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The interactions of molecules and macromolecules with carbon nanostructures such
as carbon dots, carbon nanotubes, graphene, graphene oxide, and fullerenes, have been
stimulating the interest of the researchers working on the preparation, functionalization,
properties and applications of carbon-based nanomaterials. Carbon nanostructures, indeed,
display very interesting electronic conductivity, high mechanical strength, low density
and easiness in chemical functionalization, by adopting either covalent or supramolecular
approaches, to fine-tune the properties of the resulting nanocomposite materials for specific
aims. In addition, the variety of size, shape, and dimensionality makes these structures
particularly versatile in many fields: beyond their promising prospects for a new generation
of solar cells, and light sensitive elements and electronics [1–6], more recently the attention
has been turned onto industrial, environmental, and biomedical aspects [7–9].

A huge amount of complex research and both theoretical and experimental studies
have been performed in this regard, so that this special issue does not aim at being exhaus-
tive but rather at giving some spotlights on carbon nanostructures with properties useful
for facing the issues related to their applications and seeing them within the context of
some recent literature.

Certainly, the studies on carbon nanostructures for photovoltaic and energy industry
have experienced a tremendous growth in the last two decades because of the need to reach
the next Sustainable Development Agenda targets. For example, they can be realistically
employed in various elements of a solar cell, as well as their composites, but the number
of concrete applications is still rather limited because of the high cost in obtaining pure
materials and of the current better performance of silicon-based materials in the visible
region. Furthermore, dispersibility in water seems to be a requirement for having access to
better yields and lower production costs, so that the typical hydrophobic character of some
carbon nanostructures has to be overcome by proper functionalization.

However, the dispersibility in aqueous medium is imperative for other application-
oriented studies like those involving medical sciences and healthcare industry, and carbon
nanostructures can be functionalized and surface-modified with a variety of molecules to
adapt their properties for drug delivery, cell imaging, biosensors, and other biomedical
devices [7,10]. Fullerenes derivatives and carbon nanotubes composites are promising for
anticancer therapies, gene delivery, and are also proposed as radio-protectant for human
erythrocytes against ionizing radiation damage [11]. Some carbon-based nanoparticles
have been reported to possess bactericidal properties and inhibition of viruses [12], whereas
graphene and carbon nanotubes can be applied in rapid diagnostic kits for COVID-19 [13,14],
entrapped in matrices for realizing personal protective equipment, or embedded in polymer
substrates as devices for artificial synapses in neural networks [15]. Additionally, tissue
engineering, especially concerning bone tissues, is open to the new materials based on carbon
nanostructures which offer high elastic modulus, the possibility to form hard composite
scaffolds similar to bone structure and to be incorporated in biocompatible polymer matrices
in order to minimize cytotoxicity [16].

Toxicity and immunogenicity of carbon-based nanomaterials [17–20] represent a rea-
sonable concern to take in serious account not only for biomedical applications. Indeed,
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the nanotechnology based on these materials and their composites offers effective solutions
to the agriculture industry to increase crop yield and protect plants, to the food packag-
ing industry aiming at improving conservation and prolonging the shelf-life of the food
products [21], to the plastic industry to increase tensile strength, and to the methods for
detection and filtering of pollutants (from volatile organic compounds and heavy met-
als to pesticides). All of these solutions imply the use of huge amount of carbon-based
nanomaterials for the large-scale production which, even with low toxicity, can expose the
environment, the biological organisms and hence the human health to the risk related to
accumulation [22,23].

Therefore, along with the study focused at overcoming the current limitations of
carbon-based nanomaterials and at improving their performance for applications, also
many investigations are recently concerning the understanding of their structure-related in-
teractions with molecules in biological processes and the development and implementation
of green routes for their sustainable production [24,25] and recycling [26].

To conclude, the current literature shows that the technological prospects of carbon
nanostructures for the future are manifold and that, if the technological approaches will
proceed at the same rate as the adoption of greener routes and more systematic studies
of their toxic effects and bio-safety, these innovative materials could represent a concrete
benefit of society and environment. The Editors’ wish is that this special issue, by dealing
with some important topics related to the realization, study, application, potentiality,
drawbacks, and problems of carbon-based nanomaterials, can contribute to stimulate new
investigation hints towards this target.

Conflicts of Interest: The author declares no conflict of interest.
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