA1,
which decrease the cardiovascular benefits characterizing the HDL particles [55].

Moreover, some non-traditional lipid indices, i.e., biomarkers easily calculated us-
ing the traditional lipid panel at no cost (practically always available as a part of the
patient screening panel) such as non-HDL cholesterol (non-HDL), Castelli risk index I
(CRI-I), Castelli risk index II (CRI-II), triglyceride-rich lipoprotein cholesterol (TRL-C), and
atherogenic index of plasma (AIP), have been proposed and discussed beyond the new
alternative lipid parameters as potential additive tools in assessing CV risk in patients
with hyperlipidemia.
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3.1. Non-HDL Cholesterol

Non-HDL is a biomarker reflecting the amount of cholesterol content within athero-
genic lipoproteins, which have a critical role in atherosclerosis risk through multiple
mechanisms. In particular, these effects may be mediated by the level of ApoB-containing
particles, and/or the vascular deposition of cholesterol ester-enriched smaller TRL elic-
iting pro-inflammatory/thrombotic events, and/or their association with dysfunctional
proatherogenic HDL particles [56–59]. This lipid parameter may be easily calculated by
subtracting the HDL value from total plasma cholesterol and thus can be obtained from a
standard lipid panel without requiring additional time or testing costs (Table 2) [60].

Table 2. Calculated lipid indices, their calculation, and suggested cut-offs.

Index (Acronym) Formula Threshold Values (mg/dL)

Non-HDL Cholesterol (Non-HDL-C) Total cholesterol (mg/dL)–High-density
lipoproteins (mg/dL) <130

Castelli risk index 1 (CRI-I) Total cholesterol (mg/dL)/High-density
lipoproteins (mg/dL) Males: <5; females <4.5

Castelli risk index 2 (CRI-II) Low-density lipoproteins
(mg/dL)/High-density lipoproteins (mg/dL) Males: <3.5; females <3

Triglyceride-Rich Lipoprotein
Cholesterol (TRL-C) Non-HDL–Low-density lipoproteins (mg/dL) <30

Atherogenic index of plasma (AIP) Log (Triglycerides (mg/dL)/High-density
lipoproteins (mg/dL) ≤0.11

Epidemiological studies have documented the relationship between higher non-HDL
and increased ischemic risk [61,62]. Accordingly, very recent data have suggested that
non-HDL may serve as a reliable predictor of recurrent ischemic stroke and all-cause death
at one-year follow-up in patients with acute ischemic stroke [63]. Previous results showed
that non-HDL concentration is significantly associated with an increased risk of cardiac
death in diabetic patients in the Third National Health and Nutrition Examination Survey
(n = 1,122,299 deaths; median follow-up 12.4 years) [64]. In particular, a meta-analysis
including seven studies (448,732 subjects belonging to the general population) evidenced
an increased CAD risk (more pronounced in men than in women) for individuals in the
highest non-HDL category [65]. Moreover, the Framingham Offspring Study indicated that
elevated levels of non-HDL are related to a higher risk of mortality [66]. In the Framing-
ham Offspring Cohort, subjects who had a low 10-year CV risk and exhibited non-HDL
≥160 mg/dL over an 11- to 20-year period had a stronger association with CV events (CAD,
myocardial infarction—MI, angina, death) compared with non–HDL below that threshold
or with a shorter time period of exposure to non-HDL levels above 160 mg/dL [67]. These
results were confirmed by another meta-analysis evaluating 11,057 subjects with CAD (six
trials, follow-up range from 18 to 148 months). The authors reported that increased levels
of non-HDL are significantly associated with an increased risk of mortality, indicating that
this biomarker may represent an easy and reliable tool for assessing adverse outcomes in
the general population as well as in patients with CV disease [68]. Furthermore, subjects
with high non-HDL levels had a higher CV risk independently of their LDL levels, and
non-HDL was proven superior in its predictive value of major CV events when compared
to LDL [53,65,69]. Moreover, recent results reported that non-HDL and TC-to-HDL ratio
are significantly correlated to arterial stiffness levels, even when levels of LDL are low
(<70 mg/dL), suggesting that these biomarkers are related to residual CV risk [70]. Consis-
tently, non-HDL and TC/HDL (CRI-I) have also shown predictive value for the residual risk
of acute MI/sudden death in men with LDL levels <120 mg/dL [71]. Interestingly, the EPIC
(European Prospective Investigation Into Cancer and Nutrition) study reported that even in
the group of subjects with LDL <100 mg/dL, participants with high non–HDL levels, high
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TG levels, or a high TC-to-HDL ratio had an increased risk for CV disease [40]. Moreover,
in the Framingham Study cohort, non-HDL was a stronger predictor of CV risk than LDL,
even when the analysis was repeated considering TG levels [72]. In fact, non-HDL, along
with ApoB (a component of several types of lipoproteins, such as the blood transporters of
cholesterol very low density lipoproteins—VLDL, intermediate-density lipoprotein—IDL,
and LDL), are indicated as more reliable biomarkers than LDL in hypertriglyceridemic
individuals and in subjects with a very low LDL concentration [73].

As increasing results have suggested that non-HDL (and ApoB) are better than LDL
at predicting CV risk, these biomarkers have been proposed as secondary targets in some
treatment guidelines [74]. At present, some pharmacological agents seem effectively reliable
for lowering the circulating levels of these biomarkers, although their capacity to reduce
residual CV risk is still under evaluation in several ongoing clinical trials [75,76].

LDL, non-HDL, and ApoB appear generally highly correlated, therefore, they provide
similar information on CV risk [77]. Nonetheless, in certain groups of subjects (e.g., patients
with elevated TG levels, type 2 diabetes—T2D, obesity, or very low LDL levels), the value
of LDL (obtained through calculation or directly measured) may underestimate the total
concentration of cholesterol carried by LDL and the total concentration of ApoB-containing
lipoproteins, thereby underestimating the risk of CV disease, whereas the measurement
of non-HDL (or ApoB) is advised [77]. On the other hand, non-HDL and ApoB, although
highly correlated, do not provide the same information, as non-HDL does not give any
indication of the number of particles, which is instead reflected by ApoB because one ApoB
molecule is carried on the surface of each atherogenic lipid particle [78].

Findings from intervention trials have revealed that any strategy that lowers the non-
HDL concentration in parallel also reduces the incidence of ischemic heart disease [61,62,79].
In particular, a meta-analysis focusing on the relationship between non-HDL reduction
and CAD risk showed that most lipid-modifying drugs used as monotherapy (e.g., statins,
resins, fibrates, or niacin) retain a 1:1 relationship, which means that for each 1% lowering
of non-HDL, CAD risk decreases by 1% [80]. In this context, there are interesting data
regarding rosuvastatin at moderate- and high-intensity doses and simvastatin and ator-
vastatin at high-intensity doses (for the prevention of CAD in people with T2D), recently
reported as effective in lowering non-HDL [81].

The European ESC/EAS 2019 guidelines for the management of dyslipidemia advo-
cate non-HDL evaluation for risk assessment, particularly in people with high TG levels,
T2D, obesity, or very low LDL levels, with a Class I recommendation (recommended or
indicated), Level C (consensus of opinion of the experts and/or small studies, retrospective
studies, registries), and set non-HDL target of <2.2 mmol/L (<85 mg/dL), <2.6 mmol/L
(<100 mg/dL), and <3.4 mmol/L (<130 mg/dL) in people with very high, high, and mod-
erate CV risk, respectively (Table 2) [77]). Moreover, non-HDL is endorsed by the updated
guidelines of the European Society of Cardiology on CV disease prevention in clinical prac-
tice (with representatives of the European Society of Cardiology and 12 medical societies
and the special contribution of the European Association of Preventive Cardiology) [37]. Al-
though LDL remains the primary treatment target of dyslipidemia, these clinical guidelines
also focus on modifications in TRL, such as non-HDL and ApoB, whose evaluation is highly
recommended [37]. Specifically, non-HDL is included as a factor for the Systemic Coronary
Risk Estimation 2 (SCORE2, the algorithm used to estimate the 10-year risk of death from
CVD) and SCORE2-Older Persons (SCORE2-OP, which estimates an individual’s 10-year
risk of fatal and non-fatal CV events—MI, stroke—in apparently healthy subjects between
40–69 years with untreated or stable risk factors for several years) risk algorithms.

Data from 2516 participants of the Framingham Offspring Study (25–40 years of age,
free of CV disease and T2D, mean follow-up 32.6 years) showed that the trend of lipid
concentration remained generally stable over the 30-year life course, whereas the mean
non-HDL evaluated in young adults was highly predictive of the values observed later
in life [82]. Consequently, each subject could be classified as high or low non-HDL on the
basis of two measurements collected between 25 and 40 years of age. Interestingly, 80%
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of those with elevated non-HDL (≥160 mg/dL) at the first two samplings remained in
the high group over time (25 years), while 88% of those with low non-HDL (<130 mg/dL)
remained in the low group (non-HDL below 160 mg/dL) [82]. The risk of CV disease in
individuals with high non-HDL in young adulthood was 22.6% vs. a risk of 6.4% in subjects
in the low non-HDL group [82]. Hence, lipid monitoring before 40 years of age could help
to identify the individuals most exposed to elevated lipid levels and with a long-term high
CV risk, opening an opportunity for potential more aggressive and targeted preventive
lipid-lowering strategies during early midlife.

These findings were confirmed by other research in which non-HDL levels were mea-
sured at three life stages, adolescence (2–18 years), young adulthood (21–30 years), and
mid-adulthood (33–45 years), indicating that all life stages are associated with coronary
atherosclerosis in mid-adulthood (with non-HDL in adolescents having the highest asso-
ciation with the presence of CAD in mid-adulthood) with important implications for CV
prevention [83].

3.2. Castelli Index I and II

CRI-I, obtained by calculating the TC-to-HDL ratio, has a close relationship with CV
risk in both sexes [84]. Optimal values of CRI-I are defined as <5 and <4.5 for men and
women, respectively (Table 2). In particular, subjects with TC/HDL greater than or equal to
4.5 had a higher CV risk in the Framingham Study [65]. The Castelli risk index II (CRI-II),
demonstrated as a good indicator of CV risk, is calculated as the LDL-to-HDL ratio, with
ideal values of <3.5 and 3 in men and women, respectively (Table 2) [84,85]. Therefore, CV
risk is higher as the ratios increase, reflecting the imbalance between the cholesterol carried
by atherogenic (numerator) and protective (denominator) lipoproteins for an increase in
the proatherogenic part expressed in the numerator, a decrease in the anti-atherosclerotic
component reported in the denominator, or both trends. The high correlation between
the two Castelli indices is probably because most of the cholesterol is contained in LDL,
thus TC and LDL are closely related. Likewise, changes in both indices are shown to be
better predictors for CV risk reduction when compared to changes in individual lipids or
lipoproteins [85].

As suggested in a population-based prospective study from Norway comprising
33,859 individuals, with 2746 individuals diagnosed with MI during follow-up, CRI-I
is a strong independent predictor of MI in men [86]. Previously, in the older Rancho
Bernardo cohort study (1386 women and 1094 men), only CRI-I was able to predict coronary
heart disease and CV disease deaths in women independent of estrogen use and other
risk factors [87]. The ATTICA study, conducted during 2001–2012 on 1514 men and
1528 women, revealed that CRI-I has a high prognostic significance even in the general
population, although this association is stronger in women, thus representing a simple
tool for assessing individual long-term CV risk and, therefore, timely interventions [88].
Recently, we compared indices of cardiometabolic risk in overweight/obese workers by
sex, observing that CRI-I and CRI-II were significantly higher in males than in females.
Additionally, both biomarkers correlated with waist circumference, body mass index (BMI),
blood pressure, and fasting glucose, although more frequently in females, while among
males only homocysteine was correlated with CRI-I. These sex-related differences in the
association between CV risk factors and insulin resistance (IR)/cardiometabolic indices
could be a potential pathophysiological determinant of the observed epidemiological sex-
related differences in cardiometabolic diseases and deserve further study in the future [89].

Notably, in subjects who present triglyceridemia over 300 mg/dL (3.36 mmol/L),
the calculation of LDL is not reliable, and the use of TC/HDL is more adequate. As
an example, in the Quebec Cardiovascular Study, CRI-I and CRI-II were calculated to
understand which index best predicts the risk of ischemic heart disease in overweight
hyperinsulinemic patients with high-TG/low-HDL dyslipidemia. The study focused on
the serum components of the two indices because there is more cholesterol in the VLDL
fraction in individuals with higher TG concentrations, and CRI-II may underestimate
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the magnitude of the dyslipidemic state in these patients [90]. Therefore, although both
LDL/HDL and TC/HDL significantly correlate with the characteristics of the atherogenic
metabolic status related to the IR syndrome (elevated levels of insulin, ApoB, and small
dense LDL particles), TC/HDL appears to work better in these patients.

CRI-I and CRI-II were also evaluated in 120 Indian subjects divided into two groups:
the case group included 60 angiographically confirmed patients with CAD, and the control
group consisted of 60 age- and sex-matched healthy volunteers. Serum TC and LDL did
not show any significant difference between the two groups; in particular, serum TC was
around 200 mg/dL in 74% of patients, and LDL was below 130 mg/dL in 86% of patients
with CAD. Although the serum values of the individual components of the indices were
not different in the two groups, CRI-I and CRI-II significantly differed between the patients
with CAD and the healthy subjects, helping to stratify patients and identify the subjects
with dyslipidemia who are at CV risk [91].

In a previous study that explored the relationship between an elevated CRI-I value (≥4)
and proximal CAD in a group of individuals undergoing multislice computed tomography,
subjects with CRI-I ≥ 4 compared to those with a ratio <4 had a higher prevalence of
proximal plaque (62% vs. 48%) and significant CAD (19% vs. 9%). In a multivariate logistic
regression analysis, only age, sex, and CRI-I ≥ 4 were associated with significant CAD
and proximal plaque, and patients with CRI-I ≥ 4 had a higher frequency of obstructive
CAD and atherosclerotic plaque, despite statin use [92]. Therefore, in view of the lack
of costs and wide availability for adult subjects, the authors proposed the measurement
of the TC/HDL ratio as a screening biomarker to identify individuals who might benefit
from more aggressive preventive therapies (e.g., lifestyle changes and/or lipid-lowering
therapy) when the index is elevated.

3.3. Triglyceride-Rich Lipoprotein Cholesterol

TRL-C is obtained by subtracting HDL and LDL from TC, an alternative and simple
way to calculate the so-called remnant cholesterol (remnant-C) indicating the cholesterol
component of TG-rich lipoproteins (Table 2). This biomarker has been associated with
cardiometabolic risk [93]. Specifically, circulating levels of TG and cholesterol transported
in TRL can predict CV events, with TRL-C ≥ 30 mg/dL identifying subjects at a higher
CV risk [94]. Accordingly, the association of TG and remnant cholesterol with major
adverse cardiac events—MACEs (MI, stroke, or CV death)—was evaluated in a cohort
of older individuals at high CV risk in the PREDIMED study, a randomized controlled
trial that examined the effects of the Mediterranean diet compared with a low-fat diet
for the primary prevention of CV disease in high-risk subjects. TRL-C was distributed in
the same manner between intervention groups (Mediterranean diet enriched with extra-
virgin olive oil and Mediterranean diet enriched with nuts) and between sexes and was
increased with increasing BMI in subjects with diabetes compared with those without
diabetes. Furthermore, regardless of LDL concentration, TRL-C ≥ 30 mg/dL was able
to differentiate subjects at a higher risk of MACEs compared with TRL-C at a lower
concentration, indicating TRL-C as a useful biomarker for assessing residual lipid risk for
MACEs in subjects at high CV risk but who had no previous CV disease [94]. Previously,
within two diverse, prospective, longitudinal observational US cohorts including nearly
5000 participants overall, TRL-C was shown to be associated with a 23% increased risk of
incident CAD for the combined population during an 8-year follow-up, after adjustment
for CV risk factors. Nonetheless, this association was attenuated after adjustment for
HDL and LDL in the model [95]. TRL-C was also evaluated in patients with CAD and
LDL <100 mg/dL following lipid-lowering therapy. When a stepwise multivariate Cox
proportional hazard analysis was conducted, TRL-C was a significant predictor of CV events
after adjustment for TG, non-HDL, and total ApoB, resulting in a superior performance to
non-HDL in predicting CV events in CAD patients with LDL levels <100 mg/dL who are
undergoing lipid-lowering treatment. Thus, this biomarker might serve as a key target to
reduce residual risk after LDL goals are reached through lipid-lowering therapy [96].
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By examining 97,962 participants from the Copenhagen City Heart Study and the
Copenhagen General Population Study combined, which were followed prospectively
for up to 22 years, higher levels of TRL-C and LDL resulted in equal associations with
increased risk of CAD and MI; however, only TRL-C concentration was associated with
increased all-cause mortality risk, with hazard ratios ranging from 1.0 (for 19.3–38.2 mg/dL
TRL-C) to 1.6 (≥58 mg/dL TRL-C) [97]. Furthermore, increased concentrations of TRL-C
but not higher concentrations of LDL were associated with increased all-cause mortality in
5414 Danish patients diagnosed with CAD [98]. Very recently, Liu et al. (2021) assessed the
baseline high-sensitivity C-reactive protein (hsCRP) in 6723 CAD patients with recurrent
CV events and TG <2.3 mmol/L to explore the association between TRL-C and recurrent
cardiovascular events (RCVEs) and whether this relationship may depend on systemic
inflammation in statin-treated patients with CAD and with normal TG levels [99]. The
risk of RCVEs was investigated across quartiles of baseline TRL-C and stratified according
to the median of hsCRP. The authors reported that the highest quartile of TRL-C was
significantly associated with a risk of RCVEs even after stratification of hsCRP, whereas
adjusting for age, sex, and LDL levels did not affect this association, evidencing that this
biomarker could be a reliable marker of risk stratification and a treatment target in this
patient population [99].

Overall, the growing body of observational evidence suggests that an increased concen-
tration of remnant cholesterol may cause atherosclerosis, similar to increased LDL, because
of its capability to penetrate the atrial wall and to be retained within the arterial intima,
ultimately leading to the accumulation of cholesterol and development of atherosclerotic
plaque [100]. In addition, TG-rich lipoproteins may both upregulate proinflammatory cy-
tokines, adhesion molecules, and prothrombotic factors in ECs and enhance the recruitment
and activation of monocytes, promoting the development of foam cells [93,101,102].

3.4. Atherogenic Index of Plasma

The index AIP, calculated as the logarithmically transformed ratio of molar concentra-
tions of TG to HDL, not only represents a reliable predictor of cardiometabolic risk, reflect-
ing the relationship between protective and atherogenic lipoproteins, but also represents
a strong predictor of atherosclerosis and CAD [103,104]. In particular, AIP values < 0.11
are associated with a low CV risk (Table 2), and recent studies have indicated that AIP is
progressively emerging as a powerful and reliable predictor of cardiometabolic risk in the
general population, e.g., increased risk for developing CVD in postmenopausal women;
independent risk factor for CAD in subjects undergoing coronary angiography; and sig-
nificantly associated with MetS, hypertension and T2D, and adverse prognosis in patients
with acute MI [103–106]. Indeed, a cross-sectional study performed on a total number of
194 women in the age group from 30 to 60 years showed that AIP is positively and signifi-
cantly correlated with age, BMI, systolic blood pressure, and diastolic blood pressure [104].
In a hospital-based case-control study conducted in China on 2936 CAD patients and 2451
controls, AIP was positively and significantly correlated with TC, TG, LDL, non-HDL,
TC/HDL, and LDL/HDL, and the most strongly lipid parameter associated with CAD
in the univariate analysis and an independent determinant for CAD in the multivariate
analysis [105]. Shin et al. (2022) showed that among 1292 adult men who participated
in the Korea National Health and Nutrition Examination Survey, AIP increased with the
increase in obesity, blood glucose, and blood lipid profile, suggesting that it could predict
cardiometabolic risk [107]. Moreover, Li et al. (2018) reported that in 2523 patients with T2D
without lipid-lowering treatments, AIP was independently related to waist circumference,
HOMA-IR, fasting plasma glucose, systolic blood pressure, and uric acid [108]. These
findings were confirmed in a 9-year longitudinal study conducted with Taiwanese citizens
that showed that AIP was able to identify the high-risk subjects of both genders, especially
in the middle-aged group in subjects having MetS, hypertension, and T2D [102]. On the
other hand, we recently reported that in overweight/obese middle-aged subjects, AIP was
significantly higher in males than in females. In addition, AIP was correlated with waist



Int. J. Mol. Sci. 2023, 24, 75 10 of 18

circumference, BMI, blood pressure, fasting glucose, CRP, and fibrinogen in females but
only with homocysteine in males, suggesting the possibility of a different relationship with
cardiometabolic factors among the two sexes [89].

The prognosis of T2D individuals who underwent percutaneous coronary intervention
was significantly worse in the presence of high levels of AIP compared to that of the low-AIP
group, and the effect of this index on prognosis was not affected by LDL [109]. According
to Zhou and co-authors (2021), AIP is not only the lipid parameter that most strongly
correlates with incident CAD in patients with T2D, but it is also best suited for the T2D
population of all the many nonconventional indices, thus providing a useful tool for the
effective prevention of CV complications in these patients [110].

Very recent studies have suggested that AIP and TC/HDL-C may represent reliable
markers of residual risk in patients with CAD or suspected CAD, even for subjects who
did not present any traditional CV risk factor [111,112].

AIP was also significantly higher in Chinese patients with acute coronary syndrome
(N = 376) compared to the control group [113]. In contrast, the incidence of all-cause mor-
tality in hospitalized MI patients was significantly higher in the low-AIP group (<0.24) than
in the high-AIP group (>0.24), with low AIP predicting all-cause mortality independently
with a significant risk ratio of 3.71 in the multivariate analysis [106]. Thus, further insights
are needed to clarify the precise relationship between this biomarker and outcomes in this
patient population.

4. Conclusions

It is universally accepted that the pathogenesis of atherosclerosis is closely related to
lipids, from LDL uptake by monocytes and macrophages and accumulation in the arterial
intima to their involvement in inflammation. Lipid-lowering therapies (e.g., statins) are
critical to prevent and manage CV disease, and the evaluation of the traditional lipid
profile (TC, TG, HDL, and LDL) remains the cornerstone diagnostic test for dyslipidemia
and its management and for CV risk assessment [77]. However, as dyslipidemia is a
dynamic field of research, increased knowledge in the lipid world is further required
to develop the best in-clinic practices. Therefore, in addition to the conventional lipid
panel, other non-traditional lipid-related biomarkers have been studied and have emerged
as being significantly correlated with cardiometabolic risk and disease, among which
biomarkers non-HDL is the most investigated and the only calculated index recognized as
an effective biomarker and is, as such, reported in different international society guidelines
(together with ApoB). For example, the 2019 ESC/EAS Guidelines for the management of
dyslipidemia recommend a non-HDL evaluation of CV risk estimation in subjects with
high TG levels, T2D, obesity, or very low LDL levels (Class I recommended or is indicated;
level of evidence C/consensus of opinion of the experts and/or small studies, retrospective
studies, registries) [77]. In particular, the residual risk among statin-treated subjects may be
reduced by the evaluation of non-HDL (or ApoB but, in this case, adjunctive costs may be
considered). Thus, the available guidelines advise the use of non-HDL-C (or ApoB) as a
secondary treatment target in high-risk or very high risk patients with mild-to-moderate
hypertriglyceridemia [77]. Interestingly, a meta-analysis (including 12 independent reports
for a total of 233,455 subjects and 22,950 events) estimated that a non-HDL-C strategy would
prevent 300,000 more events than an LDL-C strategy in the US adult cohort over a 10-year
statin treatment period [114]. Thus, a reasonable approach could be the performance of the
traditional lipid profile together with the evaluation of non-HDL, which can be calculated at
no additional cost. The main strengths and specific shortcomings of the use of non-HDL for
the evaluation of CV risk estimation in dyslipidemia are summarized in Table 3. Notably,
the evaluation of remnant-C may be more useful in some cases than non-HDL, as non-
HDL is not able to differentiate between LDL and remnant-C. Specifically, some subjects
may present a high remnant-C despite a low LDL, and thus a relatively low non-HDL, so
the interpretation of non-HDL without considering remnant-C may be misleading [115].
Nonetheless, it should be taken into account that if LDL is calculated using the Friedewald
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equation, remnant-C (corresponding to TG/2.2 in mmol/L or TG/5 in mg/dL) does not
provide any clinical information in addition to TG; different if directly measured LDL is
used in the formula.

Table 3. Specific strengths and aspects to improve in the use of non-HDL for evaluation of CV risk
estimation in dyslipidemia.

Strengths Shortcomings

Independence from TG levels Lack of distinction between remnant-C and LDL

Easily available, high throughput, and fast turnaround time Arbitrary risk cut-offs

Calculation in the nonfasting state Dependency from HDL measurement errors in hypertriglyceridemia,
which may influence the calculation of non-HDL

Inclusion of remnant-C Better identification of confounding factors, interferences

No additional cost above conventional lipid testing in terms of time
and assay Lack of familiarity for most practitioners

Additive utility beyond existing markers (residual risk)

Advised when LDL is low or TG are increased

Associations with CV risk and treatment target (risk reduction
proportional to the degree of non-HDL lowering)

Abbreviations: HDL—high-density lipoproteins; LDL—low-density lipoproteins; remnant-C—remnant choles-
terol; non-HDL—non-HDL cholesterol; TG—triglycerides.

Interestingly, increasing evidence suggests that calculated non-traditional serum lipid
parameters (i.e., TC/HDL beyond non-HDL) may better predict CV risk when compared
to LDL, and they could serve as auxiliary tools to assess residual risk in cardiometabolic
patients [9,40,44,116,117].

In any case, the role of these non-traditional calculated lipid tools in relation to
atherosclerosis and risk assessment still needs to be further evaluated, in particular, to
assess their routine applicability in clinical practice and optimal cut-offs and identify the
patients that would benefit the most from their use.

Notably, these indices, however, may not work for all cases. One example can be
represented by carriers of Apolipoprotein A-I (Milano) or (Paris) (ApoA-I[Milano] and
ApoA-I[Paris]), rare cysteine ApoA-I variants that lead to HDL deficiency despite reduced
CV risk, a status that makes these indices inapplicable to these patients [118,119]. Addi-
tionally, TRL-C is easily obtainable from available laboratory parameters, except for severe
hypertriglyceridemia forms where the estimation of LDL using the Friedewald formula
is inapplicable.

Therefore, in general, for non-traditional calculated lipids, the main advantages in-
clude the fact that their values can be easily derived from a few lipid biomarkers routinely
tested in the overall patient evaluation and, as such, are universally available without
any supplemental costs for sanitary systems (Figure 1). However, it can also be observed
that reference intervals, decision values, and cut-offs for non-traditional lipid indices are
not univocally defined. As age and sex can represent important confounding factors, the
possibility to determine the reliability of specific cut-offs according to these variables should
be tested [89,120]. Moreover, we recently evidenced a poor concordance between some of
these lipid indices when used to identify subjects at higher cardiometabolic risk [89]. In
fact, these indices have different pathophysiological bases and/or different correlations
with CV risk factors [89]. Consequently, as each lipid parameter may measure different
physiopathological aspects of dysglycemia and cardiometabolic risk and give different
information, they should not be used interchangeably in daily clinical practice without
caution (Figure 1). On the other hand, it is this characteristic of incomplete overlap that
also may represent an advantage, as different lipid indices may provide incremental infor-
mation that, when combined, could lead to a more accurate prediction of risk and outcome
(Figure 1).
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These calculated parameters, although promising for CV risk assessment and retaining
unquestionable advantages (including availability, ease of calculation, and lack of additive
costs), still need wider use to better compare and interpret results and further verification
in different patient populations to precisely establish their significance in different clinical
settings before these indices can be spread and incorporated into routine prevention and
treatment decisions. Further validation also remains partially mandatory for non-HDL, the
best choice among them [121].

In conclusion, it is important to remember that CVD is a very complex condition.
Thus, a better understanding of the molecular characteristics of these indices based on the
lipid components used for their calculation, which have different peculiarities, may help to
further stratify specific groups of patients using a point of view of “stratified medicine” in
order to refine and reduce the residual risk, connecting bench to bedside and vice versa
(Figure 2).
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Abbreviations

AIP Atherogenic index of plasma
BMI Body mass index
CAD Coronary artery disease
CRI-I Castelli risk index I
CRI-II Castelli risk index II
CV Cardiovascular
EC Endothelial cell
HDL High-density lipoprotein
hsCRP High-sensitivity C-reactive protein
IDL Intermediate-density lipoprotein
IFN-γ Interferon gamma
IL Interleukin
IR Insulin resistance
LDL Low-density lipoprotein
LOX-1 Lectin-like oxidized low-density lipoprotein receptor-1
MACEs Major adverse cardiac events
MetS Metabolic syndrome
MI Myocardial infarction
NO Nitric oxide
Non-HDL Non-HDL cholesterol
Ox-LDL Oxidized low-density lipoprotein
RCVEs Recurrent cardiovascular events
T2D Type 2 diabetes
TC Total cholesterol
TG Triglycerides
TNF-α Tumor necrosis factor-alpha
TRL-C Triglyceride-rich lipoprotein cholesterol
VLDL Very low density lipoprotein
VSMC Vascular smooth muscle cells
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